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Abstract
In daycare matching problems, complementarities
in siblings’ preferences can lead to the nonexis-
tence of stable matchings. A similar issue arises in
hospital-resident markets with couples, where sta-
bility is not guaranteed in theory but often observed
in practice when the couple rate is low (e.g., 5%).
Yet, these results do not explain why stable match-
ings are consistently observed in daycare markets,
despite a much higher share of sibling applicants
(around 20%).
To understand this phenomenon, we analyze large
random matching markets in which daycare centers
have similar priority structures, a common feature
in practice. Our analysis reveals that as the mar-
ket size approaches infinity, the likelihood of stable
matchings existing converges to 1.
To facilitate our exploration, we refine an existing
heuristic algorithm to address a more rigorous sta-
bility concept, as the original one may fail to meet
this criterion. Through extensive experiments on
both real-world and synthetic datasets, we demon-
strate the effectiveness of our revised algorithm
in identifying stable matchings, particularly when
daycare priorities exhibit high similarity.

1 Introduction
Stability is a foundational concept in preference-based match-
ing theory [Roth and Sotomayor, 1990], with significant im-
plications for both theoretical frameworks and practical appli-
cations [Roth, 2008]. Its importance was underscored by the
awarding of the 2012 Nobel Prize in Economics. This funda-
mental concept is crucial for the success of various markets,
including the National Resident Matching Program [Roth,
1984] and public school choice programs [Abdulkadiroğlu
and Sönmez, 2003; Abdulkadiroğlu et al., 2005].

Despite its significance, the challenge posed by comple-
mentarities in preferences often leads to the absence of a sta-
ble matching. A persistent issue in this context is the in-
corporation of couples into centralized clearing algorithms
for professionals like doctors and psychologists [Roth and
Peranson, 1999]. Couples typically view pairs of jobs as

complements, which can result in the non-existence of a sta-
ble matching [Roth, 1984; Klaus and Klijn, 2005]. More-
over, verifying the existence of a stable matching is known
to be NP-hard, even in restrictive settings [Ronn, 1990;
McDermid and Manlove, 2010; Biró et al., 2014].

Nevertheless, real-life markets of substantial scale do ex-
hibit stable matchings even in the presence of couples. For
example, in the psychologists’ markets, couples constituted
only about 1% of all participants from 1999 to 2007 [Kojima
et al., 2013]. It was demonstrated that if the proportion of
couples grows sufficiently slowly compared to the number of
single doctors (at a near-linear rate of nϵ with 0< ϵ< 1 where
n is the number of single doctors), then a stable matching is
very likely to exist in a large market [Ashlagi et al., 2014].

In this paper, we shift our attention to daycare match-
ing markets in Japan, where the issue of waiting children
has become one of the most urgent social challenges due
to the scarcity of daycare facilities [Kamada and Kojima,
2023]. The daycare matching problem is a natural extension
of matching with couples, with the notable distinction that the
number of siblings in each family can exceed two.

The objective of this research is to gain a more nuanced
understanding of why stable matchings exist in practical day-
care markets. Recently, stable matchings have been reported
in these markets where optimization approaches are utilized
[Sun et al., 2023; Sun et al., 2024], but the underlying reasons
have not been thoroughly examined. Furthermore, theoreti-
cal guarantees established in prior research on matching with
couples may not readily extend to the daycare market [Ash-
lagi et al., 2014], primarily due to two key factors. Firstly,
a distinctive characteristic of Japanese daycare markets is the
substantial proportion, approximately 20%, of children with
siblings. This stands in contrast to the assumption of near-
linear growth of couples in previous research. Secondly, we
consider a stronger stability concept than the previous one,
tailored for daycare markets.

Our contributions can be summarized as follows:
Firstly, we propose an Extended Sorted Deferred Accep-

tance (ESDA) algorithm, which builds upon the existing
heuristic Sorted Deferred Acceptance (SDA) algorithm [Ash-
lagi et al., 2014]. The modification is necessary because the
original algorithm may fail to produce a matching that sat-
isfies our stricter stability concept (Theorem 1). We further
demonstrate that the ESDA algorithm yields a stable match-
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ing when it terminates successfully (Theorem 2).
Second, we conduct a probabilistic analysis to investigate

the existence of stable matchings in large random daycare
markets, modeled using probability distributions. A key ob-
servation is that, in practice, daycares often share similar
priority structures over children. Our main result demon-
strates that in such random markets, the probability of a stable
matching existing approaches 1 as the market size becomes
infinitely large (Theorem 3). To the best of our knowledge,
this is the first study to provide a theoretical framework that
explains the consistent presence of stable matchings in real-
world daycare markets.

Third, we conduct comprehensive experiments on both
real-world datasets and a diverse range of synthetic datasets.
Our results demonstrate that a stable matching is highly likely
to exist, and the ESDA algorithm remains highly effective,
particularly in scenarios where daycare priorities exhibit sig-
nificant similarity.

Due to space limit, we provide a detailed literature review
in the Appendix.

2 Preliminaries
In this section, we present the framework of a daycare mar-
ket, expanding upon the classical problem of hospital-doctor
matching with couples. We also generalize three fundamental
properties that have been extensively examined in the litera-
ture of two-sided matching markets.

2.1 Model
The daycare matching problem is represented by the tuple
I = (C,F,D,Q,≻F ,≻D), where C, F and D denote sets
of children, families, and daycare centers, respectively.

Each child c ∈ C belongs to a family denoted as fc ∈ F .
Each family f ∈ F is associated with a subset of children,
denoted as Cf ⊆ C. In cases where a family contains more
than one child, e.g., Cf = (c1, c2, . . . , ck) with k > 1, these
siblings are arranged in a predefined order, such as by age.

Let D represent a set of daycare centers, referred to as
“daycares” for brevity. A dummy daycare denoted as d0 is
included in D, signifying the possibility of a child being un-
matched. Each individual daycare d establishes a quota, de-
noted as Qd, where the symbol Q represents all quotas.

Each family f reports a strict preference ordering ≻f , de-
fined over tuples of daycare centers, reflecting the collective
preferences of the children within Cf . The notation D(≻f , j)
is used to represent the j-th tuple of daycares in ≻f , and the
overall preference profile of all families is denoted as ≻F .

Each daycare d ∈ D maintains a strict priority ordering
≻d over C ∪ {∅}, encompassing both the set of children C
and an empty option. A child c ∈ C is considered acceptable
to daycare d if c ≻d ∅, and deemed unacceptable if ∅ ≻d c.
The priority profile of all daycares is denoted as ≻D.

A matching is defined as a function µ : C ∪D → C ∪D
such that i) ∀c ∈ C, µ(c) ∈ D, ii) ∀d ∈ D, µ(d) ⊆ C and iii)
µ(c) = d if and only if c ∈ µ(d). For a given matching µ, the
assignment of a child c is denoted by µ(c), and the set of chil-
dren assigned to a daycare d is denoted by µ(d). For a family
f with children Cf = (c1, c2, . . . , ck), the family’s assign-
ment is represented as µ(f) =

(
µ(c1), µ(c2), . . . , µ(ck)

)
.

2.2 Fundamental Properties
The first property, individual rationality, stipulates that each
family is matched to some tuple of daycares that are weakly
better than being unmatched, and no daycare is matched with
an unacceptable child. It is noteworthy that each family is
considered an agent, rather than individual children.
Definition 1 (Individual Rationality). A matching µ satis-
fies individual rationality if two conditions hold: i) ∀f ∈
F, µ(f) ≻f (d0, d0, . . . , d0) or µ(f) = (d0, d0, . . . , d0), and
ii) ∀d ∈ D, ∀c ∈ µ(d), c ≻d ∅.

Feasibility in Definition 2 necessitates that i) each child is
assigned to one daycare including the dummy daycare d0, and
ii) the number of children matched to each daycare d does not
exceed its specific quota Qd.
Definition 2 (Feasibility). A matching µ is feasible if it sat-
isfies the following conditions: i) ∀c ∈ C, |µ(c)| = 1, and ii)
∀d ∈ D, |µ(d)| ≤ Qd.

Stability is a well-explored solution concept within the do-
main of two-sided matching theory. Before delving into its
definition, we introduce the concept of a choice function as
outlined in Definition 3. It captures the intricate process by
which daycares select children, capable of incorporating vari-
ous considerations such as priority, diversity goals, and distri-
butional constraints (see, e.g., [Hatfield and Milgrom, 2005;
Aziz and Sun, 2021; Suzuki et al., 2023; Kamada and Ko-
jima, 2023]). Following the work in [Ashlagi et al., 2014],
our choice function operates through a greedy selection of
children based on priority only, simplifying the representa-
tion of stability.
Definition 3 (Choice Function of a Daycare). For a given
set of children C ′ ⊆ C, the choice function of daycare d,
denoted as Chd : C ′ → 2C

′
, selects children one by one in

descending order of ≻d without exceeding quota Qd.
In this paper, we explore a slightly stronger stability con-

cept than the original one studied in [Ashlagi et al., 2014].
It extends the idea of eliminating blocking pairs [Gale and
Shapley, 1962] to address the removal of blocking coalitions
between families and a selected subset of daycares.
Definition 4 (Stability). Given a feasible and individually ra-
tional matching µ, family f with children Cf = (c1, c2, . . .,
ck) and the j-th tuple of daycares D(≻f , j) = (d∗1, d∗2, . . .,
d∗k) in ≻f , form a blocking coalition if the following two con-
ditions hold,
1. family f prefers (d∗1, d∗2, . . ., d∗k) to its current assignment

µ(f), i.e., D(≻f , j) ≻f µ(f), and
2. for each distinct daycare d from (d∗1, d

∗
2, . . . , d

∗
k), we have

C(≻f , j, d) ⊆ Chd((µ(d) \ Cf ) ∪ C(≻f , j, d)), where
C(≻f , j, d) ⊆ Cf denotes a subset of children from fam-
ily f who apply to daycare d with respect to D(≻f , j).

A feasible and individually rational matching satisfies stabil-
ity if no blocking coalition exists.

Consider the input to Chd(·) in Condition 2 in Defini-
tion 4. First, we calculate µ(d) \ Cf , representing the chil-
dren matched to d in matching µ but not from family f . Then,
we consider C(≻f , j, d). This process accounts for situations
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where a child c is paired with d in µ but is not included in
C(≻f , j, d), indicating that c is applying to a different day-
care d′ ̸= d according to D(≻f , j). Consequently, child c has
the flexibility to pass his assigned seat from d to his siblings
in need. Otherwise, child c would compete with his siblings
for seats at d despite his intent to apply elsewhere.

2.3 Motivation of New Stability Concept
The primary reason for modifying the stability concept lies in
the differing selection criteria between hospital-doctor match-
ing and daycare allocation. In the former problem, hospi-
tals have preferences over doctors. In contrast, daycare cen-
ters utilize priority scores to determine which child should be
given higher precedence. The priority scoring system is de-
signed to eliminate justified envy and achieve a fair outcome,
treating daycare slots as resources to be allocated equitably.
Additionally, it is crucial that siblings do not envy each other,
especially when they are not enrolled in the same daycare.
Allowing children to transfer their seats to other siblings can
potentially reduce waste and increase overall welfare. We
presented this new stability concept to multiple government
officials from different municipalities and several renowned
economists. They all agreed that the modification is more
appropriate for the daycare matching setting.

On the other hand, the stability concept in [Ashlagi et al.,
2014] does not take siblings’ assignments into account. To
distinguish it from our concept, we refer to their stability as
ABH-stability, named after the authors’ initials. The formal
definition of ABH-stability is presented in the Appendix.

Proposition 1. Stability implies ABH-stability, but not vice
versa.

We next illustrate the differences between stability in Def-
inition 4 and ABH-stability through Example 1.

Example 1 (Comparison of Two Stability Concepts). Con-
sider a family f with two children Cf = (c1, c2) and three
daycare centers D = {d0, d1, d2}. The daycares d1 and
d2 each have one available slot, while the dummy daycare
d0 has unlimited capacity. The preferences of family f are
(d1, d2) ≻f (d2, d0). Each daycare ranks c1 higher than c2.

The matching (d2, d0), which assigns c1 to d2 and c2 to
d0, is considered ABH-stable. However, it does not satisfy
our stricter stability criteria defined in Definition 4. This is
because it is blocked by family f and the pair (d1, d2): child
c1 could transfer their seat at d2 to c2, allowing both children
to achieve a more preferred assignment.

We consider the matching (d1, d2) superior, as it assigns
family f to their top choice without negatively impacting any
other family. In contrast, the matching (d2, d0) results in a
wasted seat at daycare d1 and leaves family f unsatisfied.

3 Extended Sorted Deferred Acceptance
(ESDA)

In this section, we introduce the Extended Sorted Deferred
Acceptance (ESDA) algorithm, a heuristic method demon-
strated to be effective in computing stable matchings across
diverse real-world and synthetic datasets. Importantly, the

ESDA algorithm serves as a foundational component in our
probability analysis for large random markets.

The ESDA algorithm extends the Sorted Deferred Accep-
tance (SDA) algorithm. In the following theorem, we demon-
strate that the original SDA algorithm may not produce a sta-
ble matching with respect to Definition 4 when it terminates
successfully. More details about the previous algorithms, in-
cluding SDA and Sequential Couples (a simplified version of
SDA), are provided in the Appendix.
Theorem 1. The matching returned by the original SDA al-
gorithm may not be stable.

3.1 Description of ESDA
We next provide an informal description of ESDA, while the
full description is presented in the Appendix.

The algorithm begins by computing a stable matching
among families with an only child, denoted as FO, using the
Deferred Acceptance algorithm. Subsequently, the algorithm
sequentially processes each family from the set of families
with multiple children, denoted as f ∈ FS , following a pre-
defined order π over FS .

When a family f ∈ FS is added to the matching process,
the algorithm executes the following procedures within a sin-
gle iteration. First, in the Proposal step, family f proposes
to a tuple of daycare centers from its preference order that
has not yet been considered. Next, in the Selection step, each
daycare evaluates these proposals using the choice function
defined in Definition 3. If any sibling from family f is re-
jected, the algorithm returns to the Proposal step with the
next tuple in the family’s preference order. Conversely, if all
siblings are accepted, family f is tentatively matched to the
current tuple. This tentative assignment may displace some
children from other families due to capacity constraints. Let
RF denote the set of families whose children are rejected as
a result of this reallocation. In the Check Restart step, if
any family f ′ ∈ FS with siblings has a child rejected during
this process, the algorithm attempts a new order π′ by placing
f before f ′ in the sequence. If this new permutation π′ has
already been attempted, the algorithm terminates and returns
Unsuccess. Otherwise, the algorithm restarts the process with
π′. Subsequently, in the Stabilization step, each evicted fam-
ily f ′ ∈ RF repeats the procedures starting from the Proposal
step, proposing to the next feasible tuple in its preference or-
der. Family f ′ is removed from RF once its assignment is
determined, while any new families displaced during this pro-
cess are added to RF . This iterative stabilization continues
until RF becomes empty. Finally, in the Check Improve-
ment step, the algorithm evaluates whether family f can im-
prove its current assignment by allowing siblings to transfer
their seats. If such an improvement is possible, the algorithm
terminates and returns Unsuccess. Otherwise, it proceeds to
process the next family in FS according to the predefined or-
der π.

We provide a concise explanation of the differences be-
tween our ESDA algorithm and the original SDA algorithm.
First, the choice function used by daycares to select children
differs significantly. In ESDA, children can transfer their al-
located seats to their siblings, a feature absent in the origi-
nal SDA. Second, the ESDA algorithm rigorously examines
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whether any family can form a blocking coalition with a tu-
ple of daycares that previously rejected it, particularly when
the assignment of any child without siblings is modified. In
contrast, the original SDA processes each tuple of daycares
only once, without performing this additional check.
Example 2. Consider three families f1 with Cf1 = (c1, c2),
f2 with Cf2 = (c3, c4) and f3 with Cf3 = (c5, c6). There are
five daycares denoted as D = {d1, d2, d3, d4, d5}, each with
one available slot. The order π is initialized as {1, 2, 3}. The
preference profile of the families and the priority profile of the
daycares are outlined as follows:

≻f1 : (d1, d2), (d1, d4) ≻d1
: c1, c5 ≻d2

: c6, c2
≻f2 : (d3, d4), (d5, d4) ≻d3

: c3, c5 ≻d4
: c6, c4, c2

≻f3 : (d1, d4), (d3, d4), (d5, d2) ≻d5
: c3, c5

Iteration 1: With order π1 = {1, 2, 3}, family f1 secured
a match by applying to daycares (d1, d2), followed by fam-
ily f2 obtaining a match with applications to (d3, d4). How-
ever, family f3 faced rejections at (d1, d4) and (d3, d4) be-
fore successfully securing acceptance at (d5, d2), leading to
the displacement of family f1. Thus we generate a new order
π2 = {3, 1, 2} by inserting 3 before 1.

Iteration 2: With order π2 = {3, 1, 2}, family f3 secures a
match at (d1, d4). Then family f1 applies to (d1, d2) and also
secures a match, resulting in the eviction of family f3. This
leads to the generation of a modified order π3 = {1, 3, 2}
with 1 preceding 3.

Iteration 3: With order π3 = {1, 3, 2}, family f1 secures
a match at (d1, d2). Subsequent applications by f3 result in
a match at (d3, d4), but f2 remains unmatched due to rejec-
tions at (d3, d4) and (d5, d4). The algorithm terminates, re-
turning a stable matching µ with f1 matched to (d1, d2) and
f3 matched to (d3, d4), while f2 remains unmatched.

3.2 Two Types of Unsuccessful Termination
The ESDA algorithm terminates unsuccessfully in two sce-
narios suggesting that a stable matching may not exist, even
if one indeed exists.

A Type-1 Unsuccessful Termination happens when, during
the insertion of a family f ∈ FS , a child c ∈ Cf initiates a
rejection chain that ends with another child c′ ∈ Cf from the
same family, where all other children in the chain do not have
siblings. This unsuccessful termination is further divided into
two cases based on whether c = c′ holds: Type-1-a Unsuc-
cessful Termination when c = c′ and Type-1-b Unsuccessful
Termination when c ̸= c′ ∈ fc.

A Type-2 Unsuccessful Termination occurs when two fam-
ilies, f1 and f2 ∈ FS , satisfy the following conditions: i) f1
precedes f2 in the current order π, ii) There exists a rejection
chain starting from f2 and ending with f1, where all other
families in the chain have only one child, and iii) A new or-
der π′ is generated by placing f2 before f1, and this order has
been attempted and stored in the set Π, which keeps track of
permutations explored during the ESDA process.

We provide examples to illustrate these two types of unsuc-
cessful terminations in the Appendix, which are crucial when
analyzing the probability of the existence of stable matchings
in a large random market.

3.3 Successful Termination
We next demonstrate that ESDA always generates a stable
matching if it terminates successfully.

Theorem 2. Given an instance of I , if ESDA returns a match-
ing, then the yielded matching is stable. In addition, ESDA
always terminates in a finite time.

Our proof that ESDA always generates a stable matching
if it terminates successfully, relies on the following two lem-
mas. First, we establish that the number of matched children
at each daycare does not decrease as long as no family in FS

is rejected and no child passes their seat to other siblings dur-
ing the execution of ESDA. Then, we prove that for a given
order π over FS , if the rank of the matched child at any day-
care increases, then ESDA cannot produce a matching with
respect to π.

Lemma 1. For a given order π over families FS , let µi(π)
denote the matching obtained during the ESDA procedure be-
fore processing the i-th family denoted as FS

π(i) ∈ FS . The
number of matched children at any daycare d does not de-
crease under matching µi+1(π) if the following three con-
ditions hold: i) The algorithm does not encounter any type
of Unsuccessful Termination. ii) The order π remains un-
changed. iii) No child from family FS

π(i+1) transfers their seat
to other siblings during the ESDA process.

For a given matching µ and a daycare d, let Rank(µ, d)
represent the rank of the matched child with the lowest prior-
ity at daycare d, where 1 denotes the highest priority. Imag-
ine that all vacant slots at each daycare are initially occupied
by dummy children assigned the rank |C|+ 1. As the ESDA
algorithm progresses, these dummy children are gradually re-
jected and replaced by children with higher priorities, result-
ing in a decrease in Rank(·).

Lemma 2. Given an order π over families FS , if, during the
ESDA process, Rank(µ, d) increases for any daycare d, then
ESDA fails to generate a matching under the current order π
over families FS .

4 Random Daycare Market
To analyze the likelihood of a stable matching in practice,
we proceed to introduce a random market where prefer-
ences and priorities are generated from probability distribu-
tions. Formally, we represent a random daycare market as
Ĩ = (C,F,D,Q, α,K,L,P, ρ, σ,D≻0,ϕ, ε).

Let |C| = n and |D| = m denote the number of children
and daycares, respectively. Throughout this paper, we assume
that m = Ω(n). To facilitate analysis, we partition the set F
into two distinct groups labeled FS and FO, signifying the
sets of families with and without multiple children, respec-
tively. Correspondingly, CS and CO represent the sets of
children with and without siblings, respectively. The parame-
ter α signifies the percentage of children with siblings. Then
we have |CO| = (1 − α)n and |CS | = αn. For each family
f , the size of Cf is constrained by a constant K, expressed as
maxf∈F |Cf | ≤ K.
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4.1 Preferences of Families
We adopt the approach described in [Kojima et al., 2013] to
generate family preferences using a two-step process. In the
first step, we independently generate preference orderings for
each child based on a probability distribution P over the set of
daycares D. Let P = (pd)d∈D denote a probability distribu-
tion, where pd represents the probability of selecting daycare
d. For each child c, we initialize an empty list, then inde-
pendently select a daycare d from P and add it to the list if
it is not already included. This process is repeated until the
list reaches a maximum length L, which is typically a small
constant in practice [Sun et al., 2023].

We adhere to the assumption that the distribution P satis-
fies a uniformly bounded condition, as assumed in the random
market in [Kojima et al., 2013] and [Ashlagi et al., 2014].
Definition 5 (Uniformly Bounded). For all d, d′ ∈ D, the
ratio of probabilities pd/pd′ falls within the interval [1/σ, σ]
with a constant σ ≥ 1.

Lemma 3. Under the uniformly bounded condition, the prob-
ability pd of selecting any daycare d is limited by σ/m where
m denotes the total number of daycares.

In the second step, we generate all possible combinations
of the individual preferences of the children within each fam-
ily. From these combinations, we uniformly at random select
a subset with a specified length limit, without imposing addi-
tional restrictions.

4.2 Priorities of Daycares
A notable departure from previous work [Kojima et al.,
2013; Ashlagi et al., 2014] is our adoption of the Mallows
model [Mallows, 1957] to generate daycare priority order-
ings over children. The Mallows model, denoted as D≻0,ϕ,
begins with a reference ordering ≻0. New orderings are then
probabilistically generated based on this reference, with the
degree of deviation controlled by a dispersion parameter ϕ.

Through active collaborations with multiple Japanese mu-
nicipalities, we have observed that daycare centers often share
similar priority structures for children. In practice, munici-
palities typically use a complex scoring system to assign a
unique priority score to each child, establishing a strict pri-
ority order. This order is then applied and slightly adjusted
by each daycare based on their individual policies (e.g., pri-
oritizing siblings who are already enrolled). The Mallows
model is particularly well-suited for replicating these priority
orderings, as it allows for controlled variations around a ref-
erence ranking. Additionally, this model is widely recognized
for its flexibility and has been extensively used for preference
generation across various domains [Lu and Boutilier, 2011;
Brilliantova and Hosseini, 2022].

Let S denote the set of all orderings over C.
Definition 6 (Kendall-tau Distance). For a pair of order-
ings ≻ and ≻′ in S, the Kendall-tau distance, denoted by
inv(≻,≻′), is a metric that counts the number of pairwise
inversions between these two orderings. Formally, inv(≻,≻′

) = |{c, c′ ∈ C | c ≻′ c′ and c′ ≻ c}|.
Definition 7 (Mallows Model). Let ϕ ∈ (0, 1] be a disper-
sion parameter and Z =

∑
≻∈S ϕinv(≻,≻0). The Mallows

distribution is a probability distribution over S. The prob-
ability that an ordering ≻ in S is drawn from the Mallows
distribution is given by

Pr[≻] =
1

Z
ϕinv(≻,≻0).

The dispersion parameter ϕ characterizes the correlation
between the sampled ordering and the reference ordering ≻0.
Specifically, when ϕ is close to 0, the ordering drawn from
D≻0,ϕ is almost the same as the reference ordering ≻0. On
the other hand, when ϕ = 1, D≻0,ϕ corresponds to the uni-
form distribution over all permutations of C.

Siblings within the same family typically share identical
priority scores, with ties resolved arbitrarily [Sun et al., 2023;
Sun et al., 2024]. Motivated by this observation, we construct
a reference ordering ≻0 through the following steps. Starting
with an empty list, we first include all singleton children CO,
who do not have siblings. For each family f ∈ FS (fami-
lies with siblings), we decide probabilistically whether to add
its children individually or as a grouped entity: with a prob-
ability of 1/n1+ε, all children Cf of the family are added as
separate entries, and with a probability of 1 − 1/n1+ε, the
family is added as a single entity to keep its children grouped
together, where n is the total number of children and ε > 0
is a constant. Once all children and families are added, the
list is shuffled to introduce randomness. Finally, the refer-
ence ordering ≻0 is drawn from a uniform distribution over
all permutations of the shuffled list.
Definition 8 (Diameter). Given a reference ordering ≻0 over
children C, we define the diameter of family f , denoted by
diamf , as the greatest difference of positions in ≻0 among
Cf plus 1. Formally,

diamf = position

(
max
c′∈Cf

)
− position

(
min
c′∈Cf

)
+ 1,

where maxc∈Cf
c (resp. minc∈Cf

c) refers to the child in Cf

with the highest (resp. lowest) priority in ≻0.
The methodology employed to generate the reference or-

dering ≻0 above adheres to the following condition. For each
family f with siblings, we have Pr

[
diamf ≥ |Cf |

]
≤ 1

n1+ε

from the construction.

4.3 Main Theorem
We focus on a random market Ĩ where all parameters are set
as described above. Although a stable matching may not exist
even when all daycares have the same priority ordering over
children (see the Appendix), our main result, encapsulated in
the following theorem, shows that for a large random market,
the existence of a stable matching is highly likely.

Theorem 3. Given a random market Ĩ with ϕ = O(log n/n),
the probability of the existence of a stable matching converges
to 1 as n approaches infinity.

5 Sketched Proof of Theorem 3
We prove Theorem 3 by showing that the ESDA algorithm
produces a stable matching with a probability that converges
to 1 in the random market. Our primary approach to proving
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Theorem 3 involves setting an upper bound on the likelihood
of encountering the two types of unsuccessful termination in
the ESDA algorithm.

The following two lemmas establish that as n approaches
infinity, Type-1-a and Type-1-b unsuccessful terminations are
highly unlikely to occur when the dispersion parameter ϕ is
on the order of O(log n/n). We defer the proofs for these
results to the Appendix.

Lemma 4. Given a random market Ĩ with ϕ = O(log n/n),
the probability of Type-1-a unsuccessful termination in the
ESDA algorithm is bounded by O

(
(log n)2/n

)
.

Lemma 5. Given a random market Ĩ with ϕ = O(log n/n),
the probability of Type-1-b unsuccessful termination in the
ESDA algorithm is bounded by O

(
(log n)2/n

)
+O(n−ε).

As illustrated in the Appendix Type-2 unsuccessful termi-
nation can occur even when the priorities of daycares over
children are identical.

We introduce concepts of domination and nesting to ana-
lyze the case of Type-2 unsuccessful termination.
Definition 9 (Domination). Given a priority ordering ≻, we
say that family f dominates f ′ w.r.t. ≻ if maxc∈Cf

c ≻
minc′∈C(f ′) c

′ where maxc∈Cf
c (resp. minc∈Cf

c) repre-
sents the child in Cf with the highest (resp. lowest) priority
under the priority ordering ≻.

In simple terms, if f dominates f ′, then there is a possibil-
ity that f ′ will be rejected by daycares with a certain order ≻
due to an application of f .
Definition 10 (Top Domination). Given a priority ordering
≻, we say that family f top-dominates f ′ w.r.t. ≻ if

max
c∈Cf

c ≻ max
c′∈C(f ′)

c′.

Intuitively, a Type-2 unsuccessful termination can arise
from a cycle in which two families with siblings reject each
other. We introduce the concept of nesting as follows.
Definition 11 (Nesting). Given a priority ordering ≻, two
families f and f ′ are said to be nesting if they mutually dom-
inate each other under ≻.

We next show that if any two families do not nest with each
other with respect to ≻0, then Type-2 unsuccessful termina-
tion is unlikely to occur as n tends to infinity in Lemma 6.
We defer the proof to the Appendix.

Lemma 6. Given a random market Ĩ with ϕ = O(log n/n),
and for any two families f, f ′ ∈ FS that are not nesting with
each other with respect to ≻0, then Type-2 unsuccessful ter-
mination occurs with a probability of at most O(log n/n).

Following an analysis of the probability that any two pairs
of families from FS nest with each other with respect to the
reference ordering ≻0, we establish the probability of Type-2
unsuccessful termination in Lemma 7.
Lemma 7. Given a random market Ĩ with ϕ = O(log n/n),
the probability of Type-2 unsuccessful termination occurring
is bounded by O(log n/n) +O

(
n−2ε

)
.

Lemma 4, Lemma 5, and Lemma 7 imply the existence of
a stable matching with high probability for the large random
market, thus concluding the proof of Theorem 3.

6 Experiments
In this section, we conduct comprehensive experiments to ad-
dress three key questions: (1) How often does a stable match-
ing exist in a large random market? (2) How effective is our
proposed ESDA algorithm in identifying stable matchings?
(3) How does our stronger stability concept affect the exis-
tence of stable matchings compared to ABH-stability?

Given the limitations of the ESDA algorithm in computing
stable matchings in certain scenarios, we adopt a constraint
programming (CP) approach as an alternative. This method
reliably produces a stable matching whenever one exists [Sun
et al., 2024]. We compare our algorithm against the sequen-
tial couples (SC) algorithm, the original SDA, CP with ABH
stability, and CP with our proposed stability concept.

To evaluate these algorithms, we use both real-world and
synthetic datasets, focusing on two key aspects: the frequency
with which each algorithm identifies a stable matching and
their running time. All algorithms are implemented in Python
and executed on a standard laptop with an M4 Pro chip, with-
out additional computational resources. To generate priorities
from the Mallows distributions, we follow the approach out-
lined in the PrefLib library [Mattei and Walsh, 2013].

The experimental findings are summarized as follows: (1)
As established in Theorem 3, a stable matching is highly
likely to exist when daycares share similar priority orderings
over children. (2) The ESDA algorithm achieves performance
close to the optimal solution, without experiencing a signifi-
cant performance decline compared to SDA, while satisfying
a stronger stability concept. (3) In general, our proposed sta-
bility concept does not reduce the probability of stable match-
ings existing compared to the ABH stability concept.

6.1 Experiments on Real-life Datasets
We first evaluate our algorithm on six real-world datasets ob-
tained from three municipalities. All algorithms, including
SDA, ESDA, CP-ABH, and CP-ours, successfully identify a
stable matching in these cases, whereas only SC fails.

We are collaborating with several municipalities in Japan,
and as part of our collaboration, we provide a detailed de-
scription of the practical daycare matching markets based on
data sets provided by three representative municipalities.

The proportion of children with siblings ranges from 15%
to 20%. The preference list of an only child is relatively con-
cise compared to the available facilities, averaging between 3
and 4.5 choices. All daycares demonstrate a tendency to have
similar priority orderings over the children. Detailed infor-
mation is available in the Appendix.

6.2 Experiments on Synthetic Datasets
We outline the steps to generate synthetic datasets.

We define the total number of children, denoted by |C|,
drawn from the set {500, 1000, 3000, 5000, 10000}. We as-
sume that the proportion of children with siblings is bounded
by α = 0.2. For families with siblings, we consider only two-
sibling families and three-sibling families, where the children
account for 80% and 20%, respectively.

The number of two-sibling families is calculated as

|FS
2 | = int

(
α× |C| × 0.8

2

)
,
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#children Algorithm Success Time (s) Success Time (s) Success Time (s)
ϕ = 0.0 ϕ = 0.3 ϕ = 0.5

3000 SC 0/100 nan ± nan 0/100 nan ± nan 0/100 nan ± nan
SDA 100/100 1.39 ± 0.14 100/100 1.39 ± 0.13 100/100 1.40 ± 0.12

ESDA 100/100 1.48 ± 0.16 100/100 1.48 ± 0.16 100/100 1.48 ± 0.14
CP-ABH 100/100 11.72 ± 0.13 100/100 11.84 ± 0.14 100/100 11.81 ± 0.13
CP-Ours 100/100 11.77 ± 0.13 100/100 11.82 ± 0.14 100/100 11.90 ± 0.15

ϕ = 0.7 ϕ = 0.9 ϕ = 1.0

SC 0/100 nan ± nan 0/100 nan ± nan 0/100 nan ± nan
SDA 100/100 1.41 ± 0.15 99/100 1.42 ± 0.13 74/100 1.69 ± 0.22

ESDA 100/100 1.50 ± 0.17 99/100 1.51 ± 0.15 73/100 1.87 ± 0.25
CP-ABH 100/100 12.00 ± 0.14 100/100 11.58 ± 0.14 100/100 11.86 ± 0.11
CP-Ours 100/100 11.97 ± 0.12 100/100 11.64 ± 0.14 95/100 11.86 ± 0.15

Table 1: Performance comparison for children size (|C| = 3000) and dispersion parameters (ϕ) in the Mallows model. SC is the Sequential
Couples algorithm [Kojima et al., 2013]. SDA is the Sorted Deferred Acceptance algorithm [Ashlagi et al., 2014]. ESDA (Extended SDA)
is our proposed extension of the SDA algorithm. Both CP-ABH and CP-Ours use constraint programming to find stable matchings where
CP-ABH uses ABH-stability from [Ashlagi et al., 2014] and CP-Ours uses our proposed notion of stability as constraints. Success shows the
number of successful runs out of 100 instances. Time shows mean, ±, std computation time in seconds for successful runs only.

and the number of three-sibling families is calculated as

|FS
3 | = int

(
α× |C| × 0.2

3

)
.

The total number of children with siblings is calculated as

|CS | = (|FS
2 | × 2 + |FS

3 | × 3),

while the number of children without siblings is

|CO| = |C| − |CS |.

Correspondingly, the total number of families is

|F | = |FO|+ |FS |,

where |FO| and |FS | represent the numbers of families with-
out and with siblings, respectively.

The number of daycares is determined as

|D| = int(0.1× |F |),

and the capacity of each daycare is fixed using the list
[5, 5, 1, 1, 1, 1], where each element corresponds to a specific
age group in the range from 0 to 5.

For each child without siblings (CO), we randomly assign
preferences for 5 daycares from the set D. For families with
siblings (FS), we generate an individual preference ordering
of length 10 for each child c ∈ Cf by uniformly sampling
from D. Subsequently, we consider all possible combinations
of preferences within the family and uniformly select a joint
preference ordering of length 10.

We vary the dispersion parameter ϕ within the range
{0.0, 0.3, 0.5, 0.7, 0.9, 1.0} while keeping the parameter ε,
which is used to generate a reference ordering ≻0, fixed at
1. For each specified setting, we generate 100 instances.

In addition to the stability analysis, we conducted a com-
parison of the running times between these algorithms. Al-
though SDA and ESDA may need to check all permutations
of FS in the worst-case scenario, it consistently demonstrated

significantly faster performance than the CP algorithm across
all cases.

Regarding the experimental findings: (i) A stable matching
is very likely to exist for ϕ ≤ 0.9 and with high probability for
ϕ = 1.0. (ii) For ϕ ≤ 0.9, the ESDA algorithm consistently
identified a stable matching, while the SDA algorithm consis-
tently identified an ABH-stable matching. (iii) Although our
stability concept is stronger than ABH-stability, there is no
significant decrease in the existence of stable matchings for
most of the settings, except for the case where |C| = 10000
and ϕ = 1.0, which is unlikely to occur in practice.

Table 1 presents the results for 3000 children, while the
detailed experimental findings for different children sizes are
summarized in the Appendix.

7 Conclusion

In this study, we investigate the reasons behind the existence
of stable matchings in practical daycare markets, identifying
the shared priority ordering among daycares as a primary fac-
tor. Our contributions include a probabilistic analysis of such
large random markets and the introduction of the ESDA al-
gorithm to identify stable matchings. Experimental results
demonstrate the efficiency of the ESDA algorithm under var-
ious conditions. We plan to continue this study by investigat-
ing additional factors that contribute to the existence of stable
matchings in more general settings, beyond the case of simi-
lar priority orderings over children.
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