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Abstract

In order to boost the performance of a convolu-
tional neural network (CNN), several approaches
have shown the benefit of enhancing the spatial
encoding of feature maps. However, few works
paid attention to the positional properties of con-
volutional kernels. In this paper, we demonstrate
that different kernel positions are of different im-
portance, which depends on the task, dataset and
architecture, and adaptively emphasizing the in-
formative parts in convolutional kernels can lead
to considerable improvement. Therefore, we pro-
pose a novel structural re-parameterization Posi-
tion Boosting Convolution (PBConv) to exploit and
enhance the position information in the convolu-
tional kernel. PBConv consists of several con-
current small convolutional kernels, which can be
equivalently converted to the original kernel and
bring no extra inference cost. Different from ex-
isting structural re-parameterization methods, PB-
conv searches for the optimal re-parameterized
structure by a fast heuristic algorithm based on the
dispersion of kernel weights. Such heuristic search
is efficient yet effective, well adapting the varying
kernel weight distribution. As a result, PBConv can
significantly improve the representational power of
amodel, especially its ability to extract fine-grained
low-level features. Importantly, PBConv is orthog-
onal to procedural re-parameterization methods and
can further boost performance based on them.

1 Introduction

Convolutional neural network (CNN) is widely used in vari-
ous visual tasks [Krizhevsky et al., 2012; Ren et al., 2015;
Toshev and Szegedy, 2014] and produces impressive re-
sults, greatly promoting the development of computer vi-
sion. How to improve the performance of various visual
models becomes a very popular topic [Hu et al., 2018;
Ding et al., 2021c; Ding et al., 2019; Wang et al., 2024b;
Xiong et al., 2024; Shen et al., 2024; Hao et al., 2024]. As
is known to all, the convolutional operator aggregates neigh-
bor information to obtain feature representation. Many prior
works [Chen et al., 2017; Xu et al., 2015; Hu et al., 2018]

have found that the position information of features has a sig-
nificant impact on the aggregation results, especially for fine-
level image analysis tasks such as pixel-level semantic seg-
mentation [Fu et al., 2019; Zhong et al., 2020]. For example,
spatial-wise attention [Chen et al., 2017] promotes the model
by modeling the importance of feature maps. However, few
works focus on the role of different positions of convolu-
tional kernels when designing convolution-based networks.
While, in this paper, we deeply analyze such a characteristic
of the convolutional kernel and improve the performance of
CNNs. We find the positional distributions of convolutional
kernels are diverse and are influenced by tasks, architectures,
and internal layer order as in Fig. 2. In addition, we find that
pruning weight on the position with larger magnitude leads to
more performance drop as shown in Fig. 3. Therefore, it is ap-
propriate for us to use magnitude to represent the importance
of positions. If a kernel position has a large magnitude, then
this position is more important compared with the position
with a smaller magnitude. Furthermore, we notice that the po-
sition distribution of kernel weights is approximately uniform
after the beginning random initialization, but rapidly evolves
towards dispersion as the training progresses. Based on this
observation, we hypothesize that reinforcing the strong and
weakening the weak of convolutional kernel weights’ posi-
tions would help improve the model’s performance, and de-
sign PBConv to enlarge such gap. Afterward, Fig. 9 will
demonstrate that our goal has indeed been achieved.

Motivated by such observation, we propose a novel Posi-
tion Boosting Convolution (PBConv) to replace the original
convolution. A PBConv adaptively learns the importance of
kernel positions, promoting the important ones and suppress-
ing the unimportant ones. Our PBConv follows the princi-
ple of re-parameterization (rep for short ) [Ding et al., 2019;
Ding et al., 2021c; Ding et al., 2021d; Hu et al., 2022;
Huang et al., 2022; Ding et al., 2022; Ding et al., 2024;
Ding et al., 2021a; Hao et al., 2023a; Hao et al., 2023b;
Hao et al., 2023¢; Guo et al., 2020; Wang et al., 2024a] mech-
anism, which trains an over-parameterized model but merge
redundant parameters before inference, ultimately retaining
only the necessary structure. In this way, these techniques
can fully exploit the capacity of the model during training
to improve performance without adding any inference over-
head. However, existing structural re-parameterization tech-
niques [Ding et al., 2019; Ding et al., 2021c] ignore the in-
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Figure 1: Overview of PBConv. For an off-the-shelf model, we replace each convolutional layer with our PBConv. The structure of PBConv
for a particular model is decided by heuristic search. First, we randomly generate a series of legal candidates of PBConv whose small kernels
could cover all regions of the original kernel. We train the models with each PBConv candidate replacing the original convolution for quite
few iterations and choose the best candidate according to the dispersion of the positional distribution of the average of each layer’s equivalent
convolutional kernel. The total time cost for candidate selection is negligible compared with training. After training, all branches are merged
into the original kernel. Finally, PBConv restores an enhanced single convolutional layer in inference and brings free improvements.

ternal properties of convolutional kernels and lead to inferior
performance. In contrast, as in Fig. 1, PBConv uses multiple
concurrent small convolutional kernels and adaptively em-
phasizes the informative parts of the original kernel. PBConv
follows a divide-and-conquer philosophy. Given a convolu-
tional kernel, we regard it as a combination of sub-regions.
We tactfully configure several smaller kernels over it. Each
of them is responsible for adjacent positions. Such a struc-
ture can enable small kernels to learn detailed and discrimina-
tive information about the relations between neighbor pixels
in the local receptive field. As a result, PBConv strength-
ens the fine-grained low-level feature extraction, leading to
significant improvements. To find the optimal structure of
PBConv, we first randomly generate a set of legal candidate
that covers the whole region and thus can adaptively learn the
importance of each position, and then choose the best candi-
date according to the dispersion of the position distribution
after a quick few iterations training, which is strongly corre-
lated with the final performance as in Fig. 6. Such a heuris-
tic search scheme enables us to adaptively select structures
with superior performance compared to those designed by
existing re-parameterization methods like [Ding ef al., 2019;
Ding et al., 2021c]. Besides, benefiting from the linearity
as in prior re-parameterization works, our PBConv can trig-
ger the aggregation among kernel weights. After training,
PBConv could easily merge the complex structures into the
simplest one, and enjoy improvement without any extra in-
ference cost. Better still, our PBConv performs layer-level
re-parameterization design and is orthogonal to procedure-
level re-parameterization methods like [Ding et al., 2023;
Huang er al., 2022] and architecture-level re-parameterization
methods like [Ding er al., 2021d]. Experiments show PB-

Conv can further improve such orthogonal methods.

We conduct extensive experiments on four vision tasks,
ranging from image-level tasks, and object-level tasks to
pixel-level tasks. Experimental results show that PBConv can
consistently achieve superior performance compared with ex-
isting state-of-the-art methods, improving plenty of architec-
tures on various datasets and tasks. The experiments well
demonstrate the superiority of PBConv, indicating a promis-
ing application in more practical scenarios.

Overall, we summarize our contributions as follows.

* We discover the positional distributions of convolutional
kernel weights are diverse. Weights in different posi-
tions are of different importance. Motivated by such ob-
servation, we propose to selectively emphasize informa-
tive positions and suppress less useful ones.

* We propose PBConv to replace the convolutional layer.
PBConv consists of parallel small kernels that aim at the
extraction of low-level visual features, showing superi-
ority, especially on pixel-level and object-level tasks.

* We find the dispersion of the convolutional kernel’s po-
sition distribution is strongly correlated with the final
performance, even in very early training. Such find-
ings inspire us to design a heuristic search algorithm
to adaptively acquire the optimal PBConv structure with
negligible cost. PBConv follows the re-parameterization
schema and thus brings no extra inference cost.

* We do extensive experiments on various visual tasks,
datasets, and models. PBConv consistently outperforms
state-of-the-art layer-level re-parameterization methods,
and is verified to be orthogonal to procedure-level and
architecture-level re-parameterization method.
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Figure 2: Overall positional importance distributions of 3 x 3 con-
volutional layers in several models. The numbers corresponding to
the most important positions are bolded. (a)(b) are the distributions
of the 1st and 3rd 3 x 3 convolutional layers separately in 5th stage
of ResNet-18 pre-trained on ImageNet. (c)(d)(e) are the average po-
sitional distributions across every layer of the three convolutional
models separately. In the same model((a)(b)), different positions ex-
hibit distinct importance properties in a convolutional layer, and the
same position in different layers may exhibit distinct importance as
well. In different tasks and models((c)(d)(e)), such average position
distributions show diverse patterns.

2 Related Work

2.1 Attention mechanism

Attention [Chen et al., 2017; Hu et al., 2018; Chen et al.,
2020; Xu et al., 2015] is a popular technique that calculates
an importance score for the features and influences the update
of corresponding parameters. The importance score can be
spatial-wise [Xu et al., 2015], channel-wise [Hu et al., 2018]
or other mixed metrics [Chen et al., 2017]. Intuitively, atten-
tion can derive informative parts by weighting the importance
of input features. In contrast, our work aims to emphasize
the positional importance of convolutional kernels, instead of
features.

2.2 Re-parameterization mechanism

[Ding et al., 2021¢c; Ding et al., 2019; Guo et al., 2020;
Ding et al., 2021d; Ding et al., 2021b; Huang et al., 2022;
Hu et al., 2022; Ding et al., 2022; Ding et al., 2024] belong
to re-parameterization methods. These works train a large
over-parameterized network and then convert the complex
structure to a simple one in inference time to improve perfor-
mance without increasing inference cost. [Ding et al., 2021d;
Ding et al., 2021b; Ding et al., 2022; Ding et al., 2024] design
a whole architecture with strong performance, while [Ding et
al., 2019; Ding et al., 2021c] and our PBConv aim to de-
sign a generic convolution block suitable for various mod-
els to replace the ordinary convolution to improve the per-
formance. Besides, [Huang er al., 2022; Hu et al., 2022;
Ding et al., 2023] introduce procedure-level design during
training of previous re-parameterization structure [Ding et
al., 2021c; Ding et al., 2021d]. In Experiments section, we
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Figure 3: Relationship between position magnitude and position
pruning accuracy drop. Clearly, positions with larger magnitude are
more important, and pruning them causes more performance drop.

will show our PBConv is a better generic block than previous
layer-level re-parameterization methods [Ding er al., 2019;
Ding et al., 2021c], and PBConv is orthogonal to procedure-
level re-parameterization methods and architecture-level re-
parameterization methods and can lead to further improve-
ment if combined together.

3 A Closer Look at Positional Distribution of
Convolutional Kernels

Before demonstrating our method, we start by deeply analyz-
ing the property of the positional distribution of the weights
of convolutional kernels.

We first define the importance of a position in the convo-
lutional kernel. Motivated by prior works [Han et al., 2015;
Li et al., 2016; Ding er al., 2019], we use the average mag-
nitude of the kernel weights to describe such property. For-
mally, for a convolutional layer with output channel D, input
channel C' and kernel size K x K, we study the positional
distribution of W € RP*CXEXK by calculating:

D D
M = Zle Zczl |Wd,c,:,: (1)

max(Zle Zf=1 |Wd,C,:,: )

where |W| computes the element-wise magnitude of weight
matrix W. Then we can get an average magnitude matrix
M e RE*E with entries € [0, 1].

We choose some widely used models and analyze the po-
sitional importance distributions. As in Figs. 2a and 2b, there
are significant differences in the distribution of kernel posi-
tions between different layers of the same model. We also
average M of every 3x3 convolutional layer of the model to
obtain an overall inspection. Seen from Figs. 2c to 2e, dif-
ferent positions exhibit distinct importance properties for dif-
ferent models. For example, the largest region in ResNet-18
[He et al., 2016] is the bottom right 2 x 2 square. In VGG-16
[Simonyan and Zisserman, 20141, it is the central cross while
4 corners’ weights are the smallest. However, in U-Net [Ron-
neberger et al., 2015] there is quite an opposite pattern to that
in VGG-16, i.e., the largest weights are located in 4 corners
and center.
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Figure 4: The variation curve of the kernel position distribution
during the training of ResNet-50 on ImageNet. The distribution is
roughly uniform at the beginning, and then rapidly disperses.

To investigate how such property influences performance,
we prune each position of 33 convolutional layers of VGG-
16 on CIFAR-10 [Krizhevsky et al., 2009], respectively, by
masking corresponding weights to zeros. The relationship
between performance drop and position magnitude is shown
in Fig. 3. Pruning the position with a higher magnitude will
generally cause more damage. Therefore, it is reasonable to
use magnitude to represent positional importance. Positions
with higher magnitudes are more important.

Furthermore, we visualize the variation of the positional
distribution of 3x3 convolutional kernels during the training
process of ResNet-50 on ImageNet in Fig. 4. We use different
colors for the nine positions in the 3x3 kernel. The distribu-
tion is roughly uniform at the beginning since the model is
randomly initialized. But it rapidly disperses as the training
goes on, i.e. the gap between important positions and unim-
portant positions enlarges consistently.

According to the observations above, we can conclude that
the positional importance distribution in the convolutional
kernel presents a large variety. It can show different features
due to different visual tasks, different networks, and even dif-
ferent layers in the same network. The positional distribu-
tion is approximately uniform at the beginning, but rapidly
disperses in the training. As the training goes on, important
positions tend to be more important, while unimportant posi-
tions tend to be more unimportant.

4 Position Boost Convolution

4.1 Preliminary

Suppose a convolutional layer with weights W €
RPXCXKXEK and bias b € RP takes feature map F €
REXHXW a5 input, and its output is denoted by O €
ROXH' W' We use B € RP*H'*W' (o represent replicas
of b among the extra two dimensions. Formally,

O=F®W+B )

where ® denotes convolution operation, and + denotes
element-wise addition. From the perspective of sliding win-

dow, the output at (h, w) on d-th output channel is given by
C K K

Oupw=I_ > > SiWacij+bs (3

c=1i=1 j=1

where 8" € RE*KXK denotes the sliding window in F
corresponding to Oy 1, ., The relationship between S and
F' depends on the convolutional layer.

Fuse convolutional layer and BN. In modern CNNSs, there is
usually a normalization layer following a convolutional layer.
Batch Normalization (BN) [loffe and Szegedy, 2015] is one
of the most popular modules, which would continuously up-
date its running mean g, running variance o2, scaling factor
~ and bias 3 in training. These values are fixed after training,
and thus BN turns into a linear transformation in inference
and we could fuse it into the convolutional layer. Particu-

larly, for a conv-BN sequence, the output O € RPXH'xW" a¢
(h,w) on d-th output channel is given by
A Od hyaw —
O =vy— 2Bl 1 g, (4)
o4

Therefore, we can equivalently transform a conv-BN se-
quence to a single convolutional layer by Egs. (3) and (4).
New W and b for any filter d is given by

- Wa... = by —
W, _Yd d,.,.,.’ by = Ya(ba — pg)
(o] (o]

+B84 (5

EREEER]

Similar with B, we use B € RP*H'xW’ 5 denote repli-

cas of b. Eventually, the conv-BN sequence is equivalently
converted to a single convolutional layer.

F®W + B = BatchNorm(F ® W + B)  (6)

4.2 Full coverage with parallel small kernels

For a convolutional kernel, we use multiple parallel small
convolutional kernels to boost its positional distribution.

Positional embedding for the convolutional kernel. For a
convolutional layer with weights W, we aim to emphasize its
informative parts and suppress less useful parts by learning an
embedding vector for each position. We use E; ; RDxC

to denote the embedding vector of W..; ;, and W to de-
note enhanced weights, which is the element-wise sum of the
original weights and embedding vectors.

ﬁ//:,z,i,j =E;;+W..,; @)

By replacing W with W, we could enhance the weights
on more important parts to help aggregate local information.
Finally, we acquire significant improvement without increas-
ing any computation cost. We employ a multi-branch struc-
ture to learn such embedding vector during training and add
it to the original kernel weights via the re-parameterization
mechanism.

For a K x K convolutional layer, V1 < h < K, 1 <w <
K1<kp,<K-h+1landl <k, <K —w+1,itis fea-
sible to adaptively learn positional embeddings for a rectan-
gular area denoted by top left corner (h,w) and bottom right
corner (h+kp—1,w+k,, —1) via a concurrent convolutional
branch with proper configuration. The key is making the new
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Figure 5: An example to help demonstrate the rules for candidate
generation. Suppose the original kernel is 3x3, then this figure
shows the only legitimate PBConv candidate if the randomly gen-
erated adding sequence is “3x1,1x3,3x1,3x1”.

sliding window become a part of the original one and thus
the fusion is possible due to additive and associative proper-
ties. The kernel size of the new branch should be (kp, ki),
and other settings should be the same as those of the original
one, except for the padding. Note that new padding values
might be negative, which means cropping. Subsequently, we
can sum up their weights and biases in advance, instead of
forwarding all branches and then summing up their outputs.
Furthermore, it is feasible to merge concurrent small con-
volutional branches into different regions of the original ker-
nel. We use W0, % (B?) to denote weights and biases of the
original convolutional layer, and W, b (B') to denote those
of [-th extra branch. Suppose there are n extra branches. Af-
ter training, we can integrate all the branches into a single one

with parameters W and B due to linear property as follows.
First, V. 0 < [ < n, convert [-th conv-BN branch to a sin-
gle convolutional layer with parameters W' and b!(B!) via
Eq. (5). ThenV1 < i < K, 1 < j < K we have

n n
Woii=WOo i+ I'i,j), b=)_ b ®
1=1 1=0
Wl:,:,i—hl-i-l,j—wl-l-lv Zf (Zaj) e
0, otherwise

I'(i,j) = { ©)
where Q! = {(z,y) | h! < 2 < '+ k) —1 and v <
y < w' + k!, — 1}. The target positional embedding E can
be easily derived: E; j = >, I'(i, j). Eventually,

F®W +B =) BatchNorm'(F ® W'+ B') (10)
1=0

An important rule for boosting positions is “full cover-

age”, i.e. every region of the original kernel should be cov-

ered by at least one small kernel. Full coverage ensures PB-

Conv can adaptively learn the embedding of every position

and enhance or suppress corresponding weights. Formally,
VI<i<K1<j<K3<Il<n,st I(i,j)#0.

4.3 Heuristic search for optimal structure

In the previous section, we have demonstrated how to use
multiple concurrent small convolutional kernels to enhance
the positional distribution of the original large kernel. For a
K x K convolutional kernel, each kernel smaller than K x K
with proper padding can enhance a specific region of the orig-
inal kernel. Due to the extremely large number of combina-
tions of small kernels, it is not feasible to train and compare
the final performance for each combination to get the best.
We thus design a fast heuristic search algorithm to quickly
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95 722
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Figure 6: Correlation between standard deviation of the kernel po-
sition distribution and accuracy. Each point is a randomly gener-
ated PBConv candidate. The standard deviation is calculated after
only few iterations from training, and the accuracy is the final accu-
racy after the whole training process. We find the final accuracy is
strongly correlated with the standard deviation at the very beginning
of training, indicating that we can accurately estimate the perfor-
mance of each PBConv candidate within little time cost.

select the optimal structure that can maximize the model’s
performance from a set of randomly generated candidates.
First, we introduce a random candidate generation algo-
rithm. For a K x K kernel, there are K2—1 types of small ker-
nels in different sizes,e.g. 1x1, 1x2, 1x3, 2x1, 2x2, 2x3,
3x1, 3x2 are all the legal components for a 3 x3 kernel. For
simplicity, we randomly select ¢t € {1,2, 3} types of kernels
for candidate generation, i.e. the possibility that each candi-
date has 1/2/3 types of small kernels is 33%/33%/33%. We
aim to cover all the regions of the original kernel with such
t types of chosen kernels. We continue adding small kernels
over the original kernel, until all the regions are covered.
Every time a new small kernel is added, we set its cover-
age area based on the following three rules. The priority of
these rules decreases from the first to the last. That is to say,
only when the preceding rules provide multiple areas of equal
priority will we resort to the subsequent rules for priority.

1. Coverage rule: the kernel should be placed onto areas
that contain more uncovered positions.

2. Center rule: the kernel should be placed across the cen-
tral position of the original kernel, e.g., since we consis-
tently observe extremely large importance in the center
position as shown in Fig. 2.

3. Alternative rule: the kernel should be placed from left
to right, from top to bottom if the priority can not be
determined by former rules.

We give an example in Fig. 5 for better clarification.

Now we have designed a complete mechanism to randomly
generate some candidates. Next, we use the aforementioned
algorithm to randomly generate c candidates, where c is set
to 10 in practice. Motivated by the observation that the po-
sitional distribution of convolutional kernel rapidly disperses
at the very beginning of training as in Fig. 4, we further study
the relationship between standard deviation of kernel posi-
tions and model performance. In Fig. 6, the standard devia-
tion of the positional distribution after few training iterations
is strongly correlated to the final performance. Therefore, we
can leverage such a heuristic search scheme to quickly select
the best candidate from massive randomly generated candi-
dates. The overall design of PBConv is in Fig. 1. The heuris-
tic search process is very efficient and fast, typically account-
ing for only 1% to 10% of the total training time.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Top-1 accuracy (%)

Dataset  Model
Base ACB DBB PBConv
CIFAR-10 VGG-16 94.12 94.36 94.64 94.78
MobileNetv2 71.27 71.60 71.83 72.26
ImaceNet ResNet-18  70.75 71.36 71.77 72.08
& ResNet-50  75.79 76.02 76.07 76.43
ResNet-101 77.12 77.74 77.85 78.25

Table 1: Results for image classification.

5 Experiments

5.1 Datasets and Competitors

We do evaluation on CIFAR [Krizhevsky et al., 2009] and Im-
ageNet [Deng er al., 2009] classification, Cityscapes [Cordts
et al., 2016] segmentation, GoPro [Nah et al., 2017] deblur-
ring and COCO [Lin er al., 2014] detection.

The layer-level reparameterization methods ACB [Ding et
al., 2019] and DBB [Ding et al., 2021c] are the most re-
lated competitors. We first build a baseline and then replace
its conv-BN sequence with ACB/DBB/PBConv, and train all
models with identical configurations for a fair comparison.
Notably, we also combine PBConv with newest architecture-
level [Ding ef al., 2021d] and procedure-level [Huang et al.,
2022; Ding et al., 2023] re-parameterization methods, and
earn consistent improvements.

5.2 Image Classification

We first evaluate PBConv on image classification. Results
are shown in Section 5.1. On CIFAR-10, PBConv improves
VGG-16 by 0.66%. On the large scale ImageNet dataset,
PBConv improves MobileNetv2 by 0.66%, ResNet-18 by
1.33%, ResNet-50 by 0.64% and ResNet-101 by 1.13%, sig-
nificantly outperforming competitors like ACB and DBB.

Furthermore, we combine PBConv with state-of-the-art
procedure-level and architecture-level re-parameterization
methods. Results on CIFAR are in Section 5.2. Clearly, PB-
Conv is orthogonal to these re-parameterization algorithms
and they could be combined for further improvement.

To explore how PBConv helps CNN aggregate feature
representations, we use Grad-CAM [Selvaraju et al., 2017]
to show the attention maps produced by ResNet-18 and
PBConv-ResNet-18. In Fig. 7, the attention maps given by
PBConv more precisely locate the target objects and keep the
background out of attention. No matter what size and shape
the target objects are, the attention given by PBConv is bet-
ter confined to the semantic regions and thus more integral
objects are identified in more precise locations.

5.3 Semantic Segmentation

Next, we experiment on pixel-level tasks. We start with high-
level semantic segmentation. Models are trained with Ima-
geNet pre-trained backbone weights on Cityscapes.

On various segmentation architectures with various back-
bone models, our PBConv consistently outperforms all com-
petitors by a significant margin. Seen from Section 5.2, when
using ResNet-18 as backbone, PBConv improves PSPNet by

Rep Level Model Accuracy (%)
Architecture RepVGG-AO [Ding et al., 2021d] 87.03
+PBConv 87.75
Procedure  DyRep-VGG-16 [Huang et al., 2022] 95.22
+PBConv 95.44
Procedure  RepOpt-VGG-B1 [Ding er al., 2023] 90.10
+PBConv 90.42
Table 2: Combination between PBConv and state-of-the-art

architecture-level and procedure-level re-parameterization.

Barbell Tiger shark  King penguin ~ Bowtie

Paddlewheel ~ Sunglasses

Figure 7: Attention maps of ResNet-18 generated by Grad-CAM.
Clearly, our PBConv recognizes the objects with different sizes and
shapes more precisely and keeps the background out of attention.

1.50% mloU, which is 0.29/0.67% higher than ACB/DBB,
Deeplabv3 by 0.88% mloU, which is 0.68/0.78% higher
than ACB/DBB, and Deeplabv3+ by 0.57% mloU, which is
0.49/0.63% higher than ACB/DBB. When using lightweight
MobileNetv2 as the backbone, PBConv still outperforms all
competitors by improving PSPNet by 0.59% mloU, which is
0.49/0.31% higher than ACB/DBB. The advantages are still
kept when we use a heavy ResNet-50 as the backbone.

5.4 TImage Deblurring

We then evaluate PBConv on image deblurring, where nor-
malization is not in usual deblurring models [Nah et al., 2017,
Cho et al., 2021]. So is ACB/DBB/PBConv here.

As in Section 5.2, PBConv improves 1.05, 0.55, and 0.59
PSNR for UNet, DeepDeblur, and MIMO-UNet respectively.

5.5 Object Detection

For object detection, PBConv improves mAP of [Duan et al.,
2019] by 1.20% on COCO, far better than others.

Model (backbone) mioU (%)

Base ACB DBB PBConv
PSPNet (ResNet-18) 73.24 74.45 74.07 74.74
Deeplabv3 (ResNet-18) 76.12 76.32 76.22 77.00
Deeplabv3+ (ResNet-18) 77.07 77.15 77.01 77.64
PSPNet (ResNet-50) 76.93 7791 77.60 78.20
Deeplabv3 (ResNet-50) 77.75 77.82 77.90 79.47
Deeplabv3+ (ResNet-50) 78.40 78.58 78.37 79.58
PSPNet (MobileNetv2) 72.84 72.92 73.02 73.43

Table 3: Results on Cityscapes for semantic segmentation.
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PSNR
Base ACB DBB PBConv

UNet 25.07 25.74 25.82 26.12
DeepDeblur 28.29 28.62 28.63 28.84
MIMO-UNet 30.57 30.99 30.92 31.16

Model

Table 4: Results on GoPro for image deblurring.

mAP (%)
Base ACB DBB PBConv
CenterNet (ResNet-18) 29.30 27.30 29.70 30.50

Model (backbone)

Table 5: Results on COCO for object detection.

5.6 Analysis

Ablation studies In Section 5.2, we study the effect of each
separate rule for PBConv generation on VGG-16 on CIFAR.
Besides, we find the number of branches and parameters
don’t show significant influence in PBConv. PBConv uses
from 85% to 130% of the parameters of DBB for different
models, but consistently outperforms DBB.

Why PBConv is effective? We do dimension reduction by
the t-SNE algorithm for the feature maps of all stages of a
ResNet-18 and PBConv-ResNet-18. In Fig. 8, for low-level
features (stages 1 and 2), PBConv shows clear superiority
against baseline, aggregating the features with the same la-
bels while decoupling those with different labels. For high-
level features (stages 3 and 4), the gap is marginal, relatively.
Therefore, the effectiveness of PBConv mainly comes from
the strong low-level feature extraction ability, e.g., the ability
to catch edges and textures as seen from Fig. 7. As a result,
PBConv is naturally more suitable for fine-grained tasks.

Does PBConv truly enhance the positional distribution?
The equivalent kernel after training for ResNet-18 is in Fig. 9.
Both layers 3-1 and 5-2 obey our assumption that PBConv in-
deed enlarges the gap between informative parts with larger
magnitude and uninformative parts with smaller magnitude.
The position distribution before final fusion is in Fig. 10. A
position’s value in a branch is negatively correlated with the
number of times the position is covered and positively corre-
lated with the original value at the corresponding position.

6 Conclusion

Motivated by the observation of positional distributions of
convolutional kernels, we propose PBConv, an architecture-
neutral block, to improve CNN. By learning positional em-
bedding vectors for kernel weights, we selectively emphasize

Coverage Center Alternative | Accuracy
v v v 94.58
PBConv X v v 94.21
X X v 94.05

Table 6: Ablation studies of rules for PBConv generation.

« bath towel
* monastery

* odometer

 ResNet-18

PBConv-ResNet-18

stagel stage2 stage3 stage4

Figure 8: Visualization of different stages’ output features of ResNet
by t-SNE. The effectiveness of PBConv primarily stems from its
enhanced ability to extract low-level features.

0.35820.5760 | 0.4636 | 0.6365 0.6550 | 0.2835|0.4825 | 0.2966
0.6877 0.7075 0.4091 . 0.4367
0.6635 0.6828 0.3007 | 0.5207 [0.3159
(a) base:3-1 (b) ours:3-1 (c) base:5-2 (d) ours:5-2
Figure 9: Positional distribution of stage3.convl (3-1) and

stageS.conv2 (5-2) of baseline ResNet-18 and ours.

the informative parts and suppress less useful ones. We inte-
grate small kernels in PBConv to better extract fine-grained
low-level features. To find an optimal structure, we propose
a heuristic search algorithm based on the correlation analy-
sis between kernel positional distribution and performance.
Extensive experiments demonstrate the effectiveness of PB-
Conv across various visual tasks, datasets, and architectures.
Moreover, PBConv brings no extra cost in inference for it
could be equivalently converted to a simplest convolutional
layer after training. Through controlled experiments, we
show the key of PBConv is the mechanism to enhance po-
sitional weight distributions by learning embedding vectors
adaptively. Such a paradigm shows fairly strong low-level
feature extraction capacity. Furthermore, our PBConv is a
layer-level re-parameterization design, and thus is orthogonal
to architecture-level and procedure-level re-parameterization
methods, i.e. the model performance could be further im-
proved if we combine PBConv with them together.

PBConv
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Figure 10: Weight of the PBConv for RN-18 before fusion.
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