Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

PDDFormer: Pairwise Distance Distribution Graph Transformer
for Crystal Material Property Prediction

Xiangxiang Shen', Zheng Wan?', Lingfeng Wen', Licheng Sun', Jian Yang®, Xuan
Tang*, Shing-Ho J. Lin®, Xiao He?, Mingsong Chen! and Xian Wei'*
!Software Engineering Institute, East China Normal University
2School of Chemistry and Molecular Engineering, East China Normal University
3School of Geospatial Information, Information Engineering University
4School of Communication and Electronic Engineering, East China Normal University
®School of Artificial Intelligence, University of Chinese Academy of Sciences
xian.wei@tum.de

Abstract

Crystal structures can be simplified as a peri-
odic point set that repeats across three-dimensional
space along an underlying lattice.  Tradition-
ally, crystal representation methods characterize
the structure using descriptors such as lattice pa-
rameters, symmetry, and space groups. However,
in reality, atoms in materials always vibrate above
absolute zero, causing their positions to fluctu-
ate continuously. This dynamic behavior disrupts
the fundamental periodicity of the lattice, making
crystal graphs based on static lattice parameters
and conventional descriptors discontinuous under
slight perturbations. Chemists proposed the pair-
wise distance distribution (PDD) method to address
this problem. However, the completeness of PDD
requires defining a large number of neighboring
atoms, leading to high computational costs. Ad-
ditionally, PDD does not account for atomic infor-
mation, making it challenging to apply it directly to
crystal material property prediction tasks. To tackle
these challenges, we introduce the atom-Weighted
Pairwise Distance Distribution (WPDD) and Unit
cell Pairwise Distance Distribution (UPDD) and
apply them to the construction of multi-edge crystal
graphs. We demonstrate the continuity and general
completeness of crystal graphs under slight atomic
position perturbations. Moreover, by modeling
PDD as global information and integrating it into
matrix-based message passing, we significantly re-
duce computational costs. Comprehensive eval-
uation results show that WPDDFormer achieves
state-of-the-art predictive accuracy across tasks on
benchmark datasets such as the Materials Project
and JARVIS-DFT.

1 Introduction

Crystals are solids with a regular geometric shape formed
by atoms, ions, or molecules arranged periodically in space

during the crystallization process. Their structure is typ-
ically described using repeating unit cells and lattice vec-
tors. However, this description method brings a fundamen-
tal challenge: the same crystal structure can be represented
by different unit cells and lattice vectors, as shown in Figure
1(a). Additionally, in real-world scenarios, the experimen-
tal coordinates of unit cells and atoms are inevitably affected
by atomic vibrations and measurement noise. These subtle
disturbances can lead to discontinuous changes in any sim-
plified unit cell [Kurlin, 2024], resulting in numerous unit
cells for a given crystal structure, as shown in Figure 1(b),
thereby introducing ambiguity in the representation of crys-
tal data [Widdowson and Kurlin, 2022]. Currently, many
graph neural networks [Batzner er al., 2022; Yan et al., 2022;
Yan et al., 2024a; Yan et al., 2024b] typically use unit cell
parameters, simplified cell parameters, symmetry, and space
groups to represent the periodic structure of crystals. How-
ever, these features are either non-invariant or discontinu-
ous [Zwart et al., 2008] invariants, leaving the issue of am-
biguity in crystal data unresolved [Patterson, 1944; Widdow-
son et al., 2022; Groom et al., 2016; Bartdk et al., 2013;
Wassermann et al., 2010; Ahmad et al., 2018].

The continuous and complete invariant—Pairwise Dis-
tance Distribution (PDD)—proposed by [Widdowson and
Kurlin, 2022] addresses the ambiguity in crystal data rep-
resentation by distinguishing all periodic structures in the
world’s largest real material collection, the Cambridge Struc-
tural Database. To achieve completeness, PDD requires a
predetermined number of sufficient neighbors, which is com-
putationally expensive and difficult to directly apply for pre-
dicting crystal properties [Balasingham et al., 2022]. [Balas-
ingham et al., 2024] employed distance distribution graphs
(DDGs) based on PDD to predict the properties of crys-
tal materials, but they did not achieve satisfactory perfor-
mance (only slightly better than CGCNN), and although this
approach reduced computational costs, it compromised the
completeness of PDD. In contrast, crystal graph representa-
tions based on multi-edge crystal graphs and unit cell param-
eters [Yan er al., 2024a] achieve completeness, more accu-
rately characterizing crystal structures, and achieving state-
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Figure 1: Illustrations of different unit cells and lattice representations of the same crystal structure. Figure (a) shows several possible
choices among the infinitely many unit cells for the same crystal structure in the undisturbed case. Figure (b) illustrates that for almost any
perturbation, the symmetry group and any reduced unit cell (with minimal volume) will undergo discontinuous changes.

of-the-art performance in crystal material property prediction
tasks. However, using unit cell parameters leads to disconti-
nuities in the crystal graphs.

Since PDD does not account for atomic types, it is chal-
lenging to use it directly for effective crystal property pre-
diction. To better represent crystal structures, we first
introduce WPDD and UPDD. Furthermore, we integrate
WPDD and UPDD into the construction of multi-edge crys-
tal graphs and propose the PDD Graph Transformer (includ-
ing WPDDFormer and UPDDFormer) based on the trans-
former architecture. We model WPDD as global information
and incorporate it into matrix-based message passing with-
out introducing additional information to capture periodic-
ity, significantly reducing computational costs (as shown in
Table 3). Finally, we employ the Earth Mover’s Distance
(EMD) [Rubner et al., 2000] to assess the continuity of crys-
tal graphs, demonstrating that WPDD crystal graphs con-
structed using only Euclidean distances maintain continuity
and general completeness under slight atomic position pertur-
bations, providing a more accurate depiction of actual crys-
tal structures. Ablation experiments show the crucial role of
(W/U)PDD in constructing crystal graphs. Through compre-
hensive evaluations, our method achieves state-of-the-art pre-
dictive accuracy across various tasks in the Materials Project
and JARVIS datasets. This advancement highlights the effec-
tiveness of WPDDFormer in bridging the gap between tradi-
tional crystal descriptors and dynamic atomic behavior, lead-
ing to more accurate and reliable predictions in materials sci-
ence.

2 Preliminaries

2.1 The Structure of Crystals

By selecting an appropriate structural unit, the entire crys-
tal structure can be viewed as the periodic repetition of this
unit in space. This property, where atoms within a crystal
repeat in three-dimensional space according to a specific pat-
tern, is called periodicity, with the smallest repeatable struc-
tural unit being the unit cell. The unit cell can be defined
asUd = (X,P), where X and P can be represented in ma-
trix form. Typically, X = [z1, 22" --J;n_l,xn}T e R»*x1
where n represents the number of atoms and x; € R! rep-
resents the atomic type of atom ¢ in the unit cell. P =

[p1,p2 - 'pn717pn]T € R™*3 is the atomic position ma-
trix, where p; € R3 represents the Cartesian coordinates of

the atom ¢ in the unit cell in 3D space. The lattice vectors
L=l lg]T € R3*3 can reflect the way the unit cell re-
peats in three directions to map the periodic crystal structure.
Therefore, in 3D space, the infinite crystal structure S can be
represented as (U, £).

2.2 Definitions

Definition 1. Pointwise Distance Distribution. For the infi-
nite crystal structure S = (U, L) mentioned in Section 2.1,
fix a neighbor count k > 1. For each point x; in the unit
cell U, let djy < --- < d;y, be the Euclidean distances from
D, to its k nearest neighbors in the infinite crystal structure.
Consider an n x k matrix composed of n rows of distance
vectors, where each point ©; € U corresponds to one row. If
the matrix contains m > 1 identical rows, they are merged
into one row with a weight of 7. The resulting matrix can be
regarded as a weighted distribution of rows, which is called
the Pairwise Distance Distribution PDD(S; k) € R?*(k+1),

According to [Widdowson and Kurlin, 2022] and [Yan et
al., 2024al, we present Definitions 2-3. According to [Wid-
dowson and Kurlin, 2022], we present Definitions 4-6.

Definition 2. Isometric Crystal Graphs. An isometric trans-
formation is a mapping that preserves Euclidean distances,
denoted as f (¥) = Rx + b. Any isometric transformation f
can be decomposed into translation, rotation, and reflection.
Specifically, suppose there exists a rotation matrix R € R3*3,
with a determinant of 1 (|[R| = 1), and a translation vec-
tor b € R3, then two crystal structures S = (U, L) and
Q = (U', L) are isometric, satisfying U’ = RU + b, where
RU + b denotes the application of the rotation R and trans-
lation b to each element in the infinite set U.

Suppose S and Q are isometric. In that case, their crystal
graph representations satisfy G (S) = G (Q), which means
that the graphical representation of the crystal structure pro-
duces no false positives; that is, there are no isometric pairs
where G (S) # G (Q) but S ~ Q. Conversely, if G (S) =
G (Q), then S and Q are isometric, meaning f produces no
false negatives, i.e., there are no non-isometric pairs where
G(S) =G (Q)butS # Q. That is, if the crystal graph rep-
resentations of artificially constructed crystal structures are
identical under isometric transformations, then they are geo-
metrically equivalent.

Definition 3. Geometrically Complete Crystal Graphs. If we
construct crystal graphs G (S) = G (Q) = S ~ Q, where
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~ denotes the isomorphism of two crystals as defined in Def-
inition 2, then the crystal graph G is geometrically complete.
This means that if two crystal graphs G (S) and G (Q) are
identical, the infinite crystal structures represented by G (S)
and G (Q) are also identical. If the constructed crystal graph
G can distinguish any subtle structural differences between
different crystal materials, it is said to be geometrically com-
plete.

Definition 4. Metric. The metric d between crystal graphs
G satisfies all the axioms: 1) d(G (S) =G (Q)) = 0 if and
only if G (S) = G(Q); 2) Symmetry: d(G(S),G(Q)) =
d(G(Q),G(8)); 3) Triangle inequaiity: d (G (S), G (Q)) +
d(G(Q),9(K)) =2 d(G(S5),g (K)).

Definition 5. Lipschitz continuity of crystal graphs. If Q is
obtained by moving each point in the periodic crystal S C R™
by no more than €, and the distance of the constructed crystal
graph structures satisfies d (G (S),G (Q)) < Ce, where C'is
a constant, then the crystal graph is continuous, and Q,S C
R™ can be any periodic crystal structures.

Definition 6. EMD. Let G (S) and G (Q) be the crystal
graph structures we construct for periodic crystals S and
Q € R™. The flow from G (S) to G (Q) is represented by an
n (S) xn (Q) matrix, where the elements f;; € [0, 1] indicate
the partial flow from R; (S) to R; (Q). The Earth Mover’s
Distance (EMD) is defined as the minimum cost:

EMD (G (S),9(Q)) = > 2271 fij |Ri (S) — R; (Q)] )
st 3500 fig Swi(S), Yoo fis Swi(Q), iy Yoy fiy =1

The first condition Y, fi; < w; (S) means that not more
than the weight w; (S) of the component R; (S) flows’ into
all components R; (Q) via ‘flows’ f;; . Similarly, the second
condmon E 0 f” < w; (Q) means that all ‘flows’ f;; from

R; (S) ‘flow’ Into R; (Q) up to the maximum weight w; (Q).
The last condition Zz 1 EJ 1 fij = 1 forces to ‘flow’ all
rows R; (S) to all rows R; (Q).

3 Related Work

Finite Crystal Graph Representation CGCNN [Xie and
Grossman, 2018] represents crystal structures as finite multi-
edge crystal graphs to model crystal structures and pre-
dict material properties. Building on the construction of
multi-edge crystal graphs, MegNet [Chen et al., 2019] in-
troduced global state attributes into graph networks, while
GATGNN [Louis et al., 2020] utilized multiple graph at-
tention layers (GAT) to learn the properties of local neigh-
borhoods and employed global attention layers to weight
global atomic features. ALIGNN [Choudhary and DeCost,
2021] and M3GNet [Chen and Ong, 2022] incorporated an-
gular information into the message-passing process to gener-
ate richer and more discriminative representations. [Das et
al., 2022] proposed an interpretable deep property predictor
called CrysXPP. CrysMMNet [Das et al., 2023a] adopted a
multimodal framework, integrating graph and text represen-
tations to produce joint multimodal representations of crys-
talline materials. [Das et al., 2023b] proposed CrysGNN, a
pretraining framework leveraging unlabeled data, while Crys-
Diff [Song et al., 2024] introduced a diffusion model-based

pretraining—fine-tuning framework. However, the methods
above represent crystals as finite graph structures, which fail
to effectively capture the periodicity of infinite crystals.

Periodic Representation of Crystals Recently, Mat-
former [Yan et al., 2022] encoded periodic patterns by adding
self-connecting edges to atoms based on lattice parameters.
PotNet [Lin et al., 2023] considered the infinite summa-
tion of interatomic interactions. Crystalformer [Taniai et al.,
2024] performed infinite summations of interatomic poten-
tials through infinitely connected attention while also utiliz-
ing lattice parameters. ComFormer [Yan et al., 2024a] con-
structed cell parameters by adding self-connecting edges to
atoms and their copies in three different directions to encode
periodic patterns, employing equivariant vector representa-
tions and invariant geometric descriptors of Euclidean dis-
tances and angles to represent the geometric information of
crystals. GMTNet [Yan er al., 2024b] aims to predict the ten-
sor properties of crystalline materials while satisfying O(3)
group equivariance and the symmetry of crystal space groups.
However, the crystal structures they represent rely on non-
invariant or discontinuous invariants, failing to resolve the is-
sue of crystal data fuzziness.

Continuity and Complete Representations for Crystals
Addressing the continuity and completeness of crystal rep-
resentations is a critical issue. Recent advancements in
AMD [Wang er al., 2022] and PDD [Widdowson and Kurlin,
2022] have developed matrix forms that are both complete
and continuous. However, in practical applications, using
these matrix representations as inputs for predicting crystal
properties without compromising continuity and complete-
ness is challenging. The AMD and PDD representations are
designed to distinguish stable crystal structures and do not
consider atomic types; their completeness assumption only
holds for stable structures. Additionally, to achieve complete-
ness, a sufficiently large number of neighbors k£ must be pre-
determined for any test crystal. Directly modeling PDD as
edge information is impractical and costly in real-world ap-
plications [Balasingham er al., 2022].

4 PDDFormer

In this section, we propose two PDD variants, namely WPDD
and UPDD, and then incorporate them into crystal graph con-
struction. We finally present the PDDformer framework.

4.1 Atom-Weighted PDD (WPDD)

Since the PDD representation is designed for stable crystal
structures and does not consider atomic types, it is not suit-
able for predicting crystal material properties. To account for
the influence of atomic types, for a given crystal structure
S = U + L, where each atom z; € U is labeled with the
atomic mass t(x;) corresponding to it, the final weight for

: T t(zi)
each row is = |wy,...,w,|", where w; = . .
W [ 1 9 n] 7 ZL:1 t(Ta)

By concatenating VW with PDD € R"**, an atomic-mass-
weighted WPDD (S; k) € R™*(*+1) is formed, represented
by the following equation:

WPDD = (W, PDD) = (UL, s ity, Ul d(pi ) (2)
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Figure 2: Schematic diagram of the selected neighbors in PDD. Figure (a) represents the 3D unit cell structure. The edges in Figure (b) show
the neighbor selection for atom ¢ in WPDD. By comparing Figures (c) and (d), we can see that we construct the unit cell centered around
each atom and select neighbors, rather than being limited to the unit cell where the atoms are located.

Herein, n represents the number of atoms in the unit cell, and
p; and p; denote the spatial coordinates of an atom % and its
neighbor j, respectively, and k is the number of nearest neigh-
bors selected when constructing the PDD, sorted in ascending
order of Euclidean distance as d;1 < --- < d;, as shown in
Figure 2(b). WPDD is equivalent to the PDD of the crystal
structure S, except that the rows are not grouped as in the
original version. This prevents the loss of atomic information
when two primitive points have the same k-nearest neighbor
distances but correspond to different atomic types. Therefore,
WPDD € R+ where n is the number of atoms in the
constructed graph.

4.2 Unit-cell PDD (UPDD)

When ensuring the completeness of PDD, a large number of
neighbors must be predefined, typically requiring information
on hundreds of neighbors, and in extreme cases, the num-
ber must exceed the atom count in any unit cell within the
dataset. The number of neighbors, &, is difficult to determine
across different datasets, and for unit cells with fewer atoms,
which constitute a larger proportion of the dataset, an excess
of neighbor information may interfere with the speed of mes-
sage aggregation, leading to greater resource consumption.
To address this issue, we introduce Unit-cell PDD
(UPDD). We achieve this by reconstructing the unit cell
around each atom and encoding the pairwise distances be-
tween the atom and other atoms within the reconstructed unit
cell. This means that when constructing PDD, we focus more
on the overall structure of the atoms within the reconstructed
unit cell, thereby reducing interference from excessive neigh-
bor information. UPDD is defined by the following formula:

UPDD = {Ui, Uj—ydpip) ™ 0 € 2,0 # 05} 3)

Since the interaction energy between an atom and its neigh-
boring atoms is usually inversely proportional to the distance,
we take the reciprocal feature of the distance after removing
Zeros.

As shown in Figure 2(d), the selection is not based on Eu-
clidean distances but on choosing atoms within the recon-
structed unit cell for construction. The atoms in the unit
cell determine the dimension of our UPDD and do not re-
quire consideration of the neighbor count, k, across different
datasets, making it more generalizable. This UPDD covers
unit cell structures with a larger number of atoms while en-

suring that unit cell structures with fewer atoms are not dis-
turbed by excessive neighbor information. It also reduces re-
source consumption. Due to this crystal-specific treatment,
the UPDD dimensions of different crystal structures may not
match, so dimension alignment is required before feeding
them into the neural network.

4.3 Crystal Graph Construction

By introducing PDD, we constructed a general complete and
continuous multi-edge crystal graph. In the graph, node fea-
tures are x;. An edge is established from node j to node ¢
when the Euclidean distance |ej/i|2 between a duplicate of j
and i satisfies |ej/i|2 = |p;j + kil + kylo + k5ls — pil® <,
where r € R is the cutoff radius. Next, we construct a
PDD row for each atom. Since directly representing PDD
as edge features is impractical, we retain its matrix form and
incorporate it into the construction of the multi-edge crystal
graph to reflect the global information of the crystal struc-
ture. Therefore, we represent the constructed crystal graph
as G = (X,XZ,E,PDD). Therein, x; € X is the feature
vector of the atom 7, e?j € & is the feature vector of the h-th
edge between nodes 7 and j, and we denote X'Z as the indices
of the nodes 7 and j that form the edge. Sections 4.4 and 4.5
are our proofs of the continuity and general geometric com-
pleteness of PDD crystal graphs.

4.4 The Continuity of Proposed Crystal Graphs

The continuity of the constructed crystal graph G (S) under
perturbations of the crystal structure S will be measured us-
ing the EMD [Rubner et al., 2000], which applies to crystal
graphs of any size. Definition 6 applies to any crystal graph
G(S) = (wi(S),R1(9)],...,[wn(S), R, (S)]), where
[w; (S), R; (S)] represent the information extracted based on
atom 7 in the unit cell. R; (S) = R; (Sx,Sxz,Ss, Sppp)
includes atomic information, neighbor information used in
constructing the multi-edge crystal graph, and the PDD in-
variants of the crystal structure S, with weights w; € (0, 1]
satisfying the normalization condition " ,w; (S) = 1.
Subsequently, we only consider the case where the
weighted vector [w;, R;] corresponds to the i-th row of
PDD (S;k). Here, n denotes the number of rows in
PDD (S; k). The size of each row R; (S) should be inde-
pendent of S and depend solely on the number of neighbors
k in PDD (S;k). For any vectors R; = (ri1,...,7i) and
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Figure 3: Architecture Overview. PDDFormer accepts an input crystal structure ,S. During the prediction process, it first undergoes a graph
construction step to generate a continuous and general complete crystal graph structure, followed by an embedding block, then multiple
blocks of node-wise Transformer and PDD Message Passing, and finally, an output block.
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Proposition 1. The WPDD and UPDD multi-edge crystal
graph is continuous.

Proof. For any neighbor count & > 1, if the periodic crystal
S, Q € R" satisfy dp (S, Q) < r(S), then we have:

EMD (G (5),G(Q))
EMD((Sx,SXI,Sg,S’/DDD) (QX,QXI7QS7Q’PD’D))
EMD ((Sx, Qx)) + EMD ((Sxz, Qxz))+

)

EMD ((S¢, Q¢)) + EMD ((Sppp, QppD)

“
Since disturbances only change the positions of atoms and
do not alter their types, therefore EMD ((Sx, Qx)) = 0 and
EMD ((Sxz, Qxz)) = 0, refer to Appendiz F for details.
So, we obtain EMD (G (S),G (Q)) = EMD ((S¢, Q¢)) +
EMD ((Sppp, Qprpp)) < 2d5 (S, Q). O

The bottleneck distance dp (S, Q) < 7 (S) is defined as:
dp (S,Q) = infy.s,osup,cs |p — g (p)| and the envelope
radius 7 (S§) is the minimum half-distance between any two
points in r (S). In other words, 7 (S) is the maximum radius
of non-overlapping open balls centered at all points in S. This
implies that any small perturbation in atomic positions under
the dp [Carstens et al., 1999] will lead to minor changes in
the distribution of distances between points in the EMD.

Since the EMD between the constructed crystal graphs
only relates to Euclidean distance. Euclidean distance itself is
continuous, Theorem 1 extends the following fact: for a unit
cell structure with two atoms, when the number of neighbors
k = 1, if we perturb at most two points by ¢, the change in
distance between the two points will be at most 2¢. Extend-
ing this to n atomic points with k neighbors, if we perturb at

most n points by e, the change in distance between n points
will be at most 2nke. This aligns with Definition 5, hence,
the constructed WPDD and UPDD multi-edge crystal graph
is continuous.

4.5 General Geometric Completeness

Proposition 2. The WPDD multi-edge crystal graph is gen-
erally geometrically complete.

We discuss the limitations of general completeness in
Appendiz G. We prove this by categorical induction. Crystal
structures can be classified into stable and unstable types and
further divided into the following three categories: 1. Sta-
ble Crystal Structures(i.e., where no two crystals can have
the same structure with only a difference in atomic types).
2. Unstable Crystal Structures with Differences in Atomic
Coordinates. 3. Unstable Crystal Structures with Identical
Structures but Differences in Atomic Types.

Proof. Since UPDD is constructed based on the size of the
unit cell, when the number of atoms in the unit cell is rel-
atively small, it could theoretically result in different crystal
structures, where all atoms have the same Euclidean distances
and atom types but inconsistent atomic positions, sharing the
same crystal graph representation.

Since the crystal structures of the first and second cate-
gories differ, PDD alone can effectively distinguish them. As
WPDD includes PDD, different WPDD representations can
be constructed for the two crystals, thereby achieving dif-
ferentiation. For the third category, we incorporate WPDD
as global information into the construction of a multi-edge
crystal graph and encode atomic information, such that the
WPDD crystal graph G is represented as G = (X, XZ, &) +
WPDD, where X represents atomic information embedded
through CGCNN. For any atom in the unit cell, a WPDD
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Method Formation Energy Bandgap(OPT) Total Energy Ehull Bandgap(MBJ) Bulk Moduli(Kv) Shear Moduli(Gv)
eV/atom eV eV/atom eV eV GPa GPa
PotNet(2023) 0.0294 0.127 0.032 0.055 0.27 10.06 8.883
CrysMMNet(2023) 0.028 0.128 0.034 - 0.278 9.625 8.471
CrysDift (2024) 0.029 0.131 0.034 0.062 0.287 9.875 9.193
Crystalformer(2024) 0.0306 0.128 0.032 0.046 0.274 - -
eComFormer(2024) 0.0284 0.124 0.032 0.044 0.28 10.79 9.826
iComFormer(2024) 0.0272 0.122 0.0288 0.047 0.26 9.617 9.098
UPDDFormer 0.0267 0.122 0.0287 0.0406 0.260 9.456 8.738
WPDDFormer 0.0257 0.119 0.0276 0.0355 0.249 9.224 8.441

Table 1: Comparison between UPDDFormer, WPDDFormer, and other baselines in terms of test MAE on the JARVIS dataset. The best
results are shown in bold and the second-best results are shown with underlines.

Method Formation Energy  Band Gap Bulk Shear
eV/atom eV log(GPa) log(GPa)
PotNet 0.0188 0.204 0.040 0.065
CrysMMNet 0.0200 0.197 0.038 0.062
Crystalformer 0.0186 0.198 0.0377 0.0689
eComFormer 0.01816 0.202 0.0417 0.0729
iComFormer 0.01826 0.193 0.0380 0.0637
UPDDFormer 0.01696 0.189 0.0370 0.0670
WPDDFormer 0.01604 0.187 0.0323 0.0605
Table 2: Comparison of test MAE between UPDDFormer,

WPDDFormer, and other baselines on the Materials Project dataset.

row vector needs to be constructed along with the corre-
sponding atomic information embedding. This ensures that
for any two crystal structures with identical crystal structures
but differing atomic types at corresponding coordinates, the
(X,XZ,E) in their WPDD crystal graphs will differ. On
the contrary, if two crystals have the same WPDD crystal
graph representation, they share the same WPDD and multi-
graph representations. It indicates that their crystal structures
and the atomic information at corresponding coordinates are
identical, thus confirming that they are the same crystal. This
contradicts our premise. Hence, the proof is complete. There-
fore, the proposed identical crystal graph can represent only
the same infinite crystal structure. Then, based on Definition
3, we complete the proof of Proposition 2.

Finally, we conclude that the UPDD crystal graph can only
guarantee continuity, while the WPDD crystal graph can en-
sure both continuity and general completeness.

4.6 Network Architecture

Based on the graph in Section 4.3, we propose the informa-
tion propagation scheme of PDDFormer. Figure 3 illustrates
the overall framework architecture of PDDFormer.

Feature Embedding Block First, we introduce the con-
struction of the graph embedding Block. We use atomic
encoding from CGCNN for embedding. For the edge in-
formation e?j, we employ radial basis functions to encode
the distance between two adjacent nodes in the graph, rep-
resented by Equation 5, where v and p are hyperparame-
ters. For UPDD, due to the varying feature dimensions of

UPDD for different crystals, we perform matrix multiplica-

tion on UPDD to align the structural information of different
crystals, obtaining information for the PDD message passing
layer. Thus, we obtain the graph embedding as:

A = COGCNN(X), ely =exp (—7 (@)) )
PDD =UPDD®A or WPDD

Node Transformer Block Building upon the constructed
graph, we aggregate the node information. Let a! be the in-
put feature vector of node 7 at layer [ in PDDFormer. The
information propagation of layer [ is formulated as follows:

ki = (LK (a) ® LE () .k} = (LK (a}) @ LE (ey)) ,
v=(LV (a) &LV (al) & LE (¢,)) . 4l = LQ (al)
qj» =LQ (aé) ,véj = v ® Sigmoid (LNopm (LNg (v))),
il — BOLNs () +a; OL N (k)

d,i ’

ml, = ¢! + Sigmoid (BN (att!)) © LNy (v!,)

(6)
where LQ, LK, LV, LE are the linear transformations for
query, key, value, and edge features. L Ny, LNy are the non-
linear transformations for key and value, including two linear
layers and an activation layer in between. LN, represents
the linear transformation for updating messages, and LN orm
denotes the layer normalization [Ba, 2016] operation. BN de-
notes the batch normalization layer [Toffe, 2015], and in is

the dimension of ¢.

Then, we obtain the message M/ by aggregating the infor-
mation from the neighborhood of node ¢ over multiple edges,
and AT is realized as follows :

M} = BN (e, S0 ENoum (m1) )
AN = SiLU (al + LN,y (M}))
where L Ny, is the linear transformation used for updating
the edge messages.

PDD Message Passing Block A’ and PD D' represent the
atomic features and 3D periodic pattern encoding at layer [,
respectively. Its message-passing mechanism is as follows:

)

PDD'*! = PDD' + A'HL, Ay, Ay = LNppp (BN (PDD'))

A = A"+ LN a3 (LNa1 (A1) © Drop (GELU (A2))) <

Finally, we use average pooling to aggregate the features of
all nodes in the graph, followed by a nonlinear layer, and then
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Models Time/epoch Total time Inference time GPU memory usage Complexity Model Parameter
eComformer 97s 13.4h 361.5s 17GB O(nk) 12.4M
iComformer 103s 14.3h 365.6s 12GB O(nk) 5.0M

WPDDFormer 66s 7.4h 240.6s 6GB O(nk) 4.52M

Table 3: Efficiency comparison with ComFormer on the Jarvis Ehull task. We show the training time per epoch, inference time for the whole
test set, total training time, time complexity, GPU memory consumption, and total number of parameters. The experiments were conducted
using a 3090 RTX 24GB GPU. The data in the table is averaged over three experiments.

Method Num. Block  Ehull Band Gap
NO PDD Block 3,0 0.0430 0.194

NO PDD 3,2 0.0426 0.193
UPDDFormer 3,2 0.0406 0.189
WPDDFormer 3,2 0.0355 0.187

Table 4: Num. Block represents the number of Node transformer
blocks and PDD message passing blocks.

a linear layer to obtain the scalar output of the graph as de-
scribed above. A detailed description of the PDDFormer ar-
chitecture can be found in Appendix B.

5 Experiments

We conducted experiments on two material benchmark
datasets, namely the Materials Project [Chen et al., 2019] and
Jarvis [Choudhary et al., 2020] datasets. Detailed descrip-
tions of the datasets can be found in Appendiz A. More infor-
mation about the experimental settings of PDDFormer can be
found in Appendiz C. Baseline methods include PotNet [Lin
etal., 2023], CrysMMNet [Das et al., 2023al, CrysDiff [Song
et al., 2024], Crystalformer [Taniai et al., 2024], and Com-
Former [Yan et al., 2024a], The complete baselines can be
found in Appendiz E.1. For all baselines on the datasets, we
report the results provided in the cited papers.

5.1 Experimental Results

JARVIS The quantitative results for JARVIS [Choudhary
et al., 2020] are shown in Table 1. WPDDformer achieves
the best performance across all tasks. UPDD achieved the
second-best results. Notably, WPDDFormer outperforms
eComFormer by 19% respectively in the Ehull task.

The Materials Project (MP) The experimental results on
MP [Chen et al., 2019] are shown in Table 2. WPDDFormer
significantly outperforms previous works across all tasks,
with a 11.7% improvement over the second-best model in the
critical formation energy task and a 14.3% improvement in
the bulk moduli task. Additionally, the excellent prediction
accuracy of WPDDFormer in the bulk modulus and shear
modulus tasks, using only 4,664 training samples, demon-
strates the expressiveness and robustness of WPDD multi-
edge crystal graphs under limited training samples. Overall,
our methods are compared with 14 existing methods across
the two datasets. Our WPDDFormer consistently outper-
forms all methods in all tasks. Additionally, WPDDFormer

shows a significant improvement in prediction accuracy com-
pared to UPPDFormer. This improvement is not only because
the WPDD graph structure is complete and continuous, while
UPPD can only ensure continuity, but also because UPPD
requires dimensional alignment as mentioned in 4.6, which
results in some loss of the expression of global information
about the unit cell.

Efficiency We compare model efficiency with Comformer
under the best configurations, as reported in Table 3. They
have a time complexity of O(nk), where n is the number of
atoms in the unit cell and & is the average number of neigh-
bors. Compared to ComFormer, WPDDFormer has fewer pa-
rameters and achieves significantly superior experimental re-
sults with lower computational cost and faster training and
inference speeds, demonstrating the remarkable superiority
of our method.

5.2 Ablation Studies

In this section, we demonstrate the impact of introducing
(W/U)PDD on the representation learning of crystal materials
through ablation studies. Specifically, we conducted experi-
ments on the MP and JARVIS datasets, using testing mean
absolute error (MAE) as the quantitative evaluation metric,
comparing the results for Band Gap and Ehull tasks, as
shown in Table 4. By comparing (W/U)PDDFormer mod-
els without PDD message passing blocks to models that re-
tain the PDD message passing blocks but lack (W/U)PDD
information, we validated the importance of (W/U)PDD. The
results show that compared to models without the PD D mes-
sage passing blocks, WPDDForemer achieved improvements
of 17.4% and 3.6% in the Bulk Moduli and Ehull tasks, re-
spectively. Compared to models that retain only the PDD
message passing blocks but lack (W/U)PDD information,
we achieved improvements of 16.7% and 3.1% in these two
tasks, respectively. More data can be found in Appendiz E.3.

6 Conclusion

In this study, we integrated WPDD and UPDD into the repre-
sentation of crystal structures, achieving a general complete
and continuous construction of crystal graphs. This resolves
the ambiguity in crystal graph representations for predicting
the properties of crystalline materials and bridges the gap
between traditional crystal descriptors and dynamic atomic
behavior. Experimental results demonstrate the significant
advantage of our PDDFormer in various property prediction
tasks. Achieving absolute completeness under perturbations
is a problem that will be further explored in the future.
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