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Abstract

We propose a version of DFS designed for Con-
straint Programming, called bimodal DFS, that
scales to both sparse and dense graphs. It runs in
O(n + m) time, where 7 is the sum, for each ver-
tex v, of the minimum between the numbers of suc-
cessors and non-successors of v. Integrating it into
Régin’s GAC algorithm for the ALLDIFFERENT
constraint results in faster performance as the prob-
lem size increases. In the vast majority of our tests,
GAC now performs similarly to BC in terms of
speed, but is able to solve more problems.

1 Introduction

Constraint programming (CP) [Rossi e al., 2006] enables the
declaration of decision variables with potential values (do-
mains) and constraints. A CP solver finds assignments that
meet these requirements. CP uses synergy between propaga-
tion and search, where each component reinforces the other.
Search systematically explores the solution space, assigning
values to variables and verifying constraints. When a conflict
arises, backtracking reverts decisions. Propagation narrows
the search space, preventing exhaustive enumeration. It anal-
yses variables and constraints to identify and remove incon-
sistent values. Filtering algorithms implement this propaga-
tion. Because eliminating all inconsistent values is NP-Hard,
one must make a trade-off between propagation and search.

Global constraints (GC) with stronger filtering. GC is a
key concept in CP, enabling efficient propagation by consid-
ering the interactions between several variables. For example,
the ALLDIFFERENT constraint [Régin, 1994] ensures distinct
values for variables in a set. Global constraints exploit prob-
lem structure to provide stronger filtering, often aiming for
high levels of consistency, such as Generalised Arc Consis-
tency (GAC) or Bound Consistency (BC). GAC prunes all in-
consistent values from the constraint’s scope. BC relaxes do-
mains to intervals, enabling faster filtering but less pruning.

Graph-based filtering algorithms and their bottlenecks.
Graph algorithms using Depth-First Search (DFS) are crucial
for filtering GC. They are often applied to the Variable-Value
Graph (VVG), a bipartite graph where one set of vertices rep-
resents variables and the other set corresponds to possible val-

ues. Edges link variables to their feasible values. For exam-
ple, Régin’s algorithm is applied to the VVG and enforces
GAC for ALLDIFFERENT. However, DFS becomes a bottle-
neck whenever the graph is dense, as it runs in O(n + m)
time, where n and m are the numbers of vertices and edges.

Bimodal DFS as a way to address the DFS bottleneck. To
allow faster graph traversal, [Dahlhaus et al., 2002] proposed
aminimum-sized ‘partially complemented’ (p-c) graph repre-
sentation consisting of either storing the successors or the
non-successors. Its size is n+m where m is the sum, for each
vertex v, of the minimum between the numbers of successors
and non-successors of v. This representation allows some
graph algorithms’ runtime to depend on 7 instead of m. In a
CP context, the VVG may start out very dense then become
sparse, or some subsets of vertices may have a few succes-
sors, while others many. Thus, algorithms with m-dependent
complexities are very appealing. However, the domain rep-
resentations prevent these p-c algorithms from being used on
the VVG. This motivated us to introduce bimodal DF'S, which
is inspired by the p-c DFS but leverages the ability of many
solvers to (A1) efficiently iterate over a domain (the succes-
sors of a variable in the VVG) and (A2) efficiently check if a
value is present (whether an edge belongs to the VVG).

Contributions. Our main contributions include:

1. A configurable bimodal DFS, whose worst-case time
complexity is O(n + ) under assumptions (A1)—(A2),
as well as a bimodal Breadth-First Search (BFS) algo-
rithm used for finding a matching in the VVG.

2. Bimodal BFS and DFS integrated into Régin’s GAC al-
gorithm for ALLDIFFERENT. It outperforms state-of-
the-art GAC algorithms on large instances and comes
close to the speed of the BC algorithm of [L6pez-Ortiz
et al., 2003] in practice.

Paper organisation. Sect. 2 gives related work on efficient
DFS and GAC algorithms for ALLDIDFFERENT and on the
partially complemented representation of graphs. Sect. 3 gi-
ves our lst contributions: bimodal BFS and DFS. It in-
troduces the fracking list, a data structure used in bimodal
DFS. Sect. 4 integrates these results in the GAC filtering of
ALLDIFFERENT. Sect. 5 presents the conducted experiments.
Some details are given in the technical appendix.!

'Technical appendix: https://hal.science/hal-05062193
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2 Related Work

The Depth-First Search (DFS) algorithm is a fundamen-
tal algorithm used in many filtering algorithms. It handles
constraints like ALLDIFFERENT, CIRCUIT [Lauriere, 1978;
Kaya and Hooker, 2006], or SAME [Beldiceanu et al., 2006],
where the computation of Strongly Connected Components
(SCC) is potentially invoked an exponential number of times
throughout the search, both on dense and on sparse graphs
derived from variable domains.

Within CP, despite identifying DFS as a major bottleneck
due to its need to traverse all graph edges, progress has only
yielded constant speedup. For instance, for the GAC fil-
tering algorithm of the ALLDDIFFERENT constraint [Régin,
1994], these include optimising or dispensing with the DFS-
based SCC algorithm [Gent ef al., 2008; Zhang et al., 2018;
Zhang et al., 2021; Zhen et al., 2023; Li et al., 2023] or util-
ising GPUs [Tardivo et al., 2023]. This has also prompted the
use of incomplete filtering algorithms that prioritise BC over
GAC [Lépez-Ortiz et al., 2003].

Partially Complemented Graphs. A number of studies in
the literature have explored the potential for reducing the time
complexity for constructing a BFS-forest and a DFS-forest of
a graph by compressing its size significantly. Indeed, since
the size of a forest is bounded by the number of vertices n,
one would ideally like to construct it in O(n) time.

In particular, [Dahlhaus et al., 2002] introduced the Par-
tially Complemented Representation (p-c representation) of
a directed graph (digraph) D = (V, A), which consists,
for every vertex v € V, in either storing its successors
Nf(w) = {w € V : (v,w) € A} or its non-successors
Nv) = {w € V : (v,w) ¢ A} (v is then said to be
complemented). 1t is possible to obtain a minimum-sized
p-c representation D of D. Indeed, with n = |V| and
df(v) = |[N*(v)|, for each v € V: if d"(v) < n — d(v)
then N*(v) is stored, otherwise N*(v) is stored. Then, with
m =) cymin(di(v),n — d*(v)) and m = |A|, the size of
the minimum-sized p-c representation D is n+m. Also, D is
constructed in O(n+m) time with an adjacency list encoding
of D. See Fig. 1.

It has been demonstrated that several graph algorithms
[Dahlhaus et al., 2002; Lindzey, 2014; Joeris et al., 2017],
including BFS and DFS, can be adapted to the p-c represen-
tation, resulting in a time complexity that depends on the size
of D rather than the size of the graph D itself. This is a very
interesting property when |D| < |D|, which is the case, for
example, when the graph is very dense.

N*T(0) {2,4} N*(0) {2,4}
N+(1) {0,1,2,4} N+(1) {3}
v ={0,1,2,3,4} N*@2) {1,2,4} N'(2) {0,3}
N*™(3) {3} N*(3) {8}
N+(4) {172?374} ]Tf+(4) {0}
m =14 m="7

Figure 1: Illustration of the adjacency list (middle) and minimum-
sized p-c (right) representations of the same graph

3 Bimodal Algorithms for BFS and DFS

We propose CP-oriented variants of the classical BFS and
DFS graph traversal algorithms, called Bi-BFS and Bi-DFS,
based on the operations iteration and check. In a di-
graph D = (V, A) and for a vertex v € V, the iteration
operation allows one to iterate over the successors N*(v) of
v, while the check operation determines whether a vertex is
a successor of v. Their time complexities are denoted I(v)
and C'(v) respectively.

To illustrate these operations and their complexities, we
take the example of the adjacency list (AL) and adjacency
matrix (AM) graph representations. With AL, iterating over
the successors of a given vertex v is done in O(d"(v)) time,
and assessing the presence of a vertex in NT(v) is done
in O(d"(v)) time too, so I(v) = O(d"(v)) and C(v) =
O(d*(v)) for all v € V. With AM, iterating over the succes-
sors of a given vertex v is done in O(n) time, and assessing
the presence of a vertex in N*(v) is done in O(1) time, so
I(v) = O(n) and C(v) = O(1) forallv € V.

Graph representations in CP do not allow one to directly
use the p-c algorithms, but they may offer efficient imple-
mentations for both iteration and check, as explained
in the first paragraph of Sect. 4. That is why we design graph
traversal algorithms based on these two operations. Our algo-
rithms take a Boolean function f as additional input, defining
the strategy for choosing between iteration or check
for each vertex. This makes them configurable. We assume
that f(v) is computed in constant time for all v € V.

When looking for the unvisited successors of the currently
explored vertex v, one can use iteration to iterate over
the successors of v and explore the unvisited ones, or iterate
over the unvisited vertices and use check to find the succes-
sors of v to explore. The worst-case time complexity of the
bimodal BFS and DFS are stated in Theorems 1 and 2 and
parametrised by f(v), I(v) and C(v), Yo € V. Under the
assumptions of Corollaries 1 and 2, they achieve a O(n + m)
time complexity like in the partially complemented approach,
but without using the minimum-sized p-c representation.

Before presenting Bi-BFS and Bi-DFS, we briefly recall
in Sect. 3.1 a doubly linked list that will represent the set of
unvisited vertices. In Sect. 3.3, we define a new function for
this list to enable Bi-DFS achieving the desired complexity.

3.1 Backtrackable Doubly Linked List

Knuth’s dancing links technique [Knuth, 2000] allows for ef-
ficient reversal of doubly linked list operations. Thus, we call
such list a backtrackable doubly linked list (bdll). Each node
v points toward a predecessor v.pred and a successor v.succ
in the list. The artificial node source has no predecessor,
and the artificial node sink has no successor. The nodes
form a chain from source to sink. The crux of the danc-
ing links concept is the retention of the predecessor and suc-
cessor of a deleted node. This ensures that reinserting the last
removed node is done in constant time.

Definition 1 (Backtrackable Doubly Linked List Functions).
We remind and define the elementary functions of the bdll:

* prev(v) returns the predecessor of v: return v.pred

* next(v) returns the successor of v: return v.succ
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* hasNext(v) returns TRUE iff v is not at the end of the
list: return v.succ # sink

* remove(v) removes v from the list, assuming v is in the
list and is neither source nor sink: v.pred.succ <—
v.suce; v.succ.pred < v.pred;

* reinsert(v) inserts v in the list, assuming v is the last
removed node: v.pred.succ < v, v.succ.pred <— v;

* present(v) returns TRUE iff v is in the list: return
v.pred.succ = v

Note that each of these functions runs in O(1) time.

3.2 Bimodal Breadth-First Search
The BFS of [Dahlhaus ef al., 2002] is an iterative algorithm
that runs in O(n + ") time once D has been constructed.
In contrast, our bimodal BFS algorithm (1) does not need to
build D, but uses D’s iteration and check operations.
Using the bdll L to represent the set of unvisited vertices
enables us to iterate efficiently over unvisited vertices and
check in constant time whether a vertex has already been vis-
ited. We denote as d},,(v) the number of outgoing arcs from
v in the resulting BFS-forest.
Theorem 1. Bi-BFS goes through a BFS-forest of D and the
time spent exploring a vertexv € V is:

e O(I(v))

o O(C(v) x (n = d"(v) + d;i(v)))
Proof. If f(v) = FALSE, when iterating over the unvisited
vertices during the exploration of v, these vertices are either
successors of v forming the BFS-forest’s arcs (v, w) (exactly
dt,4(v)), or non-successors of v (at most n — d*(v)). O
Corollary 1. IfVv € V, I(v) =0(d"(v)), C(v)=0(1) and
f(v)=(d*(v) < %), then Bi-BFS runs in O(n + 1) time.

if f(v) = TRUE;
if f(v) = FALSE.

Proof. The BFS-forest is a forest, therefore ) |, df.(v) <
n. And then, by using the definition of m and Theorem 1, we
get the claimed complexity. O

Algorithm 1 Bimodal BFS (Bi-BFS)

Require: A digraph D = (V, A) and a Boolean function f over V'
Ensure: Explore a BFS-forest of D

1. L+ V,; > L is a bdll with the vertices in V

2: while L # () do EXPLOREBFS(L.next(L.source));

3: procedure EXPLOREBFS(root)

4 @ < empty queue;

5 Q.enqueue(root); L.remove(root);
6: while queue () is not empty do
7
8
9

v < Q.dequeue();

if f(v) then > use iteration on N™(v)
for w € N*(v) : L.present(w) do
10: Q.enqueue(w); L.remove(w);
11: else > use check on N (v)
12: w < L.source;
13: while L. hasNext (w) do
14: w ¢ L.next(w);
15: if w € N*(v) then
16: Q.enqueue(w); L.remove(w);

source trackPrev(v)

e, S e R —

Figure 2: Illustration of the t rackPrev function; the nodes at the
top are still in the list, while those at the bottom were removed. The
thick-blue nodes are the positions successively taken by track when
calling trackPrev(v).

3.3 Bimodal Depth-First Search

While BFS was easy to adapt, DFS presents some difficul-
ties. For partially complemented graphs, [Dahlhaus et al.,
2002] proposed an iterative algorithm using a so-called com-
plement stack, achieving a time complexity of O(n+1m) once
D is constructed. [Joeris et al., 2017] presented a simpler
recursive algorithm with the same time complexity, but re-
quiring the lists of non-successors to be sorted in the same
order. We propose a recursive algorithm that uses the opera-
tions iteration and check of D, without creating D.

In the case of DFS, it is more difficult to efficiently iterate
over the list L of unvisited vertices, since this list may change
between two visits to the same vertex. To obtain the same
complexity results as in Theorem 1, we avoid iterating sev-
eral times over the same unvisited vertices for all visits to a
given vertex v. To do this, we use a pointer p,, that records the
last position in L before finding a successor of v to explore.
However, the position pointed by p, may be removed from L
between two visits of v, which would force to iterate from the
start of L at the next visit of v. To address this issue, we in-
troduced in Definition 2 a new data structure called tracking
list, which is a bdll with an extra function t rackPrev. This
function, illustrated in Figure 2, takes a node v as an argu-
ment, possibly removed from the list, and follows the prev
pointers until it finds a node that currently belongs to the list.

Definition 2 (Tracking List). A tracking list is a bdll to which
we add the following elementary function:

* trackPrev(v) returns the first node in the list from v
by successively moving to the predecessor:
track < v;
while —-present(track) do track < prev(track);
return track;

Algorithm (2) provides the Bi-DFS procedure, which is
based on iteration and check combined with the track-
ing list to explore a DFS-forest of D. Let d},,(v) denote the
number of outgoing arcs from v in the resulting DFS-forest.

Theorem 2. Bi-DFS goes through a DFS-forest of D, and
the time spent exploring a vertex v € V is:

e O(I(v))
o O(C(v) x (n—d'(v) + d;(v)))

Proof. The proof outline is provided here; the complete proof
isin Sect. 1 of the technical appendix. The main difficulty lies
in proving that p, does not traverse too many nodes during
all visits of v. Consider an iteration of the loop at line 9,
which represents a single visit to the node v. In Bi-DFS we
distinguish three positions for p,: (i) just before line 10 at

if (v) = TRUE;
if f(v) = FALSE.
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Algorithm 2 Bimodal DFS (Bi-DFS)

Require: A digraph D = (V, A) and a Boolean function f over V'
Ensure: Explore a DFS-forest of D
1: L+ V; > L is a tracking list with the vertices in V'
2: while L # () do EXPLORE(L.next (L.source));
3: procedure EXPLORE(v)

4: L.remove(v);
5: if f(v) then > use iteration on N*(v)
6: for w € N*(v) : L.present(w) do EXPLORE(w);
7: else > use check on N (v)
8: Py < L.source;
9: while L.hasNext(p,) do
O]
10: py < L.trackPrev(p,);
@
11: while L.hasNext (p,) A L.next(p,) ¢ N*(v) do
12: po < L.next(py);
®
13: if L.hasNext(p,) then EXPLORE(L.next(py));

@, denoted p]; (ii) just before lines 11-12 at @, denoted p?;
(iif) just after lines 11-12 at ®, denoted pf.

We prove that (@) every node traversed by p, is a non-
successor of v, and that (b) every node traversed by p, is tra-
versed at most once between p; and p? (e.g. W,y in Fig. 3),
and at most once between p? and p? (e.g. w;, in Fig. 3) over
all visits of v. This leads to the given complexity. O

Corollary 2. IfVv € V, I(v)=0(d"(v)), C(v)=0(1) and
f(v)=(d*(v) < %), then Bi-DFS runs in O(n + m) time.

Proof. The DFS-forestis aforestso ), i, d!.{(v) < n. And
then, by using the definition of m and Theorem 2, we get the
claimed complexity. O

4 The Bimodal Approach for Filtering the
ALLDIFFERENT Constraint

We extend the bimodal approach to filter the constraint
ALLDIFFERENT. As Régin [Régin, 1994]’s GAC algorithm
uses graph algorithms on the variable-value graph and a sim-
ilar graph, we can rely on the domains of the variables rather
than constructing these graphs directly. This allows us to take
advantage of the domain operations for graph algorithms, in-
cluding iteration and check on which the bimodal ap-
proach is based. Many domain representations offer efficient
time complexities on these operations, such as successor vec-
tor [Van Hentenryck et al., 1992] and sparse set [de Saint-
Marcq et al., 2013], for which the iteration over the domain
(iteration) is done in linear time in its size, and assess-
ing the presence of a value (check) is done in constant time.
This is what motivated the design of the bimodal approach.

pv ________________________ Winp, v ”iwsu(r_a_,,\

o T

e S o o’

Figure 3: Illustration of the sketch of the proof of Theorem 2

Figure 4: Example of variable-value (left) and residual (right)
graphs; the variables are xz9, 1, and x2 with domains
{vo,v1}, {vo,v1}, and {v1,v2,v3}; a maximum matching is
{(z0,v0), (x1,v1), (x2,v2)}. The SCCs are {xo,x1,v0,v1} and
{z2,v2,v3,t}, so the pair (z2,v1) is pruned.

The main theoretical contribution of this paper lies in the
bimodal graph traversal algorithms, and, more specifically, in
Bi-DFS presented in Sect. 3. Therefore, the pseudo-code for
filtering ALLDIFFERENT with the bimodal approach is only
presented in the technical appendix.

4.1 ALLDIFFERENT and Régin’s GAC Algorithm

The constraint ALLDIFFERENT on a set X of variables with
their domains D = {D(x) : © € X}, ensures that each
variable in X has a different value. Based on the notion
of variable-value graph and residual graph that we will in-
troduce in Def. 3 and 4, an efficient GAC algorithm for
ALLDIFFERENT was proposed by [Régin, 1994].

Definition 3 (Variable-Value Graph, [Gent et al., 2008]).
Let X be a set of variables and D their domains. Let
V' = U,ex D(x) be the set of possible values. The variable-
value graph is the bipartite graph G = (X UV, E) with
E={(x,v) e X xV:veDx)}

Definition 4 (Residual Graph, [Gent er al., 2008]). Let X be
a set of variables, D be their domains, V = | J, . x D(x) and
M be a maximum matching of the variable-value graph. The
residual graph is the digraph G = (X UV U{t}, A) with t an
artificially added vertex and A = {(z,v) € (X x V)\M :
veDE)}U{(v,z) e VxX:(x,v) e MU{(tv) €
{t} xV:ive MUu{(v,t) eV x {t}:v¢ M}.

The algorithm prunes all variable-value pairs that cannot
belong to a solution. It computes a Maximum Matching
(MM) in the variable-value graph, and then filters out all pairs
that do not belong to the same Strongly Connected Compo-
nent (SCC) in the residual graph, as illustrated by Fig. 4.

We define r = |X|,d = [V|and m = }___ |D(x)|. We
assume that » < d, otherwise, the constraint is not met.

Maximum Bipartite Matching. There are many algo-
rithms for finding a maximum matching in a bipartite graph,
including the Hopcroft-Karp (HK) algorithm [Hopcroft and
Karp, 1973], which runs in O(y/rm) time, and the Kuhn
algorithm, a subroutine of the Hungarian algorithm [Kuhn,
2004], similar to the Ford-Fulkerson algorithm [Leiserson et
al., 1994], running in O(rm) time, but with better practical
behaviour than HK [Setubal, 1993; Setubal, 1996].

[Gent et al., 2008; Zhen et al., 2023] uses Kuhn’s algo-
rithm, which is easy to implement and efficient. Given a cur-
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rent matching M in the graph, it performs a BFS from an
unmatched vertex to find an augmenting path starting from it.
If a matched vertex v is encountered during the BFS, it pur-
sues the exploration from its partner M (v). The BFS stops
when it finds an unmatched vertex, or when all vertices were
explored. In the BFS tree, the path from the root to the en-
countered unmatched vertex is an augmenting path. It swaps
edges on the augmenting path, increasing the matching size
by 1. Repeating this process until all vertices are matched or
no augmenting path is found produces a maximum matching.

Strongly Connected Components. To compute the SCC
of the residual graph, Régin uses Tarjan’s algorithm [Tarjan,
19721, which runs in O(r + m) time. It performs a DFS on
the graph’s vertices, storing the pre-visit order for each vertex
v as v.pre. It then calculates v.low, which is the most ancient
vertex reachable from v in the pre-visit order. It uses a stack
St to store the visited vertices still unassigned to an SCC,
and if a vertex is the root of an SCC (v.pre = v.low during
the post-visit of v), then v and every vertex on top of it in Sp
are in the same SCC and therefore removed from Sy.

Domain Filtering. To ensure GAC, arcs between SCCs not
in the matching are pruned. When an SCC C is found, either
its outgoing or incoming arcs can be pruned. We choose to
prune the outgoing arcs, which come from variables in C and
point to values outside C.

4.2 Our Bimodal Approach for ALLDIFFERENT

Using the domain representation, we directly run graph algo-
rithms on the variable-value and residual graphs without ex-
plicitly building them. Thus, we only use the iteration
and check operations of the domains and do not access
the variables containing a given value. We adjust the defi-
nition of m to the variable-value graph, which is bipartite:
m = cx min(|D(z)|,d—|D(z)]). For the complexity re-
sults stated in this section, we suppose that I (z) =O(|D(z)|),
C(z) = O(1), f(z) = (|D(z)| < £) and that we can get
|D(z)| in constant time for all x € X.

Bimodal MM in the Variable-Value Graph

To find a maximum matching in the variable-value graph, we
use Kuhn’s algorithm, replacing the BFS with Bi-BFS. Bi-
BFS starts at an unmatched variable, finding values to queue
using either iteration or check on the variable’s do-
main, based on the choice function f. When it encounters
a value v, if v is matched then it continues the exploration
from variable M (v), otherwise it stops the search. The list
of unvisited vertices L contains values only, and no variables,
because the values have at most one successor in the variable-
value graph: their matched variable. So, finding the unique
successor of a value in the resulting BFS-tree is immediate.

By Corollary 1, this leads to an O(d + ) time complexity
for each call to Bi-BFS. Thus, the overall time complexity for
finding a maximum matching is O(k x (d + m)), where k is
the initial number of unmatched variables. Without using an
incremental matching [Régin, 19941, k should be replaced by
7. See Sect. 2 of the technical appendix for further details.

Bimodal SCC of the Residual Graph

To compute the SCCs of the residual graph, we use Tarjan’s
algorithm, but modify it slightly to integrate Bi-DFS.

Bi-DFS is run from the matched values not yet visited,
which is equivalent to starting the search from the artificial
node ¢, whose pre-visit order is set to 0. A variable z is nec-
essarily explored from its matched value M (z), so both are
either in the same SCC or alone. For this reason, pre-visit
orders and low points are only calculated for values, not for
variables, and S7 contains values only.

e When exploring a variable x with a small domain
(f(v) = TRUE), we follow Tarjan’s algorithm: for each
value v in 2’s domain, if v is unvisited, we process it; if
v is visited and in S, then M (x).low gets the minimum
between M (z).low and v.pre.

* If x has a large domain (f(v) = FALSE), we find the
next unvisited value of x as in Bi-DFS and process it.

If no unvisited values remain in the second case, we look for
the oldest visited value v,,. of z that is still in S7. To do
this, we iterate over St from the bottom until we reach a
value in D(x) or a value whose pre-visit order is greater than
M (z).low, since the values in St are sorted in ascending pre-
visit order. M (z).low gets the minimum between M (x).low
and vgnc.pre. Observing this sole vertex v, is sufficient
for the algorithm to be correct, as noted in [Gent er al., 2008;
Joeris et al., 20171.

Processing an unvisited value v involves (i) exploring
M (v) if v is matched, and then setting M (x).low to the mini-
mum of M (x).low and v.low, or (ii) v leads to the artificially
added vertex ¢ if v is unmatched, so M (z).low gets 0 and we
continue the exploration from .

The search for the oldest unassigned visited value vy, of
a variable x is done in O(d — |D(z)|) time. And as with
bimodal MM, the list of unvisited vertices L contains values
only. Then to find the SCCs of the residual graph, this leads
to a time complexity of O(d -+ m) by Corollary 2. See Sect. 3
of the technical appendix for further details.

Bimodal Domain Filtering

For an SCC C of the residual graph, we prune all variable-
value pairs (z,v) € (XNCxVNC : v € D(z))\M (withC =
V\C). This is done using the same method as the bimodal
approach. Let x be a variable in C: if = has a small domain
(i.e. f(z) = TRUE), iterate over D(x) and remove the values
in C; if = has a large domain (i.e. f(x) = FALSE), iterate
over the values in C and remove them from D(z).

A bdll serves as a representation of C. It is initialised
with V. Each time an SCC C is processed, its values are re-
moved from the bdll, and reinserted once the pruning is done.
This leads to a O(d) time complexity for managing C.

Iterating over D(z) takes O(|D(x)|) time. Iterating over
C takes O(d — |D(z)| + k) time, where k, is the number
of values to remove from D(z). Therefore, finding inconsis-
tent pairs to prune takes O(d + m + k) time, where k is the
number of pairs to prune. The time complexity for removing
them from the domains is solver dependent. See Sect. 3 of
the technical appendix for further details.
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Dynamic Structures and Optimisations

The presented algorithms form a filtering procedure that en-
sures GAC for ALLDIFFERENT, which can be called multiple
times in a CP solver. Thus, several optimisations in the lit-
erature involve dynamically maintaining certain information
to avoid unnecessary recomputations. We may cite the incre-
mental matching [Régin, 1994], the decremental SCC parti-
tioning [Gent et al., 2008] and the decremental backtrackable
graph representation mentioned in [Zhen et al., 2023]. In our
case, we create the structures and initialise them only once
when the constraint is posted, and maintain the bdll and the
tracking list dynamically.

Although we use an incremental matching, we do not pro-
cess the SCC independently, nor implement the optimisations
of the GAC algorithms [Zhang ef al., 2018; Zhang et al.,
2021; Li et al., 2023; Zhen et al., 2023] for two reasons.

* This paper does not aim to present the most efficient fil-
tering algorithm combining all optimisations. Instead, it
focuses on the bimodal approach, and specifically ex-
amines its asymptotic behaviour when the size of the
ALLDIFFERENT constraint is significantly increased.

* The majority of optimisation techniques in the literature
can be combined with the bimodal approach. It mainly
alters how the next vertex to explore is determined dur-
ing BFS and DFS, while preserving the core algorithms.

Here are a few examples of optimisations of the
ALLDIFFERENT filtering algorithm, which work in synergy
with the bimodal approach:

1) The SCC partitioning optimisation from [Gent ef al.,
2008]: first, split the tracking list with respect to the SCCs;
then, run the bimodal approach independently on each SCC
in which changes occurred with its corresponding tracking
list of unvisited values;

2) [Zhang et al., 2018] performs one last search after the
MM phase to detect allowed nodes and remove type 1 redun-
dant edges. The allowed nodes can be found by Bi-BFS;

3) [Zhen et al., 2023] performs additional BFSs in the MM
phase to compute reachable sets from some nodes. These sets
allow finding all pairs to prune, preventing the need to run the
SCC phase. The reachable sets can be found by Bi-BFS.

5 Experiments

Our experiments aim to compare different bimodal ap-
proaches and state-of-the-art filtering algorithms. We will
vary the strategies for exploring the successors, i.e. functions
f, and evaluate their performances on two types of instances.
First, in Sect. 5.1 we study the scalability by considering in-
stances mainly carried by the ALLDIFFERENT constraint and
for which we can gradually increase the size with a single pa-
rameter, as done by [Tardivo ef al., 2023]. This section aims
to observe the asymptotic behaviour of our approach. Second,
in Sect. 5.2 we study the stability, i.e. we verify that our bi-
modal approach does not degenerate on instances where other
approaches perform satisfactorily. To this end, we consider
instances from MiniZinc Challenge [Stuckey et al., 2010].

We considered the following strategies for our bimodal ap-
proach:

* CLASSIC: f(z) = TRUE, Vz € X. It relies exclusively
on the iteration operation of the domains. Thus,
the graph traversals are done as in the classical BFS and
DFS, so it implements Régin’s algorithm.

* COMP: f(z) = FALSE, Vx € X. It only uses the
check operation. Assuming C(z) = O(1) for all
x € X, it leads to complexity results depending on the
variable-value graph’s complement size.

* PARTIAL: f(z) = (|D(z)| < |L]), Yx € X. This
strategy leads to the /m complexity results if I(z) =
O(|D(z)]) and C(z) = O(1) Vz € X.

* TUNED: f(z) = (|D(x)| < v/|L]), Yz € X. It favours
the iteration over the unvisited vertices, since it is much
faster in practice.

We integrated our algorithms into the open source
Choco-solver [Prud’homme and Fages, 2022].> We com-
pared our results with these built-in algorithms: two GAC al-
gorithms, REGIN [Régin, 1994] and ZHANG [Zhang et al.,
2018], and one BC algorithm BC [L6pez-Ortiz et al., 2003].
Note that in Choco-solver, REGIN and ZHANG recon-
struct the variable-value graph at each call to the filtering
procedure; the difference between CLASSIC and REGIN only
is the implementation, not the algorithm. Also, BitSet is
the default domain representation, for which iteration
does not exactly run in linear time in the size of the domain.
In the experiments, each filtering algorithm is paired with a
higher priority instantiation propagator that removes instan-
tiated values from the domains of other variables, as this is
Choco-solver’s default behaviour. The experiments were
carried out on an Intel Xeon 6230 with 6144M RAM per job.

5.1 Empirical Study of Scalability

We study scalability by analysing four well-known problems
that mainly use the ALLDIFFERENT constraint: N-Queens,
Latin-Squares, Langford (where k is set to 2), and Golomb-
Ruler,’> where we gradually increase the size of a parameter.
We expanded the problems’ sizes until no algorithm could
solve them within a time limit of 20 minutes, or a memory
issue arose with our settings.

Comparison of the Resolution Time. We compared the
resolution times of N-Queens and Latin-Squares, as we can
solve most instances within our size range. Figure 5 re-
ports the time in seconds to find the first solution. For each
algorithm, a dot represents a solution found. Both prob-
lems show that COMP and TUNED are faster than CLASSIC
and PARTIAL, up to 14 times faster. This indicates that
iterating over unvisited vertices in Bi-BFS and Bi-DFS is
in practice much more efficient than iterating over succes-
sors, i.e. domains. On N-Queens, BC is 1.65 times faster
than TUNED on average, but does not solve queens4_1200
nor queens4_3200. Although the gap is larger on Latin-
Squares instances solved by BC, the latter hits the time limit

Zhttps://github.com/SulianLBC/Bimodal AlIDiff-IJCAI-2025

*queens4 model from https://www.hakank.org/minizinc and
latin-squares—-fd2, langford and golomb models from
https://github.com/MiniZinc/minizinc-benchmarks


https://www.minizinc.org/challenge/
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Figure 5: Time to find the first solution on N-Queens (A) and Latin-Squares (B) Instances

on most sizes. This leads us to ask whether our bimodal ap-
proach allows GAC to offer a better trade-off than BC.

Comparison of the Nodes per Second. To investigate this
question, we conduct further experiments on the Langford
and Golomb-Ruler problems. All algorithms hit the time limit
so we measure branch nodes per second, as in [Tardivo et al.,
2023]. In Figure 6, we report the speedup in nodes per sec-
ond compared to CLASSIC. We choose CLASSIC as the ref-
erence algorithm because it has the same implementation as
PARTIAL, COMP and TUNED, and it implements Régin’s al-
gorithm while outperforming REGIN and ZHANG. The latter
algorithms are not represented because they are slower than
the reference algorithm CLASSIC.

To begin with, we observe that COMP and TUNED are
comparable to BC in terms of execution time per node on
Golomb-Ruler, BC only being about 23% faster on average
than TUNED. TUNED is even faster than BC per node on 9 of
Langford’s 13 instances. This confirms the efficiency of the
bimodal approach in the filtering procedure.

Furthermore, the speedup on Golomb-Ruler of COMP and
TUNED compared to CLASSIC increases with the size of the
instances. The same can be said for Langford, although the
curves are less clear. Note that the slope of the PARTIAL curve
is explained by its tendency to match CLASSIC’s choices in
f as size increases, due to Langford’s structural properties,
leading to a speedup decrease towards 1.

Finally, COMP and TUNED accelerate significantly over
CLASSIC, leading to ratios of hundreds on Langford; up to
304 for COMP on langford-2.5600 and 225 for TUNED
on langford_2_4800. Also, we observed during the ex-
periments that TUNED was a few dozen times faster per node
than CLASSIC on the largest instances of N-Queens; up to 63
times faster on queens4_6000. This is much higher than
the 8-fold speedup achieved by GPU optimisations in [Tar-
divo et al., 2023] on the same range of instances for N-Queens
and Langford.

5.2 Empirical Study of Stability

To check stability, we considered instances from MiniZ-
inc Challenge.* We selected all models containing at least

*https://github.com/MiniZinc/mzn-challenge, years 2015-2024

one ALLDIFFERENT constraint, leading to a total of 242 in-
stances. These instances contain several constraints alongside
the ALLDIFFERENT ones, and the latter are not very large.
Thus, they are not ideal for studying the asymptotic behaviour
of filtering algorithms. So the aim is simply to ensure that our
approach does not degenerate compared to the other filtering
algorithms.

We compared BC, ZHANG - the fastest built-in GAC algo-
rithm in Choco-solver, CLASSIC — our implementation
of Régin’s algorithm, which served as the reference algorithm
in Sect. 5.1, and TUNED - our best performing algorithm on
average. We set a 20 minutes (1200 seconds) time limit for
the experiments. Among the 242 instances, 72 were solved
by at least one algorithm within the time limit.

In Figure 7, we compare the resolution times of BC,
ZHANG and CLASSIC with TUNED on these 72 instances.
A point is represented for each instance and for each algo-
rithm among BC, ZHANG and CLASSIC. The x value is the
resolution time of TUNED and the y value is the resolution
time of the corresponding algorithm. A point belongs to the
x = 1200 vertical line whenever TUNED timed out, while the
corresponding algorithm did not. Inversely, a point belongs
to the y = 1200 horizontal line whenever the corresponding
algorithm timed out, while TUNED did not.

A first comment is that no instances timed out for TUNED
but not for any other algorithm. So, we can observe that
TUNED did not degenerate on this set of instances. Further-
more, 212 out of the 216 points are above the y = 0.75x line,
and no algorithm were more than twice as fast as TUNED on
any solved instance. This means that when the considered
algorithms were faster than TUNED, they were not by much.

In Figure 8, we show the cumulative number of solved in-
stances by the four algorithms over time. We observe that
TUNED solved the most instances (72), CLASSIC solved the
second most instances (71) and BC solved the less instances
(50). Also, TUNED and CLASSIC seem to dominate the other
two, while BC appears to perform less well because of its in-
ability to solve certain easy instances.

5.3 Review of the Experiments

Our experiments show that the bimodal approach, par-
ticularly when paired with the TUNED or COMP strate-
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[0,100] x [0, 125] region is zoomed.

gies, significantly improves performance when maintain-
ing GAC for ALLDIFFERENT. More specifically, it outper-
forms conventional GAC algorithms on problems with large
ALLDIFFERENT constraints, and the speedup increases with
constraint size. It even resulted in higher ratios than a GPU-
optimised approach made for problems with large constraints.
Also, the bimodal approach with the TUNED strategy remains
competitive on instances with ALLDIFFERENT constraints of
bounded size and mixed with numerous other constraints. Fi-
nally, the filtering speed of our GAC algorithms is, on most
instances, comparable to that of a BC filtering algorithm.

6 Conclusion

The asymptotic analysis of our bimodal approach reveals the
potential of our proposal to enhance existing graph algo-
rithms, starting with BFS and DFS. The experimental frame-
work that we propose provides validation of this theoretical
result, indicating that the complexity/filtering trade-off of the
GAC algorithm is at least equivalent to that of the BC algo-
rithm in terms of efficiency. For this reason, we believe that
GAC could now be chosen over BC to filter ALLDIFFERENT
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Figure 8: Cumulative number of solved instances over time for BC,
ZHANG, CLASSIC and TUNED. The [0, 10] X [0, 20] region is zoomed.

as a default behaviour in CP solvers. To confirm this, further
investigation on various problems and instance sizes would
be interesting.

Furthermore, our bimodal approach is configurable and
opens the way to fine-tuning, as we did with TUNED, to fit
better in any CP solver. Also, it can be enhanced with other
classical domain operations, such as exploiting knowledge of
domain variables’ bounds.

Our key contribution lies in Bi-DFS, a faster depth-first
search algorithm for CP. Bi-DFS may also be used to im-
prove other constraints, including those based on variable-
value graphs or similar graphs, like CIRCUIT or SAME. We
could also use the bimodal approach outside CP when graph
representations efficiently implement the iteration and
check operations.

Finally, the reason why our graph traversal algorithms Bi-
BFS and Bi-DFS perform so well when iterating over un-
visited vertices is because they do not always reach their
worst-case time complexities stated in Theorems 1 and 2. In
most cases, they are close to their best-case time complexi-
ties: Q(df,(v)) and Q(d,{(v)), respectively, for a vertex v
when f(v) = FALSE. Theoretically, it would be interesting
to identify graph classes where the best-case scenario is al-
ways met, or to refine the worst-case complexities with other
graph parameters.
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