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Abstract

Pansharpening fuses lower-resolution multispectral
(LRMS) images with high-resolution panchromatic
(PAN) images to generate high-resolution multi-
spectral (HRMS) images that preserves both spa-
tial and spectral information. Most deep pansharp-
ening methods face challenges in cross-modal fea-
ture extraction and fusion, as well as in exploring
the similarities between the fused image and both
PAN and LRMS images. In this paper, we propose
a spatial-spectral similarity-guided fusion network
(S3FNet) for pansharpening. This architecture is
composed of three parts. Specifically, a shallow
feature extraction layer learns initial spatial, spec-
tral and fused features from PAN and LRMS im-
ages. Then, a multi-branch asymmetric encoder,
consisting of spatial, spectral and fusion branches,
generates corresponding high-level features at dif-
ferent scales. A multi-scale reconstruction decoder,
equipped with a well-designed cross-feature multi-
head attention fusion block, processes the interme-
diate feature maps to generate HRMS images. To
ensure HRMS images retain maximum spatial and
spectral information, a similarity-constrained loss
is defined for network training. Extensive experi-
ments demonstrate the effectiveness of our S3FNet
over state-of-the-art methods. The code is released
at https://github.com/ZhangYongshan/S3FNet.

1 Introduction
Modern imaging sensors often face a trade-off between cap-
turing high-resolution images with limited spectral informa-
tion and low-resolution images rich in spectral data due to
hardware limitations. It is challenging to acquire images
with both high spatial resolution and abundant spectral in-
formation from a single sensor. To address this problem,
satellites are typically equipped with two distinct sensors:
one for capturing high-resolution panchromatic (PAN) im-
ages and another for low-resolution multispectral (LRMS)
images [Zhou et al., 2025]. These complementary images

∗Corresponding author.

Figure 1: Different structures of existing deep pansharpening meth-
ods. (a) Single-branch structure. (b) Dual-branch structure. (c) Our
multi-branch structure with similarity-constrained loss.

are then fused through pansharpening techniques to gener-
ate high-resolution multispectral (HRMS) images for various
tasks, such as land-cover recognition [Zhang et al., 2024] and
anomaly detection [Shikhar and Sobti, 2024].

Pansharpening is a promising research topic in the remote
sensing community, as it enhances the spatial resolution of
multispectral (MS) images while preserving their spectral in-
formation through the integration of high-resolution single-
band PAN images. There are numerous effective traditional
and deep pansharpening methods [Deng et al., 2022]. Tradi-
tional pansharpening methods are mainly divided into three
categories: component substitution (CS) methods [Choi et
al., 2010; Vivone, 2019], multiresolution analysis (MRA)
methods [Vivone et al., 2013; Vivone et al., 2018], and
variational optimization (VO) methods [Fu et al., 2019;
Tian et al., 2021]. These methods are well-suited for a range
of satellite images. However, their performance is limited by
a heavy reliance on hand-crafted features.

Due to the remarkable feature extraction capabilities of
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Figure 2: Correlation exploration between diverse images on the
WorldView-3 dataset. (a) Ground-truth (GT) image. (b) LRMS im-
age showing a spectral correlation coefficient (CCspe = 0.872)
between GT image. (c) PAN image showing a spatial correlation
coefficient (CCspa = 0.936) between GT image. (d) Histogram
of spectral correlation coefficients between LRMS and GT images
across 20 samples. (e) Histogram of spatial correlation coefficients
between PAN and GT images across 20 samples.

neural networks, numerous deep pansharpening methods
have been proposed. Based on their network architecture,
these methods are primarily categorized into single-branch
and dual-branch structures. As shown in Figure 1 (a), single-
branch networks concatenate both PAN and LRMS images
through a single pathway to obtain fusion images [Masi et al.,
2016; Deng et al., 2021]. They neglect the unique character-
istics of features from different modalities, leading to inade-
quate feature extraction. In contrast, as shown in Figure 1 (b),
dual-branch networks process PAN and MS images through
two separated branches, and then fuse them via concatenation
before passing them to the subsequent decoder [Zhang et al.,
2022; Zhou et al., 2022]. They enable complementary feature
extraction and facilitate high-quality image fusion.

Although deep pansharpening methods yield impressive
fusion results, two potential issues hinder their performance.
First, most existing methods are ineffective for cross-modal
feature extraction and fusion [Zhang et al., 2022; Xing et
al., 2024]. The differences in spatial and spectral informa-
tion between PAN and LRMS images make them challenging
to extract and combine features effectively in single-branch
or dual-branch structures with simple concatenation, limiting
the full utilization of complementary modalities. To solve
this issue, as shown in Figure 1 (c), a multi-branch struc-
ture with an additional fusion branch should be considered to
better extract and integrate features from both input images,
enabling more effective fusion and enhancing overall perfor-
mance. Second, most previous methods neglect the similar-
ities between the fused image and both PAN and LRMS im-
ages [Peng et al., 2023; Duan et al., 2024]. As shown in Fig-
ure 2, the correlation analysis reveals that an LRMS image ex-
hibits a strong spectral correlation with the ground-truth (GT)
image, while a PAN image displays a strong spatial correla-

tion with the GT image. The absence of similarity constraints
between the fused image and input images in existing meth-
ods may result in the loss of important spatial and spectral
details, thereby compromising the pansharpening quality. To
solve this issue, similarity guidance between the fused fea-
tures and those extracted from input images should be intro-
duced during network training.

Motivated by the above observations, in this paper, we
propose a spatial-spectral similarity-guided fusion network
(S3FNet) for pansharpening. As shown in Figure 3, there
are three key components in this architecture. Specifically,
a shallow feature extraction layer processes PAN and LRMS
images through Transformer blocks and convolution to learn
initial spatial, spectral and fused features. To enable high-
level feature learning at different scales, a multi-branch asym-
metric encoder is presented by incorporating distinct spatial,
spectral and fusion branches. Based on a well-designed cross-
feature multi-head attention fusion block, a multi-scale recon-
struction decoder is able to generate high-quality HRMS im-
ages by fusing diverse intermediate feature maps. To preserve
as much spatial and spectral information as possible in HRMS
images, a similarity-constrained loss is formulated to facil-
itate the network training and parameter update. Our main
contributions are as follows:

• We propose a similarity-guided fusion network designed
with a multi-branch structure for PAN and LRMS image
fusion. This framework facilitates the effective exploita-
tion of complementary information while capturing both
spatial and spectral correlations.

• We present spatial, spectral and fusion branches with
distinct designs in the multi-branch asymmetric encoder
to hierarchically learn high-level features with discrimi-
native information.

• We design a cross-feature multi-head attention fusion
block with spatial and spectral cross-attention mecha-
nisms in the multi-scale reconstruction decoder to facil-
itate effective cross-modal feature fusion.

• We formulate a similarity-constrained loss for network
training that integrates spatial and spectral correlation
measures to ensure the preservation of maximum details
in the fused images. Experimental results demonstrate
the effectiveness of our proposed method.

2 Related Works
In recent years, numerous deep pansharpening methods have
achieved remarkable results, owing to their exceptional fea-
ture extration capabilities. Pansharpening neural network
(PNN) [Masi et al., 2016] is a pioneer to perform image fu-
sion using a three-layer convolutional network. Further, de-
tail injection based convolutional neural network (DiCNN)
[He et al., 2019] injects the details of PAN images into
LRMS images to provide explicit physical interpretations.
Considering the complementarity of input images, bidirec-
tional pyramid network (BDPN) [Zhang et al., 2019] pro-
cesses them in two separated branches to reconstruct fusion
images. To explore local and global context, bidomain mod-
eling pansharpening (BiMPan) method [Hou et al., 2023]
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Figure 3: Overall structure of our S3FNet. It contains three key parts. PAN and LRMS images firstly pass through a shallow feature extraction
(SFE) layer. Next, the extracted features enter a multi-branch asymmetric encoder with spatial, spectral and fusion branches. Finally, the
features are processed through a multi-scale reconstruction decoder incorporated with a well-designed cross-feature multi-head attention
fusion block (CMAFB) to generate the HRMS image.

presents local adaptive and global detail branches for bet-
ter image fusion. Additionally, double U-shape network
(U2Net) [Peng et al., 2023] processes PAN and LRMS im-
ages through spatial and spectral U-Nets, and performs fu-
sion via the S2Block. To solve edge blur and spectral dis-
tortion problems, multi-supervised mask protection network
(MMPN) [Chen et al., 2023] utilizes a dual-stream multi-
scale feature fusion module to fuse input images and their
masked data. To improve the interpretability, deep intrinsic
supervision pansharpening network (DISPNet) [Wang et al.,
2024] incorporates spatial consistency and spectral projection
priors into the formulated variational minimization model. In
addition, there are many other effective methods by introduc-
ing diverse techniques [Duan et al., 2024; Xing et al., 2024;
He et al., 2025].

Although great success has been achieved by previous
single-branch or dual-branch networks, cross-modal feature
fusion and similarity guidance between fusion image and in-
put images are not well taken into consideration. To handle
these issues, we will introduce our proposed method in detail.

3 Methodology
Figure 3 illustrates the overall structure of S3FNet. The pro-
posed network mainly consists of three parts, including a
shallow feature extraction (SFE) layer, a multi-branch asym-
metric encoder and a multi-scale reconstruction decoder with

the well-designed cross-feature multi-head attention fusion
block (CMAFB). The proposed network is trained using a
similarity-constrained loss to enhance image fusion.

3.1 Shallow Feature Extraction Layer
To ensure the consistent feature map size, we first repli-
cate the PAN image P ∈ RH×W C times along the spec-
tral dimension, resulting in Prepeat ∈ RH×W×C . Then,
we perform bicubic interpolation on the MS image MS ∈
R

H
4 ×W

4 ×C to obtain MS×4 ∈ RH×W×C . Both prepro-
cessed images are input to the shallow feature extraction layer
consisting of four cascaded Transformer blocks [Zamir et al.,
2022], yielding spatial features X1 ∈ RH×W×S from Prepeat

and spectral features Y1 ∈ RH×W×S from MS×4. Be-
sides, we concatenate Prepeat and MS×4 to produce the ini-
tial fused features F1 via a convolutional layer. The shallow
feature extraction layer is designed to capture initial spatial,
spectral and fusion features from PAN and LRMS images.
They are served as input for the subsequent encoder-decoder
network to enable further feature extraction and fusion.

3.2 Multi-Branch Asymmetric Encoder
Unlike existing single-branch or dual-branch structures, the
multi-branch asymmetric encoder adopts a three-branch de-
sign, consisting of a spatial branch, a spectral branch and a fu-
sion branch. Each branch is specifically tailored with distinct
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designs to learn high-level spatial, spectral and fused features
at different scales for high-quality image fusion.
Spatial Branch. The spatial branch takes X1 as input and
enhances spatial features X2 and X3 through a cascaded
process using a combination of ResNet block (ResBlock)
[Szegedy et al., 2017], spatial attention block (SpaAttBlock),
and downsampling operation. The ResBlock focuses on lo-
cal feature extraction, the SpaAttBlock emphasizes important
local features across regions, and the downsampling opera-
tion reduces spatial resolution. The process for learning the
enhanced spatial features is as follows:

Xn = Down(SA(ResBlock(Xn−1))), (1)
where n represents the stage index (n ∈ {2, 3}). ResBlock(·)
denotes the ResBlock, comprising two 3 × 3 convolutional
layers followed by a leaky ReLU activation function. SA(·)
represents the SpaAttBlock, composing two parallel pool-
ing operations to aggregate channel information, followed by
a 3 × 3 convolutional layer and a sigmoid activation func-
tion. Input features of the SpaAttBlock are processed through
element-wise multiplication with attention features, followed
by element-wise addition. Down(·) represents the downsam-
pling operation, involving a 2 × 2 kernel with stride 2 and
a depth-wise convolutional layer to increase the feature map
channels.
Spectral Branch. The spectral branch takes Y1 as input and
learns advanced spectral features Y2 and Y3 through a cas-
caded process using a combination of ResBlock, spectral at-
tention block (SpeAttBlock) [Woo et al., 2018] and down-
sampling operation. The ResBlock and downsampling oper-
ation are the same as those in the spatial branch, while the
SpeAttBlock highlights key features by learning the impor-
tance of each spectral channel. The process for learning ad-
vanced spectral features is as follows:

Yn = Down(CA(ResBlock(Yn−1))), (2)
where CA(·) represents the SpeAttBlock, comprising two
parallel pooling operations to aggregate spatial information
and generate spatial context descriptors, followed by two
multi-layer perceptrons (MLPs) with 1 × 1 convolution and
ReLU activation function, and a sigmoid activation function
to obtain attention features. The input features of the SpeAt-
tBlock are combined with attention features through element-
wise multiplication and addition.
Fusion Branch. The fusion branch takes F1 as input and
learns complex fusion features F2 and F3 in a cascaded man-
ner using a combination of two Transformer blocks and a
downsampling operation. The Transformer block is the same
as in the shallow feature extraction layer, while the down-
sampling operation mirrors those in the spatial and spectral
branches. The process for learning fusion features is as fol-
lows:

Fn = Down(TB(TB(Fn−1))), (3)
where TB(·) represents the Transformer block. The use of
the Transformer block is motivated by its self-attention mech-
anism, enabling global feature extraction. This mechanism
allows the model to capture long-range dependencies and re-
lationships between different parts of input data, enhancing
its ability to understand complex patterns.

Figure 4: Structure of CMAFB. It takes the features generated by
the three branches in the encoder as input and produces fused fea-
tures using spatial cross-attention (SpaCA), spectral cross-attention
(SpeCA) mechanisms, and a locally-enhanced feed-forward layer
(LeFF).

3.3 Multi-Scale Reconstruction Decoder

To facilitate cross-modal image fusion, the outputs from the
three branches of the encoder are fed into a multi-scale recon-
struction decoder. This decoder consists of three stages. Each
stage contains one upsampling operation (except for the first
stage) and a multi-head attention fusion block (CMAFB). In
each stage, the spatial and spectral features extracted from the
corresponding branches, along with the fused features from
the previous stage, are input to the CMAFB. The resulting
features are then added to the skip-connected fusion features
from the encoder (F3, F2, and F1) to generate the fused fea-
tures for the next stage (F4, F5, and F6). Finally, F4 and F5

are upsampled to the spatial resolution of F6, and all three
are concatenated and processed by a convolutional layer. The
output is added to the MS×4 to produce the final fused result
M̂S, as follows:

M̂S = Conv
(
Concat(Up(F4),Up(F5), F6)

)
+MS×4, (4)

where Up(·) denotes the upsampling operation used to align
the spatial dimensions of feature maps at different scales.

3.4 Cross-Feature Multi-Head Attention Fusion

Unlike traditional fusion strategies that directly concatenate
features, as illustrated in Figure 4, the CMAFB incorporates
spatial cross-attention (SpaCA) and spectral cross-attention
(SpeCA) mechanisms to enhance the cross-modal fusion
of shallow and deep features by highlighting their distinc-
tions. Specifically, the SpaCA focuses on the differences be-
tween spatial and fusion features along the spatial dimension,
while the SpeCA emphasizes the differences between spec-
tral and fusion features along the spectral dimension. For
each CMAFB, spatial, spectral and fusion feature maps of
corresponding scale are taken as inputs. For simplicity, we
ignore the subscripts of these feature maps and reshape them
to matrix representations. Then, they are linearly mapped to
the query Q and key K1 in the speCA, and to the key K2 and
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value V in the SpaCA as follows:

V = WV X, (5)
Q = WQY, (6)

K1 = WK1F, (7)

K2 = WK2F, (8)

where WQ, WV , WK1 and WK2 are learnable parameters in
the linear mapping layer. Subsequently, K1, K2, Q and V
are divided into m heads based on S channels of the features
processed in the current stage. The dimension of each head
is d = S/m. For simplicity, the operations of splitting and
merging the multiple heads are omitted in the figure. Thus,
the calculation of the spatial and spectral attention matrices
of the j-th head, Aspa

j and Aspe
j , is as follows:

Aspa
j = Softmax

(
K1

j · (Vj)
T√

(d)2

)
, (9)

Aspe
j = Softmax

 (Qj)
T ·K2

j√
(d)3

HW

 , (10)

where (·)T denotes the matrix transpose operation.
After obtaining Aspe

j and Aspa
j , we perform matrix multi-

plication between them and Vj from spatial features and Qj

from spectral features, respectively. This results in the fusion
output of the j-th head, headj , combining both spatial and
spectral information. The specific calculation is as follows:

headj =
(
Vj ·Aspe

j

)
·
(
Aspa

j ·Qj

)
. (11)

Subsequently, headj from different heads are concatenated
along the channel dimension to form the final fusion out-
put Head via the cross-attention mechanism. This fusion
features integrate spatial and spectral information while em-
ploying attention mechanisms to capture long-range depen-
dencies.

Followed by the cross-attention mechanisms, a locally-
enhanced feed-forward (LeFF) network layer [Wang et al.,
2022] is introduced. It consists of a 1 × 1 convolution to in-
crease the number of channels, a 3×3 convolution to capture
local information, and another 1 × 1 convolution to reduce
the number of channels. This design strengthens the repre-
sentation of local information. The final fusion features Fn

are derived as follows:

F ′ = LN(Head+ Fn−1), (12)

Fn = LN(LeFF(F ′) + F ′), (13)

where LN(·) represents layer normalization, and LeFF(·) de-
notes the locally-enhanced feed-forward layer. This process
integrates spatial and spectral details through cross-attention
mechanisms and local feature enhancements, resulting in
generating the final fusion features.

3.5 Loss Function
Overall Loss. To achieve better fusion, we incorporate the
similarity constraint into our loss function, i.e.,

Ltotal = L1 + αLsim, (14)

where L1 = ∥GT − M̂S∥1 measures the ℓ1 loss between
the GT and reconstructed fusion images, and Lsim represents
the multi-scale spatial-spectral similarity-constrained loss by
imposing constraints on the correlations between the fused
features and both the spatial and spectral features at different
scales. α is a hyperparameter that balances the two loss terms.
Multi-Scale Spatial-Spectral Similarity-constrained Loss.
To ensure the fusion image is closer to the GT image, simi-
larity constraints from both spatial and spectral perspectives
should be incorporated into the pansharpening process. In-
spired by [Zhao et al., 2023], we design a multi-scale spatial-
spectral similarity-constrained loss based on spatial and spec-
tral correlations between intermediate features from the spa-
tial, spectral and fusion branches at different scales. Mea-
sured by the Spearman correlation coefficient, this loss en-
sures the fusion image maintains high spectral and spatial
correlations with the GT image. It is formulated as follows:

Lsim =
1

3

3∑
i=1

(
β

CCspa
i

+
1− β

CCspe
i

)
, (15)

where β is a parameter to control the ratio of spatial and spec-
tral similarities. CCspa

i and CCspe
i denote the spatial and

spectral correlation coefficients at the i-th scale, respectively.
Spatial and Spectral Correlation Coefficients. Spatial
correlation is calculated to measure the correlation between
the fused and spatial feature maps in the spatial dimension. It
is formulated as:

CCspa
i =

∑Si

s=1 Spearman(Xs
i , F

s
i )

Si
, (16)

where Spearman(·) calculates the Spearman correlation co-
efficient, and Si denotes the number of spectral channels at
the i-th scale. Xs

i and F s
i represent the s-th spectral chan-

nel of features Xi and Fi, respectively. Before calculating
the Spearman correlation coefficient, they are flattened along
the spatial positions of the pixels. Similarly, spectral correla-
tion is computed to quantify the correlation between the fused
and spectral feature maps in the spectral dimension. It is rep-
resented as:

CCspe
i =

∑HiWi

j=1 Spearman(Y j
i , F

j
i )

HiWi
, (17)

where Hi and Wi represent the height and width of features
Yi and Fi at the i-th scale, respectively. Y j

i and F j
i denote

the j-th pixel of features Yi and Fi, respectively.

4 Experiments
4.1 Experimental Setup
Datasets. Three datasets used in this study were obtained
from the PanCollection repository [Deng et al., 2022], in-
cluding data from the WorldView-3 (WV3), GaoFen-2 (GF2),
WorldView-2 (WV2) satellites. Both reduced-resolution and
full-resolution datasets are adopted for experiments. The
reduced-resolution data is synthesized using Wald’s protocol,
where LRMS and PAN images are downsampled by a factor
of 4, with the original LRMS images serving as the ground
truth.
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Method WorldView-3 GaoFen-2 WorldView-2
SAM↓ ERGAS↓ Q8↑ SCC↑ SAM↓ ERGAS↓ Q4↑ SCC↑ SAM↓ ERGAS↓ Q8↑ SCC↑

BT-H 4.8985 4.5150 0.8182 0.9240 1.6810 1.5524 0.9089 0.9508 12.4846 9.1758 0.5882 0.7694
MTF-GLP-FS 5.3233 4.6452 0.8177 0.8984 1.6757 1.6023 0.8914 0.9390 12.7166 9.2195 0.5840 0.7505

BDSD-PC 5.4675 4.6549 0.8117 0.9049 1.7110 1.7025 0.9932 0.9448 12.9399 9.1165 0.5971 0.7631
PNN 3.6798 2.6819 0.8929 0.9761 1.0480 1.0570 0.9600 0.9772 7.1158 5.6152 0.7619 0.8782

DiCNN 3.5929 2.6733 0.9004 0.9763 1.0525 1.0812 0.9594 0.9771 6.9216 6.2507 0.7205 0.8552
MSDCNN 3.7773 2.7608 0.8900 0.9741 1.0472 1.0413 0.9612 0.9782 6.0064 4.7438 0.8241 0.8972

BDPN 4.1646 3.0871 0.8581 0.9577 1.4158 1.4493 0.9255 0.9532 7.0934 4.8568 0.8235 0.9033
FusionNet 3.3252 2.4666 0.9044 0.9807 0.9735 0.9878 0.9641 0.9806 6.4257 5.1363 0.7961 0.8746
LAGNet 3.1117 2.3091 0.9102 0.9838 0.7859 0.6869 0.9804 0.9906 6.9545 5.3262 0.8054 0.9125
BiMPan 3.0141 2.2808 0.9145 0.9843 0.8871 0.8062 0.9728 0.9886 5.7496 4.5111 0.8271 0.9127

Pan-Mamba 2.8444 2.1937 0.9179 0.9855 0.7503 0.7053 0.9806 0.9890 6.0743 5.5888 0.8357 0.8672
Ours 2.8194 2.1591 0.9192 0.9860 0.6605 0.6107 0.9841 0.9917 5.1873 4.0493 0.8490 0.9282

Table 1: Quantitative comparison of different methods on reduced-resolution data. The best results are marked in bold. ↑ indicates that higher
values correspond to better performance, while ↓ signifies the opposite.

Method WorldView-3 GaoFen-2 WorldView-2
Dλ↓ Ds↓ QNR↑ Dλ↓ Ds↓ QNR↑ Dλ↓ Ds↓ QNR↑

BT-H 0.0574 0.0810 0.8670 0.0602 0.1313 0.8165 0.0786 0.0858 0.8428
MTF-GLP-FS 0.0354 0.0630 0.9043 0.0336 0.1404 0.8309 0.0325 0.0756 0.8948

BDSD-PC 0.0625 0.0730 0.8698 0.0759 0.1548 0.7812 0.1429 0.0386 0.8242
PNN 0.0213 0.0428 0.9369 0.0367 0.0943 0.8726 0.1484 0.0771 0.7869

DiCNN 0.0362 0.0462 0.9195 0.0413 0.0992 0.8636 0.1412 0.1023 0.7700
MSDCNN 0.0230 0.0467 0.9316 0.0269 0.0730 0.9020 0.0589 0.0290 0.9143

BDPN 0.0395 0.0459 0.9168 0.0326 0.0701 0.8994 0.1117 0.0328 0.8606
FusionNet 0.0239 0.0364 0.9406 0.0400 0.1013 0.8628 0.0519 0.0559 0.8948
LAGNet 0.0368 0.0418 0.9230 0.0324 0.0792 0.8910 0.1302 0.0547 0.8229
BiMPan 0.0196 0.0340 0.9467 0.0296 0.0528 0.9192 0.0468 0.0300 0.9247

Pan-Mamba 0.0226 0.0358 0.9425 0.0192 0.0364 0.9451 0.0436 0.0633 0.8956
Ours 0.0175 0.0310 0.9520 0.0186 0.0147 0.9669 0.0403 0.0319 0.9292

Table 2: Quantitative comparison of different methods on full-resolution data. The best results are marked in bold. ↑ indicates that higher
values correspond to better performance, while ↓ signifies the opposite.

Compared Methods. To evaluate the proposed method,
several state-of-the-art pansharpening methods are used
for comparison, including three traditional methods (BT-H
[Aiazzi et al., 2006], MTF-GLP-FS [Vivone et al., 2018],
and BDSD-PC [Vivone, 2019]) and eight deep learning meth-
ods (PNN [Masi et al., 2016], MSDCNN [Wei et al., 2017],
DiCNN [He et al., 2019], BDPN [Zhang et al., 2019], Fusion-
Net [Deng et al., 2020], LAGNet [Jin et al., 2022] , BiMPan
[Hou et al., 2023] and Pan-Mamba [He et al., 2025]).

Evaluation Metrics. To evaluate the quality of the fused
images, the spectral angle mapper (SAM), relative global
dimensional synthesis error (ERGAS), Q4/Q8 metrics, and
structural content correlation (SCC) are employed for the
reduced-resolution datasets. For the full-resolution datasets,
Dλ, Ds, and quality with no reference (QNR) are adopted.
Details of these metrics can be found in [Lu et al., 2023].

Implementation Details. Our model was implemented us-
ing PyTorch on a mahine with Nvidia 4090 GPU. The Adam
optimizer is used for network training over 300 epochs with
a batch size of 16. The initial learning rate is set to 0.001 and
halved every 100 epochs. For the loss function, α = 0.001
and β = 0.5, with α decaying during training. For the shal-
low feature extraction layer, the output channels are set to
S = 32 for the three datasets. Additionally, C = 8 for the
WV3 and WV2 datasets, and C = 4 for the GF2 dataset. For

BiMPan and Pan-Mamba, we use the default settings from
their released code. For other deep learning methods, we
adopt the settings specified in [Deng et al., 2022].

4.2 Experimental Results
Comparison on Reduced-Resolution Data. The quanti-
tative results of different methods on reduced-resolution
datasets are presented in Table 1. The three traditional meth-
ods exhibit limited performance because they heavily rely on
hand-crafted features. In contrast, the deep learning-based
methods significantly outperform traditional methods owing
to their superior feature extraction capabilities. Compared to
other methods, our S3FNet shows the best performance on
reduced-resolution datasets, verifying its effectiveness in pan-
sharpening tasks. Additionally, the visual results on a sample
from the WV3 dataset are displayed in Figure 5. It is obvious
that our S3FNet obtains the fusion image most similar to the
GT image. The absolute error maps show that S3FNet has
notably fewer residuals than other methods.

Comparison on Full-Resolution Data. To further verify
the generalization ability of our S3FNet, experiments on full-
resolution datasets are conducted, and the quantitative results
are presented in Table 2. Experimental reults demonstrate
that our S3FNet also achieves the best performance among
all compared methods on full-resolution datasets to produce
fusion images with low spectral and spatial distortion. This
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Figure 5: Visual comparison of different methods on a reduced-resolution sample from the WV3 dataset. The mean square error residuals
between the fused and GT images are displayed in the last row.

Setting MB CMAFB Lsim SAM↓ ERGAS↓ Q8↑ SCC↑
(I) × × × 3.7070 2.863 0.899 0.9698
(II)

√
× × 2.8440 2.188 0.918 0.9857

(III)
√ √

× 2.8266 2.165 0.918 0.9859
Ours

√ √ √
2.8194 2.159 0.919 0.9860

Table 3: Ablation study on the WV3 dataset.

indicates its practicality and adaptability for remote sensing
image fusion.

4.3 Ablation Study
To validate the effectiveness of key components in S3FNet,
ablation study is conducted on the WV3 dataset with three de-
graded variants. Specifically, the multi-branch (MB) encoder
can be replaced with a dual-branch structure, the CMAFB in
the decoder can be replaced with a standard convolution, and
the similarity-constrained loss can be included or excluded.
The corresponding results are shown in Table 3. Setting (I)
shows the worst results because no key components are in-
cluded. By introducing the multi-branch encoder, setting (II)
outperforms setting (I) due to more effective feature process-
ing across different branches. By retaining the CMAFB, set-
ting (III) is superior to setting (II) because of more effective
cross-modal feature fusion. Finally, our S3FNet, with the
multi-branch encoder, CMAFB and similarity-constrained
loss, outperforms other degraded settings. These results con-
firm the effectiveness of the design in S3FNet.

4.4 Parameter Study
In S3FNet, α controls the impact of the similarity-constrained
loss, while β adjusts the balance between spatial and spectral
similarities. To investigate the effect of different parameter
settings, α is varied over {0.0001, 0.001, 0.01, 0.1, 1, 10}
with β fixed at its default value of 0.5. Conversely, β is var-
ied from 0.1 to 0.9 in increments of 0.1 with α fixed at its

Figure 6: Quantitative results for different parameter settings on the
WV3 dataset. (a) Effect of α. (b) Effect of β.

default value of 0.001. The quantitative results for different
parameter settings are reported in Figure 6. When α is set
too large, the two loss terms become unbalanced in magni-
tude. With α = 0.001 and β = 0.5 as default values, S3FNet
achieves superior performance.

5 Conclusion

In this work, we proposed a spatial-spectral similarity-guided
fusion network named S3FNet for pansharpening. The
S3FNet is designed with a multi-branch architecture. Specif-
ically, the multi-branch structure is implemented in the en-
coder to generate high-level spatial, spectral and fusion fea-
tures from the initial features of input images obtained by the
shallow feature extraction layer. Driven by the well-designed
cross-feature multi-head attention fusion block, the decoder
reconstructs the fused images by incorporating spatial and
spectral details at different scales. The proposed network
is trained using a similarity-constrained loss to ensure high-
quality image fusion. Extensive experiments on three satel-
lite datasets verify the effectiveness of the proposed method
against state-of-the-art methods.
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