Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

QiMeng-TensorOp: One-Line Prompt is Enough for High-Performance Tensor
Operator Generation with Hardware Primitives

Xuzhi Zhang!?, Shaohui Peng', Qirui Zhou??, Yuanbo Wen?, Qi Guo??3,
Ruizhi Chen', Xinguo Zhu'?, Weigiang Xiong'?, Haixin Chen*?, Congying Ma'*,
Ke Gao', Chen Zhao'!, Yanjun Wu'!?®, Yunji Chen?? and Ling Li'>*
"nstitute of Software Chinese Academy of Sciences
Institute of Computing Technology, Chinese Academy of Sciences
3University of Chinese Academy of Sciences
4Peking University
{zhangxuzhi2023, pengshaohui, ruizhi, gaoke, zhaochen, yanjun, liling} @iscas.ac.cn, {zhuxinguo23,

xiongweiqiang20, chenhaixin24 } @mails.ucas.ac.cn, {zhouqirui22s, guoqi, cyj } @ict.ac.cn,
wenyb@mail.ustc.edu.cn, 2100013182 @stu.pku.edu.cn

Abstract

Computation-intensive tensor operators constitute
over 90% of the computations in Large Lan-
guage Models (LLMs) and Deep Neural Networks.
Automatically and efficiently generating high-
performance tensor operators with hardware prim-
itives is crucial for diverse and ever-evolving hard-
ware architectures like RISC-V, ARM, and GPUs,
as manually optimized implementation takes at
least months and lacks portability. LLMs excel
at generating high-level language codes, but they
struggle to fully comprehend hardware character-
istics and produce high-performance tensor opera-
tors.

We introduce a tensor-operator auto-generation
framework with a one-line user prompt (QiMeng-
TensorOp), which enables LLMs to automatically
exploit hardware characteristics to generate tensor
operators with hardware primitives, and tune pa-
rameters for optimal performance across diverse
hardware. Experimental results on various hard-
ware platforms, SOTA LLMs, and typical tensor
operators demonstrate that QiMeng-TensorOp ef-
fectively unleashes the computing capability of var-
ious hardware platforms, and automatically gen-
erates tensor operators of superior performance.
Compared with vanilla LLMs, QiMeng-TensorOp
achieves up to 1291 x performance improvement.
Even compared with human experts, QiMeng-
TensorOp could reach 251% of OpenBLAS on
RISC-V CPUs, and 124% of cuBLAS on NVIDIA
GPUs. Additionally, QiMeng-TensorOp also sig-
nificantly reduces development costs by 200x
compared with human experts.

1 Introduction

Tensor operators, like General Matrix Multiplication
(GEMM) and Convolution (Conv) [Chen et al., 2018b], are
critical in various mathematical and computational fields, es-
pecially in deep learning, as they constitute over 90% of the
computations in LLMs and Deep Neural Networks(DNNs)
[Sze et al., 2017; Kim et al., 2024]. The significance and
unique computational requirements of tensor operators have
driven heterogeneity and complexity in hardware design,
such as Tensor Core in NVIDIA GPU [Markidis et al., 2018],
RISC-V vector extension (RVV), and deep learning acceler-
ators like Google TPU [Jouppi et al., 2017] and Cambricon
[Liu et al., 2016].

Implementing tensor operators with hardware primitives
(such as assembly instructions for CPU and hardware intrin-
sic for CUDA Tensor core) is the only way to fully maximize
hardware performance [Xiao et al., 2021; Liu et al., 2022;
Igual et al., 2023; Guillermo et al., 2024; Castell6 et al.,
2024; Wu ef al., 2024]. Hardware primitives provide pro-
grammers with precise control over hardware resources (in-
cluding computing units, registers, memory, etc.), thereby en-
abling exceptional performance [Zhai et al., 2024]. For in-
stance, an assembly implementation of GEMM can yield over
62,000x performance improvement compared to the vanilla
Python implementation [Hennessy and Patterson, 2019].

However, designing high-performance tensor operators
with hardware primitives is challenging, as it requires a deep
comprehension of hardware architectures. Besides, it is intri-
cate and often results in low efficiency and high error rates.
Existing tensor operators are mainly implemented with two
paradigms, manually optimized libraries and auto-compilers.
Manually optimized libraries provided by hardware vendors,
such as MKL(Intel Math Kernel Library) [Krainiuk er al.,
2021] and ACL(Arm Compute Library) for CPUs, cuBLAS
and cuDNN for GPUs, are developed by human experts us-
ing hardware primitives and specific optimizations for vari-
ous platforms. This process is time-consuming, often taking

*Corresponding author

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

OpenBLAS ACL cuBLAS

LK
@ - @

(a) Manually optimized libraries provided by Hardware vendors.

Vanilla Prompt: Generate a GEMM code on RISC-V C910.

@ c[m*M-n] += A[m*M-+k]*B[k*N+n] 2.04%
OpenBLAS

LLMs
(b) Vanilla prompt only can generate hardware-independent C code.

CoT Prompt: Generate a GEMM code on RISC-V C910 .
#Hardware: 12-stages pipelne; L1 cache...
#Optimization: Tiling; Reordering; Vector...

Please think step by step.

@ packing AM, K, &A[...], Ida, pA); 3.67%
LLMs micro_kernel(M, N, K, pA, pB, &C[...], Idc); OpenBLAS

(c) CoT Prompt only can generates C code with simple tiling.

jog=

High Cost and
Expert igh Cost an

No Portability

User Input:
Generate a 1024x1024x1024 GEMM code on RISC-V C910.

(1)...extract hardware factors from C910 manuals.

|

@ 4[...L2 cache IMB, INST: vfmacc.vv. ...

LLMs (2)...generate assembly code from python scripts. ..

4 vsetvli t0, zero, €32, m1, ta, ma }

(3) ...tuning the code to optimize performance...

4 ...(optimized code) ... }

(d) QiMeng-TensorOp generates Assembly-level optimized code.

Figure 1: Comparison of tensor operator optimization paradigms

months to optimize tensor operators, and these libraries also
lack portability across different platforms. Auto-compilers,
such as Halide [Ragan et al., 2013], TVM [Chen et al.,
2018al, and Ansor [Zheng et al., 2020; Shao et al., 2022;
Bi er al., 2023; Zhai et al., 2023; Zhai et al., 2024], ex-
plore a vast program space to generate efficient tensor op-
erators. However, they still require human experts to manu-
ally define hardware-specific rules and backend implemen-
tations to optimize and deploy tensor operations. Despite
alleviating certain manual labor, they necessitate significant
expertise and involve high development costs, as exempli-
fied by the arduous challenge of deploying compilers such
as TVM(Tensor Virtual Machine) on RISC-V CPUs [Chen et
al., 2020b].Consequently, existing paradigms struggle with
development cost and portability, making them insufficient to
keep up with rapid hardware advancements.

LLMs (GPT-40 [OpenAl, 2025], DeepSeek-
V3 [DeepSeek-Al et al, 2024]) have achieved re-
markable progress in code generations, making natural
language to code (NL2Code) one of the most popu-
lar paradigms [Austin er al, 2021; Zan et al., 2022;
Athiwaratkun et al., 2022] However, existing LLM-based
code generation researches [Lu er al., 2022; Li et al., 2023;
Roziere et al., 2023; Gunasekar ef al., 2023] mainly focus
on high-level language code generation, and are incapable of
hardware-primitive-level code generation. LLMs yet struggle
to fully comprehend hardware characteristics and correctly
manipulate hardware resources to implement and optimize

assembly code, let alone high-performance tensor operator
generation with simple prompts.

In summary, we observe two major challenges for LLMs in
automatically generating hardware-primitive-level tensor op-
erators. The first challenge is enabling LLMs to comprehend
hardware architectures and accurately utilize hardware prim-
itives to implement tensor operators. The second challenge is
optimizing the performance of the generated tensor operators
through hardware intrinsic optimization techniques.

To address the challenges, we propose the QiMeng-
TensorOp framework that automatically generates high-
performance tensor operators with hardware primitives on
various platforms. QiMeng-TensorOp only needs a one-
sentence prompt from user, which describes the target ten-
sor operator and hardware, as shown in Figure 1. QiMeng-
TensorOp uses general hints to trigger LLMs to comprehend
hardware optimization and auto-extract target hardware fac-
tors. Then it leverages LLMs and extracted factors to generate
sketch and kernel codes with hardware primitives for target
operators. Finally, it exploits LLMs’ in-context learning via
MCTS to uncover the optimization opportunities for gener-
ated codes. In short, QiMeng-TensorOp effectively harnesses
LLMs’ knowledge and capabilities to comprehend and ap-
ply optimization techniques on various hardware platforms,
enabling efficient auto-generation and tuning of tensor oper-
ators with hardware primitives.

To our knowledge, we are the first to automatically gener-
ate high-performance tensor operators with hardware primi-
tives by exploiting LLMs. Our key contributions are:

* We propose a framework for automatically generating
tensor operators at the hardware primitive level across
various platforms, requiring only a single sentence from
users to describe the target operator and hardware.

We develop general hardware intrinsic optimization
hints and workflow to help LLMs comprehend hardware
and optimization techniques, allowing to automatically
extract information from manuals to generate tensor op-
erators with hardware primitives.

We design an LLM-assisted MCTS algorithm that effec-
tively enhances the efficiency and performance of tuning
primitive-level tensor operators on specific hardware.

Extensive evaluations across diverse hardware platforms
and tensor operators (GEMM and Conv) of various
dimensions demonstrate QiMeng-TensorOp significant
performance promotion (up to 1291 x of vanilla prompt
and up to 251% than manually optimized libraries) and
development cost reduction (200x than senior coder).

2 Preliminary

2.1 Tensor Operator

GEMM and Conv, the most important tensor operators, are
computation-intensive.
GEMM refers to the multiplication of two dense matrices,
A€ R™** and B € R*" as (AB);; = Y.k_; Aiq - Byj.
Conv slides a filter (K) on an input (X), and calculates
element-wise dot product, Y (i, j) = S M1 Zg;ol X+

m=0

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

m,j +n) - K(m,n). Conv is commonly implemented by
converting the input and filter tensors into 2D matrices with
Image-to-Column and then calling GEMM in BLAS libraries.

2.2 Optimization Techniques

The optimization techniques for tensor operators can be es-
sentially classified into several fundamental operations across
hardware architectures.

Tiling (T) decomposes a matrix into smaller blocks to im-
prove memory access [Faingnaert et al., 2021].

Reordering (R) exchanges a for-loops to boost memory
access efficiency [Anam et al., 2013].

Vectorization (V) packs matrix data to use vector instruc-
tions for computation and memory access [Katel et al., 2021].

Layout (L) rearranges matrix data to better fit the hard-
ware’s memory access patterns [Kurzak er al., 2012].

Pipeline (P) overlaps the computation and memory access
to minimize the memory access latency [Tan ef al., 2011].

The five optimization techniques vary in implementation
challenge [Feng et al., 2023]. Vectorization, Layout, and
Pipeline need hardware primitives for specialized data move-
ment and computation, while Tiling and Reordering involve
designing high-level task and data allocation strategies to fit
hardware characteristics.

2.3 Hardware Factors

We summarize four key hardware factors essentially impact-
ing the implementation and optimization of tensor operators.

Memory Hierarchy (MH) refers to how hardware or-
ganizes and manages different levels of memory, such as
L1/L2/L3 cache structures of CPUs [Wu et al., 2021] and the
global/shared memory of NVIDIA GPUs [Dally ef al., 2021].
Memory Hierarchy is crucial for efficient memory access and
optimizations like Tiling and Reordering.

Instructions (INST) are the basic operation units of com-
putation and data movement, such as the RVV instructions in
the RISC-V architecture, NEON(ARM’s SIMD) instructions
in the ARM architecture, and CUDA Templates (CuTe) of
NVIDIA GPU Tensor Cores. Instructions determine the hard-
ware primitives for tensor operator implementation [Xiao et
al., 2021], and optimization techniques like Vectorization.

Vector/Scalar Registers of CPUs ((V)R) refers to the
number and width of tensor/scalar registers. They are cru-
cial for data movement and computation efficiency in tensor
operators, affecting the generation of vector instructions and
the granularity of Pipeline optimizations.

Streaming Processor Information of GPUs (SMs) in-
cludes the number of SMs, and the number of CUDA Cores
and Tensor Cores within each SM [Choquette er al., 2021]. Tt
determines the grid and block dimension task allocation and
data tiling when generating CUDA kernels.

3 Method

In this section, we introduce the QiMeng-TensorOp frame-
work. It enables LLMs to comprehend hardware architec-
tures, auto-generate high-performance tensor operators with
hardware primitives, and optimize the generated code via
MCTS. As depicted in Figure 2, it requires just a one-line
user prompt and comprises three key components (a detaled).

3.1 Hardware Architecture Comprehending

The Hardware Architecture Comprehending consists of two
parts. The Hardware Intrinsic Optimization Hints activate
LLMs’ comprehension of hardware and optimization, guid-
ing subsequent generation, while the Hardware Factor Ex-
traction leverages target hardware characteristics to further
implement cross-platform optimization automation.

Hardware Intrinsic Optimization Hints. These hints
serve as the background knowledge for LLMs to automati-
cally conduct hardware factor extraction and tensor operator
generation. As in Figure 2, we summarize the description of
five general tensor operator optimization primitives and their
relationship with four key hardware factors (as described in
Section 2.3). For example, the cache hierarchy of CPUs de-
termines the tiling size of the matrix dimensions to ensure the
locality of input data, thereby improving memory access effi-
ciency. For GPUs, the information of SMs determines the size
of grid-dimension and block-dimension for the matrix com-
putation to be allocated, thus enhancing the computational
efficiency of the CUDA kernel. The optimization hints are
described with nature language, and thus developers can add
knowledge to enable more hardware characteristics and opti-
mization techniques conveniently.

Hardware Factor Extraction. Hardware Factor Extrac-
tion takes users’ prompt of tensor operator type and the target
hardware name as input, and then efficiently retrieve infor-
mation about the hardware factors of target hardware from
the pre-collected set of manuals or those provided by the
user (optional). As depicted in Figure 2, hardware factors of
RISC-V C910 include the cache levels and size, the type and
usage of vector computation instructions, and so on. Based on
retrieved hardware factors, the subsequent process can gener-
ate targeted tensor operator implementation.

3.2 Tensor Operator Generation

This component generates hardware-primitive-level tensor
operators with proper optimization techniques. Considering
the different implementation challenges of optimization tech-
niques, Vectorization, Pipeline require hardware primitives
for optimized data movement and computation, while Tiling,
Reordering and Layout involve task and data allocation strate-
gies to match target hardware. Thus, Tensor Operator Gen-
eration consists of Sketch Generation and Kernel Generation
with Hardware Primitives as shown in Figure 2.

Sketch Generation. Sketch Generation leverages LLMs to
generate the main function (C for CPU, CUDA C++ for GPU)
of tensor operators with task and data allocation optimization
for better memory access efficiency. It reserves indivisible
computation or data movement as kernel calls (e.g., PACK
and COMPUTE for CPUs) to subsequent hardware-primitive-
level generation. The prompt delineates basic sketch struc-
tures and optimization techniques, including Tiling, Reorder-
ing, and Layout. For CPUs, the basic structure is a simple
three-level for-loop. Specifically for the C910 CPU, LLMs
utilize the prompt in conjunction with hardware factors and
optimization hints to generate the main function featuring
multi-level for-loops. This implementation enables schedul-
ing optimization tailored to the C910’s characteristics while
preserving PACK and COMPUTE kernels for subsequent

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

User Input: Generate a 1024x1024x1024 GEMM code on RISC-V C910.

Step 1: Hardware Architecture Comprehending

Hardware Intrinsic Optimization Hints Hardware Information Extraction

Hardware Factors:

Optimization %

techniques - EI - - EI Hardware manuals @ MH: L1 cache: 32KB...
INST: vfmacc.vv...

Hardware LLM VR: 32 128-bit Vector Regs...

factors

Step 2: Tensor Operator Generation
Sketch Generation

C code sketch

=64;
Generate a C code sketch:
* Structure: For-loops for (int i=0;i<M; i+=
* Optimization: Tiling+Reordeing+Layout @ E?)?\;(AS)TE (AB)
Hardware Factors LLM ?

!
s

Hardware Intrinsic Optimization Hints

Kernel Generation with Hardware Primitives - A bly kernel code
Python scripts PACK

for ¢ in range (0, nr) : .
vle32.v v0, (1) m

f.write(f'vle32.v CO{c}, (CO{c} _ptr)\n")
COMPUTE

Generate Python scripts for an assembly kernel

* Structure: Index variables + L/C/S

* Optimization: Pipeline+Vectorization @
Hardware Factors
Hardware Intrinsic Optimization Hints

* Few-shot Example

C code sketch
\

for“1.' in range (0, mr // vl) :
f.write(f"vfmace.vv C{r} {c}, ft{c}, A{r}\n")

vfmacc.vv v4, v2, v0...

Step 3: Auto-Tuning O @ o .~
o A

/ v

- @
C code sketch @ ‘ ~ y . &V }\ \&_\\
Assembly kernel code @ .\ _,‘ @ Sy

l ~ -
o, Backpropagation

1. Selection ~-7 2. Expansion 3. Simulation

Figure 2: QiMeng-TensorOp overview. The proposed framework takes a user’s one-sentence description as input and generates high-
performance tensor operators using hardware primitives via three automatic steps. Step 1 activates LLMs’ comprehension of tensor operator
optimization and extracts target hardware factors for subsequent generation. In Step 2, sketches and kernels are generated to form tensor
operators. Sketch generation uses optimizations such as tiling, and hardware-primitive-level kernels like PACK and COMPUTE employ
instruction-level optimization. In Step 3, Auto-Tuning uncovers subtle optimization opportunities and further enhances performance. (A

detailed showcase please refer to Appendix C.)

hardware-primitive-level optimization. For GPUs, LLMs
produce CUDA C++ code that defines grid and block dimen-
sions to efficiently allocate computational resources and exe-
cute CUDA kernels.

Kernel Generation with Hardware Primitives. LLMs
perform well in generating Python code, but they face chal-
lenges in generate functionally correct codes with hard-
ware primitives (e.g., CPU assembly instructions or GPU
PTX(Parallel Thread Execution)). Thus, we prompt LLMs
to generate Python scripts as bridge for kernels. The prompt
comprises sketch code, the description of kernel structure and
optimizations, few-shot examples, along with optimization-
related hints and target hardware information acquired in
Step 1. For instance, when generating a computation ker-
nel with Pipeline optimization for CPUs, the structure section
delineates vector register definitions and the layout of Load,
Compute, and Store instruction blocks. Along with the tar-
get C910 CPU information (the type and usage of assembly
INST, number and width of (V)R, etc.) in prompt, LLMs
write a Python script to print the assembly-level kernel im-
plementation. Conversely, for GPUs, LLMs write CuTe code
to implement CUDA kernels with PTX-level optimization,
aiming to fully exploit the Tensor Core’s peak performance.
To improve sketch parameter initialization for the subsequent

Auto-Tuning step and the correctness of assembly kernels,
they are jointly compiled and tested on the target hardware
to obtain feedback for refining sketches and Python scripts of
kernel generation.

3.3 Auto-Tuning

Auto-Tuning aims to optimize the sketch parameters and in-
struction orders to uncover subtle optimization opportunities
that are even hard to be identified by human experts. It inte-
grates MCTS with LLMs to tackle the shortage of semantic
priors for individual tuning actions and leverages search his-
tory to guide exploration for efficiency and performance.

The MCTS nodes represent the current implementation of
kernels and sketches. The search space encompasses sketch
parameters and the instruction order within kernels. Conse-
quently, there are two types of actions: 1) adjusting parame-
ters in the sketch, such as matrix tiling sizes, through addition
or subtraction; 2) reordering memory access or computation
independent within a single instruction block.

As shown in Figure 2, the process iterates 4 steps: 1). Se-
lection uses the UCB algorithm to identify a node for expan-
sion; 2). Expansion dynamically grows by utilizing LLMs
based on search history ; 3). Simulation tests the tensor op-
erator of the newly expanded node for initial performance; 4).

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Backpropagation updates node values and visit counts along
the path. The pseudo-code is provided in the Appendix B.

The LLMs-driven expansion comprises path history-
based tuning action selection and global history-based
tuning space generation. When reaching a node, take the
history tuning actions and performance feedback along the
path as context. LLMs are prompted to output the most valu-
able tuning action for expansion. For instance, LLMs tend to
select tuning parameters that have a greater impact on perfor-
mance in the path history, such as the tiling size of BN. After
expansion, LLMs take the tuning constraint description and
the performance feedback of all expanded actions in the tree
as context and output legal and potential candidate tuning ac-
tions for the new node. For example, if most nodes achieve
stable performance improvements when the tiling size granu-
larity increases by 32, LLMs tend to generate a similar gran-
ularity action space, {BN + 32, BM + 32,BK + 32,...}. In
summary, fine-tuning is challenging due to the lack of expert
priors. However, QiMeng-TensorOp enables LLMs to utilize
history trajectories for automatic reasoning and dynamic ad-
justment of search, thereby effectively enhancing efficiency
and performance.

4 Evaluation

4.1 Experiment Setup

To validate the performance of the tensor operators gener-
ated by QiMeng-TensorOp and assess the method’s generality
and efficiency, we conduct comprehensive evaluations across
three different hardware platforms, four distinct LLMs, and
two representative tensor operators with varied dimensions.
(Due to page limits, more results are shown in Appendix A.)
Hardware Platforms. QiMeng-TensorOp is tested on vari-
ous hardware, including different CPUs with diverse architec-
tures and capabilities (C906, C908, C910[Chen et al., 2020a]
and K1 of RISC-V, A76 and A72 of ARM, and NVIDIA GPU
RTX4060 with CUDA Core and A100 with Tensor Core).
LLMs. The overall performance of QiMeng-TensorOp is val-
idated with two SOTA LLMs: GPT-40[OpenAl, 2025] (pro-
prietary) and DeepSeek-V3 (DS-V3 for short) [DeepSeek-Al
et al., 2024] (open-source). Two additional LLMs including
Claude 3.5 Sonnet-20241022[Claude3.5, 2024] and Llama-
3.1-405B[Llama3.1, 20241, are used in ablation experiments.
Benchmarks. Experiments are conducted on representative
tensor operators (GEMM and Conv). Typical regular and ir-
regular GEMM dimensions in Llama7b[Touvron et al., 2023]
and Llama3 70b[Grattafiori et al., 2024] are included. Typical
Conv dimensions in classical CNNs, such as ResNet-50[He
et al., 2015], VGG-16[Simonyan and Zisserman, 2015] and
U-Net[Ronneberger et al., 2015], are included.

Comparison Baselines. QiMeng-TensorOp is compared
with vanilla prompt and CoT prompt [Wei et al., 2022].
Besides, manually optimized libraries (OpenBLAS[Xianyi
et al., 2012] for RISC-V CPUs, ACL / OpenBLAS for
ARM CPUs, cuBLAS[NVIDIA, 2023] / cuDNN for NVIDIA
GPUs), and commonly used auto-compilers (TVM [Chen et
al., 2018a] for ARM CPUs and NVIDIA GPUs !) are also
compared.

'"TVM lacks support for RISC-V CPUs.

4.2 Overall Performance

Table 1 show the performance of the GEMM operator gen-
erated by QiMeng-TensorOp on various hardware platforms.
Due to page limits, the results of the convolution operator
are shown in Appendix A. The performance is compared
with vanilla prompt, manually optimized libraries, and auto-
compiler. The results clearly show that QiMeng-TensorOp
enables LLMs to generate high-performance assembly-level
tensor operators across diverse platforms.

QiMeng-TensorOp outperforms LLMs with vanilla prompt
by several orders of magnitude (up to 1291x) on GPT-
40 and DeepSeek-V3 across various hardware platforms.
On CPUs, QiMeng-TensorOp surpasses most manually opti-
mized libraries. For instance, on the RISC-V CPUs, QiMeng-
TensorOp achieves up to 2.51x performance enhancement
over OpenBLAS, while on the ARM CPUs, it achieves at
most 1.21 x the performance of ACL. On GPUs, our method
significantly outperforms TVM (up to 1.38x for GEMM and
2.43x for Conv), and achieves comparable or higher perfor-
mance of cuBLAS and cuDNN in most dimensions (up to
1.24x for GEMM and 1.61x for Conv). We will present
the observations of the experiments in the following aspects:
LLMs, hardware platforms, and operator dimensions.

The Impact of LLMs: QiMeng-TensorOp consistently
yields high performance, whereas the vanilla prompt per-
forms poorly. QiMeng-TensorOp activates LLMs to auto-
matically generate sketch and hardware-primitive-level ker-
nels with high performance across LLMs. For example, on
C910 CPU, the performance disparity of QiMeng-TensorOp
using GPT-40 and DeepSeek-V3 is within 10%. In contrast,
the vanilla prompt can only enable LLMs to generate tensor
operators with high-level language (C code), but cannot ma-
nipulate hardware resources, thus yielding much lower per-
formance. Moreover, LLMs of vanilla prompt have obvi-
ous performance disparities. For instance, on C910 CPU, the
tensor operator generated by GPT-40 incorporates tiling op-
timization, while DeepSeek-V3 does not, resulting in a 3%
performance disparity.

The Impact of Hardware Platforms: QiMeng-
TensorOp achieves a more significant performance boost
on RISC-V CPUs than on ARM CPUs and GPUs. As an
open-source instruction set architecture, RISC-V CPUs fea-
ture a highly flexible and diverse set of instructions and ar-
chitectures. Thus, it poses significant challenges for manu-
ally optimized libraries. Besides, the official version of TVM
even lacks native support for RISC-V CPUs. For instance, on
C908, C910, and K1 CPUs, we obtain performance enhance-
ments of 1.10x, 2.32x, and 2.51x respectively in GEMM
operation compared with OpenBLAS. As commercial pro-
cessors, ARM and Nvidia hardware vendors have employed
human experts to manually optimize the BLAS libraries. Our
approach still yields competitive performance compared ACL
on ARM CPUs (1.02x to 1.21x), and cuBLAS on NVIDIA
GPUs (0.98 % to 1.24x). Compared with manually optimized
libraries, our approach can rapidly adapt to diverse architec-
tures, achieving high performance across all platforms.

The Impact of Operator Dimensions: QiMeng-
TensorOp outperforms auto-compilers and manually op-
timized libraries, especially on GEMM with larger or

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Hardware ‘ Method ‘ (m=k=n) ‘ (m. k,n)
‘ ‘ 512 1024 2048 4096 ‘ (512,4096,4096) (768,4096,4096) (1024,4096,4096) (2048,4096,4096)
GPT-40 0.04 0.02 0.02 0.02 | 0.02 0.03 0.02 0.02
€908 +Ours 8.70(1 218x) 9.16(1 458x) 8.78(1 439x) 9.23(1 462x) 8.33(1 417x) 7.83(1 261x) 9.40(1 470x) 9.45(1 473x)
(RISC-V) | DS-V3 0.03 0.01 0.01 001 | 0.03 0.03 0.03 0.02
+Ours 7.97(1 266%) 7.5(+ 750) 8.62(1 862x) 8.97(1 897x) 8.57(1 286x) 9.83(1 328x) 8.35(1 278x) 9.25(1 463x)
| OBLAS | 7.98 8.34 8.85 9.00 | 8.28 8.70 8.51 9.00
GPT-4o 0.18 0.14 0.1 0.09 | 0.15 0.16 0.16 0.16
coto | *Ours 11.21(} 62x) 11.21(180x) 10.94(1 109x) 9.21(1 102x) 11.48(1 77x) 11.74(1 73x) 11.56(1 72x) 11.05(1 69x)
(RISC-V) | DS-V3 0.09 0.05 0.03 0.03 | 0.81 0.82 0.82 0.82
+Ours 10.58(1 118x) 11.48(1230x) 10.84(1 361x) 9.47(1 316x) 11.36(14x) 11.67(1 14%) 11.68(} 14x) 10.89(1 13x)
| oBLAS | 591 5.85 49 488 | 4.57 4.90 537 541
GPT-4o 0.32 0.28 0.28 0.19 | 0.50 0.52 0.48 0.47
- +Ours 9.97(1 31x) 9.18(1 33x) 9.53(1 34x) 9.9(1 52x) 11.43(1 23x) 10.74(1 21x) 10.78(1 22x) 10.7(1 23x)
(RISC-V) | DS-V3 0.36 0.33 0.31 0.23 ‘ 0.45 0.47 0.46 0.45
+Ours 10.34(29x) 9.74(1 30x) 10.29(33x) 11.74(1 51x) 10.48(1 23x) 10.87(23x) 10.14(1 22x) 10.41(1 23%)
| OBLAS | 412 4.19 446 476 | 457 490 537 541
GPT-40 0.35 0.33 0.27 0.17 | 0.34 0.39 0.32 0.27
+Ours 34.46(198x) 34.81(1 105x) 36.77(1136x) 37.31(1 219%) 33.84(1 100x) 33.77(1 87x) 35.72(1 112x) 35.32(1 131x)
DS-V3 0.22 0.04 0.04 0.04 | 0.29 0.29 0.29 0.28
:}Z&) +Ours 33.91(1 154x) 35.70(1893x) 36.05(1901x) 36.67(1 917x) 32.72(1113x) 3348(1 115x) 35.66(1 123x) 36.43(1 130x)
(
| TVM | 33.79 33.57 32.99 Failed | 29.56 28.92 27.17 Failed
| oBLAS | 27.97 31.25 33.48 3427 | 30.01 31.25 3237 33.95
| acL | 34.08 32.44 32.43 3082 | 32.20 31.86 31.64 31.10
Hardware ‘ Method ‘ (m=k=n) ‘ (m, k,n)
‘ ‘ 2048 4096 8192 16384 ‘ (16384,8192,1280) (16384,1024,8192) (16384,8192,7168) (16384,3584,8192)
rrx | GPTo 1.2 1.1 1.1 11 | 112 118 1.00 1.10
2060 +Ours 7.84(1 7x) 8.08(1 7x) 7.84(1 7x) 7.8(1 7%) 8.14(1 7%) 7.63(1 6x) 7.93(1 8x) 8.19(1 7x)
(with | DS-V3 1.21 1.08 1.09 11 | 1.13 1.20 1.00 1.07
CUDA | +Ours 8.1(1 7x) 7.99(1 7x) 7.13(1 %) 7.75(1 %) 8.28(1 7x) 7.71(1 6x) 8(1 8x) 7.87(1 %)
core) | TVM | 7.87 6.55 6.93 Failed | 7.63 6.7 6.25 7.1
| cuBLAS | 7.37 7.34 7.23 7.19 | 7.06 6.21 7.21 7.24
GPT-4o 0.81 0.86 0.88 0.74 | 0.75 0.85 0.80 0.74
A100 | +Ours | 183.73(1227x) 260.59(1303x) 289.13(1 329x) 293.44(1397x) 278.44(1 371x) 237.25(1279x) 283.87(1355x) 278.04(} 376x)
(with) pg y3 14.13 17.74 17.31 18.76 | 18.98 18.85 18.88 18.96
‘ens"; +Ours 183.19(1 13x) 262.05(1 15x) 290.86(1 17x) 292.36(1 16x) 274.88(1 14x) 238.26(1 13x) 283.66(1 15x) 278.48(1 15x)
core
| TVM | 159.66 195.59 212.79 21248 | 220.33 199.8 221.02 21776
| cuBLAS | 185.96 246.1 2922 298.44 | 268.58 237.19 285.18 253.72

Table 1: GEMM performance comparison on various hardware, LLMs, and matrix dimensions. The first line of each LLM indicates using
the vanilla prompt. Performance is measured with GFLOPS and TFLOPS for CPUs and GPUs, respectively. (OBLAS means OpenBLAS,
and Failed signifies that the target platform lacks adequate memory for TVM compiling.)

irregular dimensions.

GEMM of larger or irregular di-

4.3 Ablation Study

mensions would pose challenges of elaborately manipulating
computation and memory resources, otherwise it may lead to
inefficient memory access and lower performance, as we see
in the manually optimized library of ACL and auto-compiler
of TVM. In contrast, QiMeng-TensorOp performs more pre-
cise and efficient tensor operator generation and optimization
at the hardware-primitive-level to fully leverage hardware
characteristics, thereby achieving higher performance. For
instance, when the matrix dimension is 1024 x 4096 x 4096
on A76 CPU, our method performance is 1.31 x and 1.29 x
better than TVM and ACL, respectively.

To analyze the effectiveness and efficiency of QiMeng-
TensorOp components, we conduct such ablation studies.
Ablation of Prompts: With just a one-line user
prompt, QiMeng-TensorOp demonstrates exceptional
performance, while the enhancement from CoT is slight.
As shown in Table 2, our approach ranges from 26.49x
to 47.00x compared with vanilla prompt, while the CoT
prompt ranges from 1.29x to 2.09x. The results indicate
that QiMeng-TensorOp is applicable to different LLMs (even
to slightly weaker LLMs) and effectively activates LLMs to
generate high-performance tensor operator, showing excep-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

tional robustness and scalability.

| 512 1024 2048
GPT-4o 032 028 028
+CoT 0.67(12.09%) 045(1 1.61x) 0.44(1 1.57%)
+QiMeng-TensorOp | 9.97(f3L16x) 9.18(132.79x) 9.53(134.04x)
Claude 3.5 Sonnet 0.37 0.25 0.24
+CoT 049(1132x) 038(11.52x) 0.32(1 1.33x)
+QiMeng-TensorOp | 9.80 (1 26.49x) 7.87 (1 31.48x) 8.95 (1 37.29x)
DeepSeek-V3 0.36 0.33 031
+CoT 0.56(1 1.56x) 0.53(1 1.61x) 040 (1 1.29%)

+QiMeng-TensorOp | 10.34 (128.72x) 9.74 (1 29.52x) 10.29 (1 33.19x)
Llama-3.1-405B 0.31 0.26 0.23
+CoT 0.49(1 1.58x%) 0.35(1 1.35%) 0.33 (1 1.43x)

+QiMeng-TensorOp | 9.72 (131.35x) 9.57 (1 36.81x) 10.81 (1 47.00x)

Table 2: GEMM performance (GFLOPS) comparison of vanilla
prompt, CoT, and QiMeng-TensorOp on K1 CPU.

Ablation of QiMeng-TensorOp Components: Fig-
ure 3(a) compares the GEMM performance on K1 CPU
among five conditions, including QiMeng-TensorOp with
both Tensor Operator Generation (TOG) and Auto-Tuning
(AT), QiMeng-TensorOp with only TOG, a GPT-40 gener-
ated C code with AT, and OpenBLAS with and without AT.
(1) Tensor Operator Generation effectively raises perfor-
mance upper bound. QiMeng-TensorOp (blue curve) ob-
viously exceeds LLM Code + AT (green curve) and Open-
BLAS Code + AT (red curve). As LLMs can only generate C
code, and so does the general implementation in OpenBLAS,
this indicates that the assembly kernels generated by TOG
can better exploit the computing capability of hardware com-
pared with C code. (2) Auto-Tuning is vital for superior
performance of tensor operates. Auto-Tuning improves the
performance of QiMeng-TensorOp with only TOG (yellow
curve), as well as OpenBLAS code (black curve), respec-
tively. This indicates that Auto-Tuning can effectively iden-
tify subtle optimization opportunities to achieve superior per-
formance. Moreover, it has a certain degree of generalization
ability for tensor operators generated by different methods.

—® QiMeng-TensorOp with TOG and AT L —— QiMeng-TensorOp

a
QiMeng-TensorOp with only TOG O i g /o hi
LLMs Code 4+ AT 2 9 I\Q/[l(l;/_[regg TensorOp w/o history
—® OpenBLAS Code + AT Q . .
-& OpenBLAS Code gl — Simulated Annealing
212 _ Random Search
T N T Y
58 w? e 7 e N
6 - - - > - - g - -
4 e-e-%-¢_-o-¢-"0 6
2
0 5
256 512 768 1024 1536 2048 4096 0 20 40 60 80 100
@ Shapes (b) Search Counts

Figure 3: (a) Ablation results of QiMeng-TensorOp components for
GEMM on K1 CPU. (b) Performance comparison of tuning methods
on GEMM of size 1024 on K1 CPU.

Ablation of Search Methods: The historical node ex-
pansion records is crucial for Auto-Tuning in QiMeng-
TensorOp. As shown in Figure 3(b), when search histories
are available, QiMeng-TensorOp (blue curve) can leverage
them to do dynamic expansion and search, thus exceeding

naive MCTS (green curve) in both efficiency and final perfor-
mance. In contrast, QiMeng-TensorOp w/o history (orange
curve) degrades to worse than MCTS with fixed expansion.

Ablation of Develop-
cotocpu | Time Grops ment Cost: (1) QiMeng-
Senior Coder | 3 days 3.08 TensorOp reduces manu-
TVM Failed Failed ally development costs. On
o= 20mins 1148 the three platforms shown in
A76CPU | Time GFLOPS Table 3, our method reduces
Senior Coder | 3 days 1.35 development costs from
TVM 2 hours 33.57 1d t th.
P ISmins 3590 several days to no more than
- twenty minutes compared
A100GPU | Time TFLOPS . .
- to software engineers with
Senior Coder 5 days 45.17 5 £ . b
TVM L5hours 77.68 years ol experience by up
ours 12mins 105.49 to 200x (on A100 GPU, 12

mins vs. 5 X 8 hours), while
Table 3: DeVelOpment costs for performance iS improved by
Senior Coder, TVM and QiMeng- up to 26x (on A76 CPU).
TensorOp across different plat- 2) QiMeng-TensorOp
forms. . 3

achieves higher perfor-

mance than TVM with
fewer search counts. As shown in Figure 4, increasing the
number of TVM searches improves code performance, but it
has an upper limit.

-o- TVM-128 TVM-1024
TVM-2048 - ®- QiMeng-TensorOp-100
38 -
36 -e-""
L3y $--ccg----e----e 112
S 3
30 e --*
&) 58 "‘\\\\\ ’4/,0—————0’
26 *
256 512 768 1024 1536 2048
Shapes

Figure 4: GEMM performance comparison between QiMeng-
TensorOp and TVM with different search counts on A76 CPU.
TVM-1024 and TVM-2048 overlap as TVM-1024 reaches the up-
per limit.

5 Conclusion

In this paper, we present QiMeng-TensorOp to automatically
generate high-performance tensor operators at the hardware
primitive level across various platforms, requiring only one
user-provided sentence to describe the target operator and
hardware. QiMeng-TensorOp leverages hardware hints and
workflow to aid LLMs’ comprehension of hardware and op-
timization, enabling automatic information extraction from
manuals for tensor operator generation. It incorporates an
LLM-assisted MCTS algorithm, enhancing the tuning effi-
ciency and performance. Extensive evaluations on diverse
platforms and tensor operators show significant performance
and development cost benefits. QiMeng-TensorOp has the
potential for continuously evolving hardware architectures.
In the future, we will extend the proposed framework to more
operators .

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgments

This work is partially supported by the NSF of China (under
Grant 92364202), and Major Program of ISCAS (Grant No.
ISCAS-ZD-202402).

References

[Anam er al., 2013] Ashraful Anam, Paul Whatmough, and
Yiannis Andreopoulos. Precision-energy-throughput scal-
ing of generic matrix multiplication and discrete convolu-
tion kernels via linear projections. In The 11th IEEE Sym-
posium on Embedded Systems for Real-time Multimedia,
pages 21-30. IEEE, 2013.

[Athiwaratkun ef al., 2022] Ben Athiwaratkun, Sanjay
Gouda, and Zijian Wang et al. Multi-lingual Evaluation of
Code Generation Models. ArXiv abs/2210.14868, 2022.

[Austin er al., 2021] Jacob Austin, Augustus Odena, and
Maxwell Nyen et al. Program Synthesis with Large Lan-
guage Models. ArXiv, abs/2108.07732, 2021.

[Bi et al., 2023] Jun Bi, Qi Guo, and Xiaging Li et al.
Heron: Automatically Constrained High-Performance Li-
brary Generation for Deep Learning Accelerators. In Pro-
ceedings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and Op-
erating Systems, Volume 3, pages 314-328, 2023.

[Castell et al., 2024] Adrian Castelld, Julian Bellavita, and
Grace Dinh et al. Tackling the Matrix Multiplication
Micro-Kernel Generation with Exo. In 2024 IEEE/ACM
International Symposium on Code Generation and Opti-

mization (CGO), pages 182-193. IEEE, 2024.

[Chen et al., 2018a] Tiangi Chen, Thierry Moreau, and Zi-
heng Jiang et al. TVM: An automated End-to-End opti-
mizing compiler for deep learning. In /3th USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI 18), pages 578-594, 2018.

[Chen et al., 2018b] Tiangi Chen, Lianmin Zheng, and Ed-
die Yan et al. Learning to Optimize Tensor Programs. In
Neural Information Processing Systems, 2018.

[Chen et al., 2020a] Chen Chen, Xiaoyan Xiang, and
Chang Liu et al. Xuantie-910: A Commercial Multi-
Core 12-Stage Pipeline Out-of-Order 64-bit High Per-
formance RISC-V Processor with Vector Extension. In
2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), pages 52—64. IEEE, 2020.

[Chen et al., 2020b] Yi-Ru Chen, Hui-Hsin Liao, and Chia-
Hsuan Chang et al. Experiments and optimizations for
TVM on RISC-V Architectures with P Extension. In 2020
International Symposium on VLSI Design, Automation and
Test (VLSI-DAT), pages 1-4, 2020.

[Choquette ef al., 2021] Jack Choquette, Wishwesh Gandhi,
and Olivier et al. Giroux. Nvidia A100 Tensor Core GPU:
Performance and innovation. IEEE Micro, 41(2):29-35,
2021.

[Claude3.5, 2024] Claude3.5. Claude 3.5 Sonnet. https:
/Iwww.anthropic.com/news/claude-3-5-sonnet, 2024. Ac-
cessed: 2024-12-27.

[Dally et al., 2021] William J Dally, Stephen W Keckler, and
David B Kirk. Evolution of the graphics processing unit
(GPU). IEEE Micro, 41(6):42-51, 2021.

[DeepSeek-Al et al., 2024] DeepSeek-Al, Aixin Liu, and
Bing Xue et al. DeepSeek-V3 Technical Report. 2024.

[Faingnaert et al., 2021] Thomas Faingnaert, Tim Besard,
and Bjorn De Sutter. Flexible Performant GEMM Kernels
on GPUs. IEEE Transactions on Parallel and Distributed
Systems, 33(9):2230-2248, 2021.

[Feng et al., 2023] Siyuan Feng, Bohan Hou, and Hongyi Jin
et al. Tensorir: An abstraction for automatic tensorized
program optimization. In Proceedings of the 28th ACM In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 2,
pages 804-817, 2023.

[Grattafiori et al., 2024] Aaron Grattafiori, Abhima Dubey,
and Abhinav Jauhri et al. The Llama 3 Herd of Models.
ArXiv abs/2407.21783, 2024.

[Guillermo et al., 2024] Alae Guillermo, Martinez Héctor,
and Castell6 Adridn et al. Automatic generation of ARM
NEON micro-kernels for matrix multiplication. The Jour-
nal of Supercomputing, pages 1-27, 2024.

[Gunasekar et al., 2023] Suriya Gunasekar, Yi Zhang, and
Jyoti Aneja et al. Textbooks Are All You Need. ArXiv
abs/2306.11644, 2023.

[He et al., 2015] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. ArXiv abs/1512.03385, 2015.

[Hennessy and Patterson, 2019] John Hennessy and David
Patterson. A new golden age for computer architecture.
Communications of the ACM, 62(2):48-60, 2019.

[Tgual er al., 2023] Francisco Igual, Luis Pifiuel, and San-
dra Catalan et al. Automatic Generation of Micro-kernels
for Performance Portability of Matrix Multiplication on
RISC-V Vector Processors. In Proceedings of the SC’23
Workshops of The International Conference on High Per-
formance Computing, Network, Storage, and Analysis,
pages 1523-1532, 2023.

[Jouppi et al., 2017] Norman P Jouppi, Cliff Young, and Nis-
hant Patil et al. In-datacenter performance analysis of a
tensor processing unit. In Proceedings of the 44th annual
international symposium on computer architecture, pages
1-12, 2017.

[Katel et al., 2021] Navdeep Katel, Vivek Khandelwal, and
Uday Bondhugula. High performance GPU code gener-
ation for matrix-matrix multiplication using mlir: some
early results. arXiv preprint arXiv:2108.13191, 2021.

[Kim er al., 2024] Hyungyo Kim, Gaohan Ye, and Nachuan
et al. Wang. Exploiting Intel® Advanced Matrix Exten-
sions (AMX) for Large Language Model Inference. /[EEE
Computer Architecture Letters, 2024.

[Krainiuk et al., 2021] Mariia Krainiuk, Mehdi Goli, and
Vincent R Pascuzzi. oneAPI Open-Source Math Library

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Interface. In 2021 International Workshop on Perfor-
mance, Portability and Productivity in HPC (P3HPC),
pages 22-32. IEEE, 2021.

[Kurzak et al., 2012] Jakub Kurzak, Stanimire Tomov, and
Jack Dongarra. Autotuning GEMM kernels for the Fermi
GPU. IEEE Transactions on Parallel and Distributed Sys-
tems, 23(11):2045-2057, 2012.

[Li et al., 2023] Raymond Li, Loubna Ben, and Yangtian Zi
et al. StarCoder: may the source be with you! ArXiv,
abs/2305.06161, 2023.

[Liu et al., 2016] Shaoli Liu, Zidong Du, and Jinhua Tao
et al. Cambricon: An instruction set architecture for neural
networks. ACM SIGARCH Computer Architecture News,
44(3):393-405, 2016.

[Liu ef al., 2022] Xiao-Yang Liu, Zeliang Zhang, and
Zhiyuan Wang et al. High-Performance Tensor Learning
Primitives Using GPU Tensor Cores. IEEE Transactions
on Computers, 72(6):1733-1746, 2022.

[Llama3.1, 2024] Llama3.1. Introducing Llama 3.1: Our
most capable models to date. https://ai.meta.com/blog/
meta-llama-3-1/, 2024. Accessed: 2024-12-27.

[Lu et al., 2022] Shuai Lu, Nan Duan, Hojac Han, Daya
Guo, Seung won Hwang, and Alexey Svyatkovskiy.
ReACC: A Retrieval-Augmented Code Completion
Framework. ArXiv abs/2203.07722, 2022.

[Markidis et al., 2018] Stefano Markidis, Der Chien, and
Steven Wei et al. NVIDIA Tensor Core Programmabil-
ity, Performance & Precision. In 2018 IEEFE international

parallel and distributed processing symposium workshops
(IPDPSW), pages 522-531. IEEE, 2018.

[NVIDIA, 2023] NVIDIA. CUBLAS LIBRARY user guide
v12.1. https://docs.nvidia.com/cuda/archive/12.1.0, 2023.
Accessed: 2024-07-22.

[OpenAl, 2025] OpenAl GPT-4o. https://openai.com/index/
hello-gpt-40/, 2025. Accessed: 2024-12-27.

[Ragan ef al., 2013] Jonathan Ragan, Connelly Barnes, and
Andrew Adams et al. Halide: a language and com-
piler for optimizing parallelism, locality, and recomputa-
tion in image processing pipelines. Acm Sigplan Notices,
48(6):519-530, 2013.

[Ronneberger et al., 2015] Olaf Ronneberger, Philipp Fis-
cher, and Thomas Brox. U-Net: Convolutional Networks
for Biomedical Image Segmentation, 2015.

[Roziere et al., 2023] Baptiste Roziére, Jonas Gehring, and
Fabian Gloeckle et al. Code Llama: Open Foundation
Models for Code. ArXiv, abs/2308.12950, 2023.

[Shao et al., 2022] Junru Shao, Xi Zhou, and Siyuan Feng
et al. Tensor program optimization with probabilistic pro-
grams. Advances in Neural Information Processing Sys-
tems, 35:35783-35796, 2022.

[Simonyan and Zisserman, 2015] Karen Simonyan and An-
drew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. ArXiv abs/1409.1556,
2015.

[Sze et al., 2017] Vivienne Sze, Yu-Hsin Chen, and Tien-
Ju Yang et al. Efficient processing of deep neural net-
works: A tutorial and survey. Proceedings of the IEEE,
105(12):2295-2329, 2017.

[Tan et al.,2011] Guangming Tan, Linchuan Li, and
Sean Triechle et al. Fast implementation of DGEMM on
Fermi GPU. In Proceedings of 2011 International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, pages 1-11, 2011.

[Touvron et al., 2023] Hugo Touvron, Thibaut Lavril, and
Gautier Izacard et al. LLaMA: Open and Efficient Foun-
dation Language Models. ArXiv abs/2302.13971, 2023.

[Wei et al., 2022] Jason Wei, Xuezhi Wang, and Dale Schu-
urmans et al. Chain-of-Thought Prompting Elicits Rea-
soning in Large Language Models. Advances in neural
information processing systems, 35:24824-24837, 2022.

[Wu et al., 2021] Kan Wu, Zhihan Guo, and Guanzhou Hu
et al. The storage hierarchy is not a hierarchy: Optimiz-
ing caching on modern storage devices with orthus. In
19th USENIX Conference on File and Storage Technolo-
gies (FAST 21), pages 307-323, 2021.

[Wu et al., 2024] Du Wu, Jintao Meng, and Wenxi Zhu et al.
autoGEMM: Pushing the Limits of Irregular Matrix Mul-
tiplication on Arm Architectures. In SC24: International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1-15. IEEE, 2024.

[Xianyi et al., 2012] Zhang Xianyi, Wang Qian, and Zhang
Yunquan. Model-driven level 3 BLAS performance opti-
mization on Loongson 3A processor. In 2012 IEEE 18th
international conference on parallel and distributed sys-

tems, pages 684—691. IEEE, 2012.

[Xiao er al., 2021] Qingcheng Xiao, Size Zheng, and
Bingzhe Wu et al. Hasco: Towards agile hardware and
software co-design for tensor computation. In 2021
ACM/IEEE 48th Annual International Symposium on
Computer Architecture, pages 1055-1068. IEEE, 2021.

[Zan et al., 2022] Daoguang Zan, Bin Chen, and
Fengji Zhang et al. Large Language Models Meet
NL2Code: A Survey. In Annual Meeting of the Associa-
tion for Computational Linguistics, 2022.

[Zhai et al., 2023] Yi Zhai, Yu Zhang, and Shuo Liu et al.
TLP: A Deep Learning-Based Cost Model for Tensor Pro-
gram Tuning. In Proceedings of the 28th ACM Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2, pages
833-845, 2023.

[Zhai et al., 2024] Yi Zhai, Sijia Yang, and Keyu Pan et al.
Enabling Tensor Language Model to Assist in Generating
High-Performance Tensor Programs for Deep Learning. In
18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24), pages 289-305, 2024.

[Zheng et al., 2020] Lianmin Zheng, Chengfan Jia, and Min-
min Sun et al. Ansor: Generating High-Performance Ten-
sor Programs for Deep Learning. In /4th USENIX sym-
posium on operating systems design and implementation
(OSDI 20), pages 863-879, 2020.

https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://docs.nvidia.com/cuda/archive/12.1.0
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/

