
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

A Unifying Framework for Semiring-Based Constraint Logic Programming With
Negation

Jeroen Spaans1 and Jesse Heyninck1,2

1Open Universiteit, The Netherlands
2University of Cape Town, South Africa
{jeroen.spaans, jesse.heyninck}@ou.nl

Abstract
Constraint Logic Programming (CLP) is a logic pro-
gramming formalism used to solve problems requir-
ing the consideration of constraints, like resource
allocation and automated planning and scheduling.
It has previously been extended in various directions,
for example to support fuzzy constraint satisfaction,
uncertainty, or negation, with different notions of
semiring being used as a unifying abstraction for
these generalizations. None of these extensions have
studied clauses with negation allowed in the body.
We investigate an extension of CLP which unifies
many of these extensions and allows negation in the
body. We provide semantics for such programs, us-
ing the framework of approximation fixpoint theory,
and give a detailed overview of the impacts of prop-
erties of the semirings on the resulting semantics.
As such, we provide a unifying framework that cap-
tures existing approaches and allows extending them
with a more expressive language.

1 Introduction
Constraint logic programming (CLP) facilitates solving prob-
lems requiring the consideration of constraints, and is well-
established as a fruitful formalism over the last decades. To
further increase its expressivity, its language has been ex-
tended to take into account information about a problem do-
main of a more quantitative nature, e.g. by allowing fuzzy
constraint satisfaction or taking into account scores or pen-
alties. Due to the wide variety of such possible extensions,
several works have sought to unify these approaches using
the algebraic concept of a semiring [Bistarelli et al., 2001;
Khamis et al., 2023]. Even though these works represent a
big step forward in terms of unification, they introduce their
own assumptions on semirings, which makes it hard to com-
pare these unifying approaches. Furthermore, they restrict
attention to positive logic programs, i.e. programs consisting
of rules without negation in the body. This is unfortunate,
as it is well-known from e.g. answer set programming that
negation increases both the conceptual and computational ex-
pressivity. However, it also introduces non-monotonicity of
the corresponding immediate consequence operator, leading
to intricacies in the definition of semantics.

Approximation fixpoint theory (AFT) [Denecker et al.,
2001] is a unifying framework for the definition and study of
semantics of non-monotonic formalisms. It is a purely algeb-
raic theory which was shown to unify the semantics of, among
others, logic programming, default logic, and autoepistemic
logic. Due to the algebraic constructions defined in AFT, it
often suffices to define a so-called approximating operator to
derive a whole class of well-behaved semantics, including the
so-called stable and well-founded semantics.

In this paper, we apply AFT to unify and generalize existing
approaches to semiring-based constraint logic programming.
In more detail, the contributions of this paper are the follow-
ing: (1) we unify the approaches of [Bistarelli et al., 2001;
Khamis et al., 2023] in the framework of AFT, making clear
the different assumptions used in these approaches and how
they affect the behaviour of the corresponding semantics, (2)
we generalize the language of semiring-based constraint logic
programming to allow for negation in the body of rules, and (3)
use AFT to define and study semantics for such programs, in-
troducing among others the stable and well-founded semantics,
and show how they generalize both existing approaches to
(positive) SCLPs and normal logic programs (nlps).
Outline of the Paper: In Section 2 we provide background
on lattice theory, AFT and semirings. Section 3 considers
properties of semirings and derived orders. Section 4 recon-
structs existing semantics for SCLPs with lifted assumptions,
and in Section 5, we introduce the syntax and semantics of
negation, whereas in Section 6 the semantics for programs
with negation are studied. We conclude with regard to related
work in Section 7.

2 General Background
In this section, we introduce the necessary preliminaries on
lattice theory (Section 2.1), approximation fixpoint theory
(Section 2.2) and semirings (Section 2.3).

2.1 Lattice Theory
A partially ordered set (poset) L is an ordered pair ⟨L,≤⟩,
where ≤⊆ L× L is a reflexive, antisymmetric and transitive
relation. Given a poset L = ⟨L,≤⟩ with S ⊆ L, A lower
bound (resp. upper bound) of S is an element x ∈ L such
that x ≤ s (resp. s ≤ x) for all s ∈ S. A lower bound y
of S is the unique greatest lower bound (glb) of S, denoted∧

S, if for every lower bound x of S in L we have that x ≤ y,

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

and similarly for the least upper bound (lub). We also denote
x∧ y by

∧
{x, y} and x∨ y by

∨
{x, y}.

A lattice is a partially ordered set such that each pair of
elements has a greatest lower bound and a least upper bound.
A lattice is bounded if there are ⊥,⊤ ∈ L such that for any
x ∈ L, ⊥ ≤ x ≤ ⊤ holds, and it is complete if every subset
of L has a greatest lower bound and a least upper bound. ⊥≤
denotes a complete lattice’s least element, and ⊤≤ its greatest
element. While every complete lattice is a bounded lattice, it
should be noted that the converse is not true [Blyth, 2005].

We will study operators O : L → L, which are ≤-
monotone if for all x ≤ y we have that O(x) ≤ O(y),
and ≤-antimonotone if for all x ≤ y we have that O(y) ≤
O(x).1 This work also concerns commutative binary operators
O : L × L → L. Such operators are called (anti)monotone
if they are monotone (resp. antimonotone) in either oper-
and. That is, we fix one operand at a time and consider the
(anti)monotonicity of x 7→ O(x, y) and y 7→ O(x, y) separ-
ately. An element x ∈ L is a prefixpoint of O if O(x) ≤ x, a
fixpoint of O if O(x) = x, and a postfixpoint of O if x ≤ O(x).
Should it exist, lfp≤(O) denotes the ≤-least fixpoint of O.2

Thanks to Theorem 5.1 of Cousot and Cousot [Cousot and
Cousot, 1979], we have a constructive characterization of this
least fixpoint [Tarski, 1955]. For this characterization, we first
define the ordinal powers of a function O : L → L by defining
O0(x) = x, Oα+1(x) = O(Oα(x)) for a successor ordinal α,
and Oα(x) =

∨
β<α Oβ(x) for a limit ordinal α. The least

fixpoint of a monotone operator on a complete lattice can be
constructed by applying its ordinal powers starting from ⊥≤:

Theorem 1 ([Cousot and Cousot, 1979]). Given a complete
lattice L = ⟨L,≤⟩ and a ≤-monotone operator O : L → L,
there is an ordinal α such that Oα(⊥≤) is the least fixpoint of
O, which coincides with O’s least prefixpoint.

2.2 Approximation Fixpoint Theory
In this section, we recall approximation fixpoint theory (AFT)
[Denecker et al., 2001], which offers techniques for approx-
imating the fixpoints of a possibly non-monotonic operator.

Given a lattice L = ⟨L,≤⟩, a bilattice is the structure
L2 = ⟨L2,≤p,≤v⟩, where L2 = L × L, and for every
x1, y1, x2, y2 ∈ L, (x1, y1)≤p(x2, y2) if x1 ≤ x2 and
y2 ≤ y1, and (x1, y1)≤v(x2, y2) if x1 ≤ x2 and y1 ≤ y2.
Intuitively, bilattice elements (x, y) ∈ L2 approximate ele-
ments in the interval [x, y] = {z ∈ L : x ≤ z ≤ y}. If x ≤ y,
we call (x, y) consistent, and Lc is the set of all consistent
pairs. We call elements (x, x) ∈ Lc exact, and note that the
set of all exact elements constitutes an embedding of L in L2.
We also use projection functions (x, y)1 = x and (x, y)2 = y.

An operator O : L2 → L2 is an approximator of
O : L → L if it is ≤p-monotone and, for any x ∈ L,
O(x, x) = (O(x),O(x)). Approximating operators O can be
thought of as combinations of two separate operators (O(·, ·))1
and (O(·, ·))2 calculating, respectively, a lower and upper
bound for the value of the approximated operator O. We

1When the ordering clear, we simply say O is (anti)monotone.
2If the ordering is clear, we simply write lfp(O).

denote (O(·, ·))1 and (O(·, ·))2 as Ol(x, y) and Ou(x, y) re-
spectively. Specifically, we have Ol(·, y) = λx.Ol(x, y) (i.e.,
Ol(·, y)(x) = Ol(x, y)) and Ou(x, ·) = λy.Ou(x, y).

Given a complete lattice ⟨L,≤⟩ and an approximating oper-
ator O : L2 → L2, the stable operator for O is S(O)(x, y) =
(lfp(Ol(·, y)), lfp(Ou(x, ·))). For any ≤p-monotone operator
O on L2, the fixpoints of S(O) are ≤v-minimal fixpoints of
O [Denecker et al., 2001]. Also, Ol(·, y) and Ou(x, ·) are
≤-monotone operators —guaranteeing S(O) is well-defined,
and S(O) is ≤p-monotone [Denecker et al., 2001].

Given an approximating operator O : L2 → L2. (x, y) is:
the Kripke-Kleene (KK) fixpoint of O if (x, y) = lfp≤p

(O); a
stable fixpoint of O if (x, y) = S(O)(x, y); the well-founded
(WF) fixpoint of O if (x, y) = lfp≤p

(S(O)).
A lattice operator may permit multiple approximating op-

erators, but Denecker et al. 2004 define the most precise
approximating operator Ou approximating an operator O,
called the ultimate approximator of O. In more detail, given
a complete lattice L = ⟨L,≤⟩, and O : L → L, the ul-
timate approximator of O, Ou : Lc → Lc is defined by
Ou(x, y) = (

∧
O([x, y]),

∨
O([x, y])).

2.3 Semirings
In this section we recall the necessary preliminaries on semir-
ings, which we will use as the range of interpretations of
logic programs. A monoid is a tuple M = ⟨L, ◦, e⟩ such that
◦ : L × L → L is a binary, associative operator on L; and we
have for any x ∈ L that e ◦ x = x = x ◦ e—e is the identity
element of ◦. If ◦ is commutative, we call M a commutat-
ive monoid. If ⟨L,≤⟩ is a poset s.t. ◦ is ≤-monotone, M is
ordered by ≤, and if for every x ∈ L we have that e ≤ x, it is
positively ordered.

A commutative monoid M = ⟨L, ◦, e⟩ is equipped with a
’sum’ operation ⃝I for finite index sets I such that: ⃝i∈∅xi =
e; ⃝i∈{j}xi = xj ; ⃝i∈{j,k}xi = xj ◦ xk for j ̸= k; and
⃝j∈J ⃝i∈Ij xi = ⃝i∈Ixi if

⋃
j∈J Ij = I and Ij ∩ Ij′ = ∅

for j ̸= j′. If the sum operation ⃝I is well-defined for any
infinite index set I , M is a complete monoid. 3

A semiring is a tuple S = ⟨L,+,×,0,1⟩, such that:
⟨L,+,0⟩ is a commutative monoid, with + being called
the additive operator; ⟨L,×,1⟩ is a monoid, with × being
called the multiplicative operator; we have for any x ∈ L that
x×0 = 0 = 0×x—i.e. 0 is the absorbing element of ×; and
we have for any x, y, z ∈ L that x×(y+z) = (x×y)+(x×z)
and (y + z)× x = (y × x) + (z × x)—i.e. × left- and right-
distributes over +. Sum (

∑
) and product (

∏
) denote the sum

operation of + and × respectively. We identify six specific
classes of semirings:

1. If ⟨L,×,1⟩ is a commutative monoid, S is a commutative
semiring.

2. If x + x = x holds for any x ∈ L, S is an idempotent
semiring.

3. If S is a commutative idempotent semiring, and we have
for any x ∈ L that x + 1 = 1 = 1 + x—i.e. 1 is the

3Bijective indexings are left implicit. E.g. ⃝{x1, . . . , xn} =
x1 ◦ . . . ◦ xn and ⃝(x1, x2, . . .) = x1 ◦ x2 ◦ . . . (if it is defined).

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

absorbing element of +—then S is a constraint-based
semiring (c-semiring) [Bistarelli et al., 2001].

4. S is a complete semiring if ⟨L,+,0⟩ is a complete mon-
oid, and it holds that

∑
i∈I(x × xi) = x × (

∑
i∈I xi)

and
∑

i∈I(xi × x) = (
∑

i∈I xi)× x.

5. If ⟨L,+,0⟩ and ⟨L,×,1⟩ are ordered by poset ⟨L,≤⟩, S
is ordered by ⟨L,≤⟩.

6. If ⟨L,+,0⟩ is positively ordered by the poset ⟨L,≤⟩
and ⟨L,×,1⟩ is ordered by ⟨L,≤⟩, then S is positively
ordered by ⟨L,≤⟩.

Note. Hereafter, unless otherwise specified, S =
⟨L,+,×,0,1⟩ is assumed to be a commutative semiring.

Some examples of commutative semirings are:
• S = ⟨F,+, ·, 0, 1⟩, for F ∈ {N,Z,Q,R};
• P(A) = ⟨2A,

⋃
,
⋂
, ∅, A⟩, the power set semiring ;

• B = ⟨{true, false},∨,∧, false, true⟩, the Boolean semir-
ing;

• F = ⟨[0, 1],max,min, 0, 1⟩, the fuzzy semiring;
• N∞ = ⟨N

⋃
{∞},+, ·, 0, 1⟩, where n+∞ = ∞ for all

n and m · ∞ = ∞ for all m ̸= 0 — the semiring of
natural numbers lifted to infinity.

3 Families of Semirings and Their Orderings
In Section 2.1, we saw a constructive definition for the least
fixpoint of a monotone operator on a complete lattice, and,
in Section 2.2, we saw that such constructions are widely
used in AFT. In the following sections, we will use such
constructions again to define the semantics of our semiring-
based formalism. For this, we will require complete lattices
that order our semirings. Some semirings of interest have
standard orderings that happen to be complete lattices—for
example, the Boolean semiring B forms a complete lattice
under false < true and the power set semiring P(A) forms
a complete lattice under set inclusion. Such orderings are
not readily apparent for all semirings, however. We therefore
investigate a “semiring-agnostic” ordering and look for condi-
tions under which this ordering forms a complete lattice. This
ordering, found throughout the literature [Green et al., 2007;
Khamis et al., 2024; Hannula, 2023], is the natural order.
Definition 1. For any x, y ∈ L, we say x≤N y if there exists
a z ∈ L such that x+ z = y. When ≤N is a partial order, we
call it the natural order. A semiring ⟨L,+,×,0,1⟩ for which
⟨L,≤N⟩ is a partial order is called naturally ordered.

Not all semirings are naturally ordered. When semirings
allow for additive inverses, the ordering is not antisymmetric.
In all other cases, the ordering is a partial order.
Lemma 1. S is naturally ordered if and only if it contains no
elements x and −x s.t. x ̸= 0 and x+ (−x) = 0.

Our additive and multiplicative operators are monotone for
naturally ordered semirings.
Lemma 2. If S is naturally ordered, it is ordered by ≤N.

A complete lattice of semiring elements must be bounded.
For naturally ordered semirings, the element 0 is the least
element bounding our lattice from below.

Lemma 3. If S is naturally ordered, ⊥≤N = 0.
While all naturally ordered semirings are bounded from

below by 0, they are not generally bounded from above. A
straightforward example of this is the whole number semiring
N, for which the natural order coincides with the usual order-
ing and which extends infinitely upwards. Naturally, this also
means not all naturally ordered semirings form a complete
lattice. In fact, a naturally ordered semiring has a maximal
element if and only if said element is absorbing for +.
Lemma 4. If S is naturally ordered, ⊤≤N = x ∈ L if and
only if x is absorbing for +.

Bistarelli et al. 2001 propose an ordering specific to c-
semirings which forms a complete lattice under certain cir-
cumstances.
Definition 2. Let S be a c-semiring. For any a, b ∈ L, we
define the c-semiring order as a≤C b if a+ b = b.

We treat ≤C as if it were defined for any (non-c-)semiring
and find it to be a specific case of the natural order.
Lemma 5. For idempotent S and a, b ∈ L: a≤N b iff a≤C b.

Not only do ≤N and ≤C coincide whenever S is
idempotent—in this case they are also always a partial or-
der. This, of course, also means that idempotent semirings do
not permit additive inverses.
Lemma 6. If S is idempotent, it is naturally ordered.

Bistarelli et al. [1997] show how ≤N can form a complete
lattice for c-semirings by first showing that + and ∨ coincide,
then showing that any set that has the ∨ also has the ∧, and
finally combining these two facts to get that any set has both
the ∨ and ∧. However, this reasoning relies on the assumption
that the sum is defined for any (infinite) set of c-semiring
elements. This assumption does not hold for every c-semiring,
as shown in Appendix A.1. We also find that a complete c-
semiring is a stronger assumption than necessary to obtain
these results. Indeed, we find the same results for complete
idempotent semirings with a greatest element ⊤≤N

.
Lemma 7. If S is a complete idempotent semiring s.t. ⊤≤N

exists, then ⟨L,≤N⟩ is a complete lattice.
Completeness of a semiring, by itself, is not sufficient to

guarantee a complete lattice of semiring elements.
Lemma 8. Not every complete semiring gives rise to a com-
plete lattice under the natural order.

Other examples of a semiring inducing a complete lattice
under the natural order are N∞ and ⟨[0, 1],+, ·, 0, 1⟩.

4 Semiring-based Constraint Logic
Programming

We begin our study of semiring-based constraint logic pro-
gramming, limiting ourselves to the positive fragment of the
full formalism that will be presented in Section 5. In essence,
this special case is a simplified account of semiring-based con-
straint logic programs as introduced by Bistarelli et al. 2001, in
which we exclude variables and functions from our language,
leaving such extensions for future work. On the other hand,
we lift their assumption of c-semirings and consider general
semirings.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Definition 3. Given a semiring S = ⟨L,+,×,0,1⟩ and
a set of atoms A, generalized atoms are defined as atoms
and semiring values. A clause is an expression of the form
H : -B1, . . . , Bn where H , the head of the clause, is an atom
and each Bi appearing in the (possibly empty) body of the
clause is a generalized atom. A positive semiring-based con-
straint logic program for S (PSCLP(S), for short4), is a set of
clauses. AP denotes the atoms used in PSCLP(S) P .

Notice that Datalog programs [Ceri et al., 1989] are a spe-
cial case of PSCLPs, namely the programs PSCLP(B).
Example 1. We consider the following program P (adapted
from [Bistarelli et al., 2001]) as a running example.

c1: solution(a) :- path(a,b).
c2: solution(a) :- path(a,c).
c3: path(a,b) :- mass_transit(a).
c4: path(a,c) :- car(a).
c5: mass_transit(a) :- train(a).
c6: train(a) :- 2.
c7: car(a) :- 3.

The semiring over which P is defined, from which the in-
teger values in the program stem, is the optimization semiring
O = ⟨N

⋃
{∞},min,+,∞, 0⟩. This semiring allows us to op-

timize over constraints, by assigning each constraint an integer
representing the cost of the connection it models, combining
constraints by summing their costs, and comparing constraints
using the minimum operator. We order the semiring with the
complete lattice ⟨N

⋃
{∞},≥⟩—higher costs are ’lesser than’

lower costs.
The clauses c6 and c7 describe the costs associated with

travelling by train or car respectively. c5 tells us that train
travel is a form of mass transit. Since mass_transit(a)
is only defined by c5, the cost of using mass transit will only
depend on the cost of travelling by train. The clauses c3 and
c4 inform us that mass transit and car travel each allow us
to take a different path, and that the costs associated with
following these paths will depend on the cost of using their
corresponding mode of transport. Finally, the clauses c1 and
c2 tell us that either path constitutes a solution to our problem,
and that we must compare the costs of either path to obtain
the optimal solution to our problem.

The semantics of PSCLPs is given in terms of interpret-
ations that assign semiring values to formulas, essentially
generalizing classical interpretations by allowing any semiring
value as truth value instead of just the Boolean ones.

Definition 4. An interpretation I of some PSCLP P based on
a semiring S = ⟨L,+,×,0,1⟩ is a mapping I : AP → L. We
extend interpretations to semiring element x ∈ L by I(x) = x,
to conjunctions of formulas (inductively) by I(A,B) = I(A)×
I(B), and to empty conjunctions by I(∅) = 1.

Note. Hereafter, unless otherwise specified, we assume that
⟨L,≤⟩ is a partial order, and that P is a PSCLP(S).

We endow the set of P ’s interpretations ISP with an order-
ing that respects the partial order of semiring elements.

4We write PSCLP when the semiring is clear or unimportant.

Definition 5. The partial order of interpretations ⟨ISP ,⪯⟩ is
derived from ⟨L,≤⟩ such that for any I1, I2 ∈ ISP , I1 ⪯ I2 if
I1(x) ≤ I2(x) for any atom x ∈ AP .

When ⟨L,≤⟩ is a complete lattice, so is ⟨ISP ,⪯⟩. We now
introduce the notion of model for PSCLPs.
Definition 6. I ∈ ISP is a semiring model of P if it holds
for every H ∈ AP that

∑
{
∏n

i=1 I(Bi) | H : -B1, . . . , Bn ∈
P} ≤ I(H). MSP denotes the set of semiring models of P .

This notion of model deviates slightly from the traditional
notion of model. The traditional notion of model requires only
that the head of each clause be interpreted as no lesser than
the clause’s body—considering every clause independently.
Our notion of model instead considers all clauses defining an
atom in unison, requiring that said atom be interpreted as no
lesser than the sum of these clauses’ bodies. The difference
between these notions stems from the fact that the operators
used traditionally for the comparison between clauses (like
∨ or max) are idempotent, while the additive operators used
for this purpose in our framework are not necessarily. In this
way, our notion of model treats semirings more seriously as a
structure for evaluation.5

Example 2. We illustrate which interpretations are semiring
models of our running example program. For interpretation
I ∈ ISP to be a semiring model of P , we require that:

• 3 ≥ I(car(a)) and 2 ≥ I(train(a));
• I(train(a)) ≥ I(mass transit(a));
• I(car(a)) ≥ I(path(a, c));
• I(mass transit(a)) ≥ I(path(a, b)); and
• min{I(path(a, c)), I(path(a, b))} ≥ I(solution(a)).
Given all the interpretations of a PSCLP, we would like

to select a single unique model as the representative one. In
logic programming, this representative model is the minimal
model [Lloyd, 1987], obtained as the intersection of each
model’s sets of true atoms. Intuitively, this model minimizes
truth ascription while still satisfying all clauses. In other words,
it makes true what must be true and nothing else. Here, we
follow a similar approach but require a generalization of the
notion of model intersection.
Definition 7. Given a complete lattice ⟨L,≤⟩ and A ∈ AP ,
we define the model intersection of M ⊆ MSP as

⋂
M(A) =∧

{I(A)| I ∈ M}.
Lemma 9. If S is ordered by a complete lattice ⟨L,≤⟩ and
M ⊆ MSP ,

⋂
M is a semiring model for PSCLP(S) P .

We obtain the minimal semiring model by intersecting
MSP .
Definition 8. The minimal semiring model of PSCLP P is
Ms

P =
⋂

MSP . Ms
P is the model-theoretic semantics of P .

Example 3. For our running example, the minimal semiring
model gives us the following.

• Ms
P (car(a)) = 3 and Ms

P (train(a)) = 2;
• Ms

P (mass transit(a)) = 2;

5We defer an investigation of the differences between these no-
tions of model to Appendix A.2.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

I1 I2 I3 I4

train(a) 2 2 2 2
car(a) 3 3 3 3
mass_transit(a) ∞ 2 2 2
path(a,c) ∞ 3 3 3
path(a,b) ∞ ∞ 2 2
solution(a) ∞ ∞ 3 2

Table 1: TP applied to Ex. 4, where I1 = TP(⊥⪯) and Ii+1 =
TP(Ii) for i > 0.

• Ms
P (path(a, c)) = 3;

• Ms
P (path(a, b)) = 2; and

• Ms
P (solution(a)) = 2.

The model-theoretic semantics of a PSCLP lacks a con-
structive definition. We therefore work toward an equival-
ent fixpoint semantics that does have a constructive defin-
ition, based on an extension of the well-known immediate
consequence operator from Datalog to PSCLPs.
Definition 9. Given interpretation I ∈ ISP and atom H ∈
AP , TP(I)(H) =

∑
{
∏n

i=1 I(Bi)|H : -B1, . . . , Bn ∈ P}.
The fixpoint semantics of a PSCLP is defined as the least

fixpoint of this immediate consequence operator. This fixpoint
can be constructed if TP is monotone on a complete lattice.
Lemma 10. If S is ordered by ⟨L,≤⟩, TP is ⪯-monotone.

Lemma 7 now gives us sufficient conditions for the exist-
ence of a constructive definition of our fixpoint semantics.
Corollary 1. If S is ordered by the complete lattice ⟨L,≤⟩
(e.g. when S is a complete idempotent semiring s.t. ⊤≤N

exists), there is an ordinal α such that TP
α(⊥⪯) is the least

fixpoint of TP, which coincides with TP’s least prefixpoint.
Example 4. We illustrate TP on the program from Example
1. The immediate consequence operator is instantiated as
TP(I)(H) = min{

∑n
i=1 I(Bi)|H : -B1, . . . , Bn ∈ P}. The

bottom interpretation ⊥⪯ for this semiring maps each semiring
element to itself and each atom to the bottom element ∞.

In view of Corollary 1, we obtain lfp(TP) stepwise as illus-
trated in Table 1. A fixpoint is reached at I4, as TP(I4) = I4.

To show the equivalence between our model-theoretic se-
mantics and our fixpoint semantics, we require that the prefix-
points of TP coincide with the semiring models of P .
Lemma 11. Let S be ordered by the complete lattice ⟨L,≤⟩.
I ∈ ISP is a semiring model of PSCLP(S) P iff TP(I) ⪯ I.

From here, we obtain the equivalence between the minimal
semiring model of P and the least fixpoint of TP.
Lemma 12. Let S be ordered by the complete lattice ⟨L,≤⟩.
For PSCLP(S) P , Ms

P = lfp(TP).

5 Generalized Negation for Semiring-based
Constraint Logic Programming

As presented up until this point, our formalism can only rep-
resent positive expressions. We can express that one may use

mass transit if there is an available train connection, but we
would have no good way to express that cycling is a good
alternative if it is not raining. We now extend our formalism
with a notion of negation so that negative expressions may
also be represented. This notion of negation will follow the
idea of negation as failure [Clark, 1977], where the negation
of an atom may be derived if the atom itself is not derivable.

Definition 10. Given a semiring S = ⟨L,+,×,0,1⟩ and a
set of atoms A, negated atoms are defined as not a where
a ∈ A. Atoms or their negation are referred to as literals,
and generalized atoms are literals or semiring elements. A
normal semiring-based constraint logic program based on S
(NSCLP(S) for short6) is a set of normal clauses of the form
H : -B1, . . . , Bn where H , the head, is an atom and each Bi

appearing in the (possibly empty) body is a generalized atom.

Normal logic programs, of course, interpret true and false
as each other’s negation. We generalize negation in normal
logic programs with a notion of negation similar to that used
in Gödel logics [Gödel, 1932], also used in the semiring-based
formalism of Eiter and Kiesel [Eiter and Kiesel, 2020b]. Here
we make use of 1 and 0, the neutral and absorbing elements of
the multiplicative operator ×; if an atom is interpreted with 0—
and it would thus nullify the interpretation of any conjunction
it appears in—we interpret its negation as 1, leaving the inter-
pretation of the further conjunction unaffected. Meanwhile, if
an atom is interpreted as anything other than 0—and it would
thus not nullify the interpretation of the conjunction it appears
in—we interpret its negation as 0, nullifying the interpretation
of any conjunction it appears in. Take, e.g. I4 from Example
3. We have I4(not car(a)) = ∞, as I4(car(a)) = 3 ̸= ∞.
Meanwhile, for rain(a)—an atom without a clause defin-
ing it—we have I4(not rain(a)) = 0, as I4(rain(a)) = ∞.
This notion of negation generalizes negation as known from
nlps while making only minimal assumptions on the semiring.
Note. A semiring permits only a single absorbing element for
×—namely 0; for any ×-absorbing element a, we have that
a× 0 = a = 0 = 0× a.

Definition 11. An interpretation I (Def. 4) is extended to

negated literals by I(not a) =

{
1 if I(a) = 0

0 otherwise
.

As is well-known from normal logic programs, introducing
negation leads to non-monotonicity of the TP-operator:
Example 5. Consider the NSCLP(B) P = {a : - not b}, where

true > false as usual. Now consider two interpretations
I1 = {a : true, b : true} and I2 = {b : false, b : false}.
We see that I2 ⪯ I1. Applying TP we get TP(I1)(a) =
I1(not b) = false, TP(I2)(a) = I2(not b) = true, and
TP(I1)(b) = false = TP(I2)(b). Note that, because there
is no predicate defining b, the value assigned by TP to b is
false—the neutral element for ∨ resulting from summation
over an empty set—under either interpretation. Comparing
the values assigned to a and b now shows that I2 ⪯ I1 but
TP(I2) ⪯̸ TP(I1).

Naturally, this behaviour means that previous results rely-
ing on the assumed ≤-monotonicity of + and × cannot be

6We write NSCLP when the semiring is clear or unimportant.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

presumed to hold for NSCLPs. Most importantly, the non-
monotonicity of TP means that we can no longer use Theorem
1 to construct its least fixpoint. In the following sections, we
will circumvent this behaviour by means of AFT.

6 Normal Semiring-based Constraint Logic
Programming in Approximation Fixpoint
Theory

In the previous section, we saw that we can no longer derive
the monotonicity of our immediate consequence operator from
the monotonicity of + and ×. This left us without a construct-
ive definition of the least fixpoint semantics for our program.
In this section, we capture our framework in AFT by approx-
imating the immediate consequence operator, thus bestowing
NSCLPs with the semantic notions recalled in Section 2.2.
Note. Hereafter, unless otherwise specified, we assume that
⟨L,≤⟩ is a complete lattice. Note that, by extension, ⟨ISP ,⪯⟩
is assumed to be a complete lattice as well.

6.1 Approximating the Immediate Consequence
Operator

We first consider the most precise, ultimate, approximator T u
P

of the immediate consequence operator TP.
Definition 12. T u

P (I1, I2) := (
∧
TP([I1, I2]),

∨
TP([I1, I2]))

for I1, I2 ∈ ISc
P .

While the ultimate approximator is the most precise approx-
imator, its evaluation is rather costly—requiring the evaluation
of TP for every interpretation in the input approximation, prior
to identifying the glb and lub. This typically results in a higher
computational complexity [Denecker et al., 2004]. For this
reason we also introduce another approximator which is not
necessarily as precise, but is more economical to use.

For this second approximator, we generalize the four-valued
operator originally introduced by [Fitting, 2002]. Recall that
consistent approximations (Il, Iu) ∈ ISc

P have a lower bound
Il—which is most conservative in its interpretation—and an
upper bound Iu—which is most generous in its interpretations.
In other words, for any atom A ∈ AP , Il(A) is the lowest
value of any I(A) with I ∈ [Il, Iu] and Iu(a) the highest. Now,
to approximate TP, we find a new lower bound taking the same
sum-product as we would when evaluating TP but—instead of
considering a single interpretation—we evaluate generalized
atoms without negation using Il (yielding the most conservat-
ive values) and evaluate negated atoms using Iu (nullifying
whenever possible). The new upper bound is found the same
way, switching Il and Iu. This way of approximating TP relies
on the additional assumption that 0 lies at the bottom of our
semiring ordering, such that nullifying an expression cannot
increase its value; this way, using the given upper bound to
evaluate negated literals results in lesser values and vice versa.
Definition 13. Let I1, I2 ∈ ISP ; H ∈ AP ; T f

Pl(I1, I2)(H) =∑
{
∏n

i=1 I
′(I1, I2)(Bi)|H : -B1, . . . , Bn ∈ P}; and

I′(I1, I2)(Bi) =

{
I2(Bi) if Bi is of the form notF

I1(Bi) otherwise
.

We define T f
P(I1, I2) = (I3, I4) s.t. for all A ∈ AP ,

I3(A) = T f
Pl(I1, I2)(A) and I4(A) = T f

Pl(I2, I1)(A).

It follows immediately from the results from [Denecker et
al., 2004, Theorem 5.6] that T u

P is an approximator of TP.
Somewhat surprisingly, T f

P is not generally ≤p-monotone:
Example 6. We present an example wherein T f

P is not ≤p-
monotone.

Take the semiring Z = ⟨Z∪{−∞,+∞},+, ·, 0, 1⟩ consist-
ing of the integers with positive and negative infinity, ordered
by ≤ as usual. Consider an NSCLP(Z) consisting of a single
clause p : - not q, r. Now consider two approximations A1 =
(I1, I2) and A2 = (I1, I3) where I1 = {p : −1, q : −1, r :
−1}, I2 = {p : 1, q : 1, r : 1}, and I3 = {p : 0, q : 0, r : 0}.
We see that A1 ≤p A2. We now apply T f

P to A1 and A2 and
get T f

P(A1) = ({p : 0, q : 0, r : 0}, {p : 0, q : 0, r : 0})
and T f

P(A2) = ({p : −1, q : 0, r : 0}, {p : 0, q : 0, r : 0}).
Even though A2 is more precise than A1, we do not have that
T f
P(A1)≤p T f

P(A2); in fact, T f
P(A1) is strictly more precise

than T f
P(A2). T f

P is not ≤p-monotone for this NSCLP. The
reason for this failure of ≤p-monotonicity is that the upper
bound of A2 being lower (i.e. more precise) than that of A1

(namely 0 instead of 1 for every atom) causes not q in the
rule body to evaluate to 1, which in turn “allows” the truth
value of r to determine the truth value of p. However, as this
“positive” influence of r means that p attains the negative value
I1(r) = −1, we obtain a new lower bound for p that is negat-
ive and thus lower than the new lower bound obtained in view
of A1. Thus, T f

P will not behave as an approximator when
applied to semirings that have elements below the 0-element.

Working out the same example for T u
P , we get T u

P (A1) =
({p : −1, q : 0, r : 0}, {p : 1, q : 0, r : 0}) and T u

P (A2) =
({p : −1, q : 0, r : 0}, {p : 0, q : 0, r : 0}). Here we do have
that T u

P (A1)≤p T u
P (A2). This is no coincidence, as T u

P is
guaranteed to be an approximator [Denecker et al., 2004].

Whenever the additive and multiplicative operators are
monotone and 0 is the minimum element of the semiring
ordering, T f

P is an approximator of TP:

Lemma 13. T f
P is an approximator of TP if and only if S is

positively ordered by the complete lattice ⟨L,≤⟩.
We can now construct the KK fixpoints of our two approxim-

ators, to approximate all the fixpoints of TP, thus generalizing
the semantics from PSCLPs to NSCLPs:

Corollary 2. There is an ordinal α such that T u
P

α(⊥≤p
) =

lfp≤p
(T u

P ). If S is positively ordered by the complete lattice
⟨L,≤⟩, the same holds for T f

P.

Note. If lfp≤p
(T u

P ) and lfp≤p
(T f

P) are exact, TP has only a
single fixpoint. This is the case in particular if P is positive.
Example 7. We illustrate the use of an approximator by con-
structing the KK fixpoint of T f

P for our running example, ex-
tended with three additional clauses to incorporate negation.
That is, P = {c1, . . . , c10} with:

c8: solution(a) :- path(a,d).
c9: path(a,d) :- bicycle(a).
c10: bicycle(a) :- 1, not rain(a).

T f
Pl is instantiated as T f

Pl(I1, I2)(H) =

min{
∑n

i=1 I
′(I1, I2)(Bi)|H : -B1, . . . , Bn ∈ P}. Table 2

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

⊥≤p A1 A2 A3 A4 ⊥≤p A1 A2 A3 A4

rain(a) (∞, 0) (∞,∞) (∞,∞) (∞,∞) (∞,∞) train(a) (∞, 0) (2, 2) (2, 2) (2, 2) (2, 2)
car(a) (∞, 0) (3, 3) (3, 3) (3, 3) (3, 3) bicycle(a) (∞, 0) (∞, 1) (1, 1) (1, 1) (1, 1)
mass transit(a) (∞, 0) (∞, 0) (2, 2) (2, 2) (2, 2) path(a, d) (∞, 0) (∞, 0) (∞, 1) (1, 1) (1, 1)
path(a, c) (∞, 0) (∞, 0) (3, 3) (3, 3) (3, 3) path(a, b) (∞, 0) (∞, 0) (∞, 0) (2, 2) (2, 2)
solution(a) (∞, 0) (∞, 0) (∞, 0) (3, 0) (1, 1)

Table 2: Application of T f
P for Example 7, starting from ⊥≤p .

shows the application of the corresponding T f
P, starting from

⊥≤p
, to construct the KK fixpoint A4.

6.2 Stable Semantics for Normal Semiring-based
Constraint Logic Programs

KK fixpoints of T u
P and T f

P approximate all fixpoints of TP,
but might sanction self-supporting reasoning:
Example 8. Consider an NSCLP(B) P consisting of two
clauses: p : - not q and q : - q. Applying T f

P gives us
T f
P(⊥≤p) = ({p : false, q : false}, {p : true, q : true}) =

⊥≤p ; thus ⊥≤p is the KK fixpoint of T f
P, which means that

q stays undecided because of the self-supporting rule q : - q,
which also keeps p undecided (in view of p : - not q).

The only reason for making q true in the upper bound of the
KK fixpoint in the example above is the fact that q was made
true in the upper bound of the least precise approximation.
This type of “because-I-said-so” reasoning is avoided by using
the stable operator and its ≤p-least fixpoint—the WF fixpoint,
which we study in this section.

We first observe these operators are well-defined:
Corollary 3. For any (I1, I2) ∈ ISc

P there are or-
dinals α and β such that (

∧
TP([·, I2]))α(⊥⪯) =

lfp(T u
P l(·, I2)), (

∨
TP([I1, ·]))β(⊥⪯) = lfp(T u

P u(I1, ·)),
and the stable operator for T u

P is S(T u
P )(I1, I2) =

(lfp(T u
P l(·, I2)), lfp(T

u
P u(I1, ·))). The same holds for T f

P if
S is positively ordered by ⟨L,≤⟩.

The fixpoints of these stable operators, called the stable
fixpoints of T u

P and T f
P respectively, are ≤v-minimal fixpoints

of their respective bilattice operator (this is an immediate
corollary of Theorem 4 of [Denecker et al., 2001]) and they
generalize the WF and stable model semantics known from
normal logic programs (see Theorem 2).

We can now also construct the well-founded fixpoints of our
two stable operators. These fixpoints approximate all stable
fixpoints of their respective bilattice operators.
Corollary 4. There is an ordinal α such that
S(T u

P )α(⊥≤p
) = lfp≤p

(S(T u
P )). If S is positively

ordered by ⟨L,≤⟩, the same is true for T f
P.

Example 9. To illustrate the use of the stable operator, we
apply S(T f

P) to the program presented in Example 8 We first
construct the WF fixpoint, by repeatedly applying S(T f

P),
starting from ⊥≤p

. Denoting interpretations as sets of true
atoms, we get the following. First, ⊥≤p = (∅, {p, q}). Then,
S(T f

P)((∅, {p, q})) = ({p}, {p}) since lfp(T f
Pl(·, {p, q})) =

{p} and lfp(T f
Pl(·, ∅)) = {p}. Finally, S(T f

P)({p}, {p}) =

({p}, {p}) so ({p}, {p}) is the WF fixpoint of T f
P. Since this

WF fixpoint is exact, we also know it to be the only stable
fixpoint of T f

P.
Finally, since our operators generalize those known from

normal logic programming, and AFT has been shown to faith-
fully capture all the main semantics from nlp [Pelov et al.,
2007], we faithfully generalize these main semantics:

Theorem 2. Given an NSCLP(B), the following hold: (1)
(I1, I2) is a stable fixpoint of T f

P iff it is a partial stable model
according to [Przymusinski, 1990]; (2) (I1, I2) is the WF
fixpoint of T f

P iff it is the WF model according to [Przymusinski,
1990]; (3) (I1, I2) is a stable fixpoint of T u

P iff it is a partial
stable model according to [Denecker et al., 2004]; (4) (I1, I2)
is the WF fixpoint of T u

P iff it is the WF model according to
[Denecker et al., 2004].

7 Conclusion, in view of Related Work
We have unified existing semantics [Bistarelli et al., 2001;
Khamis et al., 2023] for PSCLPs in this paper, and generalized
the syntax and semantics to allow for default negation on the
basis of AFT, resulting in a family of well-behaved semantics
that also generalizes the well-known semantics for nlps. To
our best knowledge only a few other approaches combine
semirings and logic programming, which we discuss now.

Firstly, Eiter and Kiesel 2020a provide a framework that
captures many approaches to answer set programs taking into
account algebraic constraints. In this work, terms (like a in
train(a)) are allowed to be interpreted using semiring values
and operations. However, while terms are assigned semiring
values, formulas are still interpreted in a discrete way, by
assigning the neutral element of × if it is true while assigning
the neutral element of the + if it is true. Thus, they use a
different interpretation of formulas, where semirings are seen
as oracles to evaluate the constraints. [Eiter and Kiesel, 2020a]
show that a host of different systems, e.g. integrations of
satisfaction modulo theories into ASP [Cabalar et al., 2020b;
Cabalar et al., 2020a], can be captured within their framework,
and the differences described above also apply to such systems.

Secondly, there is work combining logic programs with
semirings in generalizations of model-counting [Derkinderen
et al., 2024; Kimmig et al., 2017]. Such works differ from
ours in that their semantics are obtained by assigning every dis-
crete or Boolean interpretation of a logic program a semiring
value, generalizing the ProbLog semantics [Raedt et al., 2007],
whereas we use semiring values to build our interpretations.

Future work includes computational complexity, implement-
ations, and applying AFT-based notions such as stratification
[Vennekens et al., 2004], conditional independence [Heyninck,
2024] and non-determinism [Heyninck et al., 2024].

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

References
[Bistarelli et al., 1997] Stefano Bistarelli, Ugo Montanari,

and Francesca Rossi. Semiring-based constraint satisfac-
tion and optimization. J. ACM, 44(2):201–236, 1997.

[Bistarelli et al., 2001] Stefano Bistarelli, Ugo Montanari,
and Francesca Rossi. Semiring-based contstraint logic pro-
gramming: Syntax and semantics. ACM Trans. Program.
Lang. Syst., 23(1):1–29, 2001.

[Blyth, 2005] T.S. Blyth. Lattices and Ordered Algebraic
Structures. Universitext. Springer-Verlag, London, 2005.

[Cabalar et al., 2020a] Pedro Cabalar, Jorge Fandinno, Tor-
sten Schaub, and Philipp Wanko. An ASP Semantics for
Constraints Involving Conditional Aggregates. In ECAI
2020 - 24th European Conference on Artificial Intelligence,
29 August-8 September 2020, Santiago de Compostela,
Spain, August 29 - September 8, 2020 - Including 10th
Conference on Prestigious Applications of Artificial Intelli-
gence (PAIS 2020), pages 664–671, 2020.

[Cabalar et al., 2020b] Pedro Cabalar, Jorge Fandinno, Tor-
sten Schaub, and Philipp Wanko. A Uniform Treatment of
Aggregates and Constraints in Hybrid ASP. In Proceed-
ings of the 17th International Conference on Principles
of Knowledge Representation and Reasoning, KR 2020,
Rhodes, Greece, September 12-18, 2020., pages 193–202,
2020.

[Ceri et al., 1989] Stefano Ceri, Georg Gottlob, and Letizia
Tanca. What you Always Wanted to Know About Datalog
(And Never Dared to Ask). IEEE Trans. Knowl. Data Eng.,
1(1):146–166, 1989.

[Clark, 1977] Keith L. Clark. Negation as Failure. In Logic
and Data Bases, Symposium on Logic and Data Bases,
Centre d’études et de Recherches de Toulouse, France,
1977., pages 293–322, 1977.

[Cousot and Cousot, 1979] Patrick Cousot and Radhia
Cousot. Constructive versions of Tarski’s fixed point
theorems. Pacific Journal of Mathematics, 82(1):43–57,
May 1979.

[Denecker et al., 2001] Marc Denecker, Victor Marek, and
Miros Truszczynski. Approximations, Stable Operat-
ors, Well-Founded Fixpoints And Applications In Non-
monotonic Reasoning. Logic-based Artificial Intelligence,
December 2001.

[Denecker et al., 2004] Marc Denecker, Victor W. Marek,
and Miroslaw Truszczynski. Ultimate approximation and
its application in nonmonotonic knowledge representation
systems. Inf. Comput., 192(1):84–121, 2004.

[Derkinderen et al., 2024] Vincent Derkinderen, Robin Man-
haeve, Pedro Zuidberg Dos Martires, and Luc De Raedt.
Semirings for probabilistic and neuro-symbolic logic pro-
gramming. Int. J. Approx. Reason., 171:109130, 2024.

[Eiter and Kiesel, 2020a] Thomas Eiter and Rafael Kiesel.
ASP(AC ): Answer Set Programming with Algebraic Con-
straints. Theory Pract. Log. Program., 20(6):895–910,
2020.

[Eiter and Kiesel, 2020b] Thomas Eiter and Rafael Kiesel.
Weighted LARS for Quantitative Stream Reasoning. In
ECAI 2020 - 24th European Conference on Artificial Intel-
ligence, 29 August-8 September 2020, Santiago de Com-
postela, Spain, August 29 - September 8, 2020 - Including
10th Conference on Prestigious Applications of Artificial
Intelligence (PAIS 2020), pages 729–736, 2020.

[Fitting, 2002] Melvin Fitting. Fixpoint semantics for logic
programming a survey. Theor. Comput. Sci., 278(1-2):25–
51, 2002.

[Green et al., 2007] Todd J. Green, Gregory Karvounarakis,
and Val Tannen. Provenance semirings. In Proceedings
of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, June 11-13,
2007, Beijing, China, pages 31–40, 2007.

[Gödel, 1932] Kurt Gödel. Zum intuitionistischen aussagen-
kalkul. Anzeiger Akademie der Wissenschaften Wien,
mathematisch-naturwissenschaftliche Klasse, 69:65–66,
1932.

[Hannula, 2023] Miika Hannula. Conditional independence
on semiring relations. CoRR, abs/2310.01910, 2023.

[Heyninck et al., 2024] Jesse Heyninck, Ofer Arieli, and Bart
Bogaerts. Non-deterministic approximation fixpoint the-
ory and its application in disjunctive logic programming.
Artificial Intelligence, 331:104110, 2024.

[Heyninck, 2024] Jesse Heyninck. An algebraic notion of
conditional independence, and its application to know-
ledge representation (full version). arXiv preprint
arXiv:2412.13712, 2024.

[Khamis et al., 2023] Mahmoud Abo Khamis, Hung Q. Ngo,
Reinhard Pichler, Dan Suciu, and Yisu Remy Wang. Con-
vergence of Datalog over (Pre-) Semirings. SIGMOD Rec.,
52(1):75–82, 2023.

[Khamis et al., 2024] Mahmoud Abo Khamis, Hung Q. Ngo,
Reinhard Pichler, Dan Suciu, and Yisu Remy Wang. Con-
vergence of datalog over (Pre-) Semirings. J. ACM,
71(2):8:1–8:55, April 2024.

[Kimmig et al., 2017] Angelika Kimmig, Guy Van den
Broeck, and Luc De Raedt. Algebraic model counting.
J. Appl. Log., 22:46–62, 2017.

[Lloyd, 1987] John W. Lloyd. Foundations of Logic Program-
ming, 2nd Edition. Springer, 1987.

[Pelov et al., 2007] Nikolay Pelov, Marc Denecker, and
Maurice Bruynooghe. Well-founded and stable semantics
of logic programs with aggregates. Theory Pract. Log.
Program., 7(3):301–353, 2007.

[Przymusinski, 1990] Teodor C. Przymusinski. The Well-
Founded Semantics Coincides with the Three-Valued
Stable Semantics. Fundam. Inform., 13(4):445–463, 1990.

[Raedt et al., 2007] Luc De Raedt, Angelika Kimmig, and
Hannu Toivonen. ProbLog: A Probabilistic Prolog and Its
Application in Link Discovery. In IJCAI 2007, Proceedings
of the 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, January 6-12, 2007, pages
2462–2467, 2007.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Tarski, 1955] Alfred Tarski. A lattice-theoretical fixpoint the-
orem and its applications. Pacific Journal of Mathematics,
5(2):285–309, June 1955.

[Vennekens et al., 2004] Joost Vennekens, David Gilis, and
Marc Denecker. Splitting an operator: Algebraic modu-
larity results for logics with fixpoint semantics. CoRR,
cs.AI/0405002, 2004.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


