
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

X-KAN: Optimizing Local Kolmogorov-Arnold Networks via
Evolutionary Rule-Based Machine Learning

Hiroki Shiraishi1 , Hisao Ishibuchi2∗ and Masaya Nakata1∗

1Faculty of Engineering, Yokohama National University
2Department of Computer Science and Engineering, Southern University of Science and Technology

shiraishi-hiroki-yw@ynu.jp, hisao@sustech.edu.cn, nakata-masaya-tb@ynu.ac.jp

Abstract
Function approximation is a critical task in vari-
ous fields. However, existing neural network ap-
proaches struggle with locally complex or dis-
continuous functions due to their reliance on a
single global model covering the entire problem
space. We propose X-KAN, a novel method that
optimizes multiple local Kolmogorov-Arnold Net-
works (KANs) through an evolutionary rule-based
machine learning framework called XCSF. X-KAN
combines KAN’s high expressiveness with XCSF’s
adaptive partitioning capability by implementing
local KAN models as rule consequents and defining
local regions via rule antecedents. Our experimen-
tal results on artificial test functions and real-world
datasets demonstrate that X-KAN significantly out-
performs conventional methods, including XCSF,
Multi-Layer Perceptron, and KAN, in terms of ap-
proximation accuracy. Notably, X-KAN effectively
handles functions with locally complex or discon-
tinuous structures that are challenging for conven-
tional KAN, using a compact set of rules (average
7.2 rules). These results validate the effectiveness
of using KAN as a local model in XCSF, which
evaluates the rule fitness based on both accuracy
and generality. Our X-KAN implementation and
an extended version of this paper, including ap-
pendices, are available at https://doi.org/10.48550/
arXiv.2505.14273.

1 Introduction
Function approximation is a crucial task in various industrial
fields, including control system design and signal processing
[Bao et al., 2022; Mirza et al., 2024]. The function approxi-
mation problem addressed in this paper aims to discover the
most suitable approximation function for given data points,
and can be formalized as follows:

Given: D = {(xi, yi) ∈ [0, 1]n × R | i = 1, . . . ,M}, (1)

Find: f̂ = argmin
f̂

M∑
i=1

L
(
yi, f̂(xi)

)
, (2)

∗Corresponding authors.

where D is a training dataset, n is the input dimensionality,
M is the total number of data points in D, f̂ : Rn → R is
the approximation function, and L : R × R → R+

0 is the
loss function. The difficulty of this problem becomes partic-
ularly evident when dealing with functions that exhibit strong
nonlinearity or data with complex structures.

Multi-Layer Perceptrons (MLPs) [Cybenko, 1989], a type
of neural networks, have been widely studied as a repre-
sentative approach to function approximation. MLPs have
been proven to approximate any continuous function with ar-
bitrary precision using fixed nonlinear activation functions
[Hornik et al., 1989]. Their effectiveness has been demon-
strated in various fields, including modeling complex phys-
ical phenomena, image recognition, and recent large-scale
language models [de Zarzà et al., 2023; Preen et al., 2021;
Narayanan et al., 2021]. However, their reliance on fixed
nonlinear activation functions often requires large numbers
of parameters to approximate complex functions effectively,
which leads to inefficiencies [Mohan et al., 2024].

Kolmogorov-Arnold Networks (KANs) [Liu et al., 2024],
inspired by the Kolmogorov-Arnold representation theorem
[Kolmogorov, 1961; Arnol’d, 1957], have recently been pro-
posed as a promising alternative. Unlike MLPs, KANs utilize
spline-based learnable activation functions, enabling them to
achieve higher parameter efficiency and scalability for irreg-
ular functions. KANs have shown superior performance in
diverse applications such as image processing, time series
prediction, and natural language processing [Cheon, 2024;
Somvanshi et al., 2024; Livieris, 2024]. Given their early
successes, KANs are expected to attract increasing attention
for a wide range of applications [Xu et al., 2024].

Despite their advantages, KANs share a common limita-
tion with MLPs: they rely on a single global model to ap-
proximate the entire problem space. This approach implicitly
assumes that all data points follow the same underlying func-
tion. However, in reality, there are problems that cannot be
adequately solved by a single global model. For instance,
functions with local complexities (e.g., Fig 2) or discontinu-
ities (e.g., Fig. 3a) pose significant challenges. Such prob-
lems are frequently encountered in real-world applications,
including stock price prediction [Tang et al., 2019] and multi-
stage control system analysis [Gandomi and Alavi, 2011].

To address these concerns, the X Classifier System for
Function Approximation (XCSF) [Wilson, 2002], a widely

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://doi.org/10.48550/arXiv.2505.14273
https://doi.org/10.48550/arXiv.2505.14273

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

studied evolutionary rule-based machine learning algorithm
[Siddique et al., 2024], may offer a promising solution.
XCSF employs a divide-and-conquer approach that adap-
tively partitions the input space and assigns a distinct approx-
imation model to each local region. XCSF enables localized
modeling of complex functions, potentially complementing
KAN’s limitations in handling locally complex structures.

This paper proposes X-KAN, a function approximation
method that simultaneously utilizes KAN’s high representa-
tional power and XCSF’s adaptive partitioning capability. X-
KAN represents the entire input space using multiple local
KAN models. Specifically, it defines a local region in the rule
antecedent (i.e., IF part) and implements a KAN model in
the rule consequent (i.e., THEN part), expressing local KAN
models as rules. These IF-THEN rules are evolutionarily
optimized by the XCSF framework. X-KAN is expected to
improve approximation accuracy for functions with inherent
local nonlinearities or discontinuities compared to a conven-
tional single global KAN model.

The contributions of this paper are as follows:
• We integrate KANs into evolutionary rule-based ma-

chine learning for the first time by introducing KANs
into the XCSF framework. The effectiveness of this idea
is demonstrated through artificial and real-world func-
tion approximation problems.

• We propose the first algorithm to automatically optimize
multiple local KAN models. This results in a signifi-
cant reduction in testing approximation error compared
to conventional single global KAN models. We also ex-
plain that this effectiveness is due to XCSF’s fundamen-
tal principle of assigning high fitness to local models
(i.e., rules) with high generality and accuracy.

Note that recent studies have explored combining multiple
KAN models for improved accuracy in various settings. For
instance, Ensemble-KAN [De Franceschi et al., 2024] con-
structs several KANs using different subsets of input features
and aggregates their outputs. Federated-KANs [Zeydan et al.,
2025] focus on distributed training across federated clients.
Unlike these approaches, X-KAN uniquely integrates adap-
tive input space partitioning with local KAN optimization.
Moreover, in contrast to approaches that predefine domain de-
compositions [Howard et al., 2024], X-KAN simultaneously
learns both the optimal partitioning of the input space and the
parameters of local KAN models. This dual optimization en-
ables X-KAN to automatically discover and model complex
local structures and discontinuities in data, setting it apart
from existing methods.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background on MLPs, KANs, and XCSF. Sec-
tion 3 presents our proposed algorithm, X-KAN. Section 4 re-
ports and discusses experimental results. Section 5 presents
further studies. Finally, Section 6 concludes the paper.

2 Background
2.1 MLPs and KANs
Multi-Layer Perceptrons (MLPs)
Multi-Layer Perceptrons (MLPs) are feedforward neural net-
work architectures widely studied for function approximation

problems. For a three-layer MLP with n inputs, H hidden
nodes, and a single output, the forward computation can be
expressed in matrix form as:

MLP(x) = w(2) ◦ σ(W(1) ◦ x+ b(1)) + b(2), (3)

where W(1) ∈ RH×n is the weight matrix between the input
and hidden layers, w(2) ∈ R1×H is the weight vector be-
tween the hidden and output layers, b(1) ∈ RH and b(2) ∈ R
are bias terms, and σ is a fixed nonlinear activation function,
e.g., Sigmoid-weighted Linear Unit (SiLU) [Elfwing et al.,
2018]. The MLP architecture is illustrated in Appendix A.
According to [Yu et al., 2024], the total number of parame-
ters for this three-layer MLP, denoted as NMLP, is:

NMLP = (nH +H) + (H + 1) = H(n+ 2) + 1. (4)

Based on the Universal Approximation Theorem (UAT)
[Hornik et al., 1989], MLPs with a single hidden layer can
approximate any continuous function on compact subsets of
Rn to arbitrary precision, as detailed in Appendix B. How-
ever, MLPs often require a large number of parameters to ap-
proximate complex functions [Mohan et al., 2024].

Kolmogorov-Arnold Networks (KANs)
Kolmogorov-Arnold Networks (KANs) are neural networks
designed based on the Kolmogorov-Arnold representation
theorem (KART). Further details of KART are provided in
Appendix C. For a three-layer KAN with n inputs, the matrix
representation is:

KAN(x) = ϕ(2) ◦Φ(1) ◦ x, (5)

where:

Φ(1) = {ϕ(1)
q,p : [0, 1]→ R | p = 1, . . . , 2n+1; q = 1, . . . , n}

(6)
represents the first layer as a collection of learnable univariate
activation functions, and:

ϕ(2) = {ϕ(2)
p : R→ R | p = 1, . . . , 2n+ 1} (7)

represents the second layer as a collection of learnable uni-
variate activation functions. The KAN model expressed in
Eq. (5) is mathematically equivalent to the KART formula-
tion, which is presented in Eq. (20) of Appendix C.

Each activation function ϕ(x) is parameterized as:

ϕ(x) = wb · SiLU(x) + ws · spline(x), (8)

where SiLU(x) = x/(1+e−x), spline(x) =
∑G+K

i=1 ciBi(x)
with B-spline basis functions Bi(x) [De Boor, 1978], and cis,
wb, and ws are optimized via backpropagation. The KAN
architecture is illustrated in Appendix A. According to [Yu et
al., 2024], the total number of parameters for this three-layer
KAN, denoted as NKAN, is:

NKAN = (2n2 + 3n+ 1)(G+K) + (6n2 + 11n+ 5), (9)

where G is the number of B-spline grids and K is the B-spline
degree.

Unlike MLPs, which use a fixed activation function at each
node, KANs implement a learnable activation function on

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

each edge between nodes. This design allows KANs to cap-
ture complex nonlinear relations more efficiently than MLPs.
By leveraging KART, a KAN model handles the learning of
a high-dimensional function as the learning of multiple uni-
variate functions. This enables KANs to achieve higher pa-
rameter efficiency compared to MLPs, especially for prob-
lems involving complex data [Liu et al., 2024]. However, it is
important to note that KART guarantees representations only
for continuous functions. As a result, KAN may struggle to
approximate discontinuous functions effectively.

2.2 XCSF
Overview
Wilson’s X Classifier System for Function Approximation
(XCSF) [2002] is a rule-based piecewise function approxi-
mation method that implements linear regression models in
rule consequents and hyperrectangular partitions in rule an-
tecedents.1 XCSF combines evolutionary algorithms (EA)
and stochastic gradient descent to generate general linear
models with wide matching ranges in rule antecedents.

The key characteristics of XCSF are twofold. First, XCSF
employs a subsumption operator [Wilson, 1998] that aggre-
gates multiple similar rules into a single, more general rule.
Second, XCSF evaluates rule fitness based on both the num-
ber of aggregated rules and approximation error, optimizing
the rule structure based on this fitness. Based on these two
characteristics, XCSF promotes the acquisition of general
linear models and realizes its fundamental principle of effi-
ciently approximating data points with as few linear models
as possible. Appendix D provides further details of XCSF.

Extensions
Since Wilson [2002] proposed XCSF, various extensions have
been developed. For rule consequents, polynomial models
[Lanzi et al., 2005], MLPs [Lanzi and Loiacono, 2006], sup-
port vector machines [Loiacono et al., 2007], and radial basis
functions [Stein et al., 2018] have been proposed to enable the
approximation of more complex nonlinear functions. For rule
antecedents, hyperellipsoids [Butz et al., 2008], curved poly-
topes [Shiraishi et al., 2022], convex hulls [Lanzi and Wil-
son, 2006], gene expression programming [Wilson, 2006],
and MLPs [Bull and O’Hara, 2002] have been introduced to
achieve more flexible input space partitions. These extensions
contribute to improving XCSF’s approximation accuracy. Re-
cently, XCSF was first applied to unsupervised autoencoding
tasks by using MLPs as rule antecedents and autoencoders as
rule consequents [Preen et al., 2021].

These extensions show XCSF’s extensibility and validate
XCSF’s core principle of decomposing complex input spaces
through rules. Our proposed integration of KAN into XCSF’s
rule consequents leverages KAN’s universal approximation
capabilities [Hecht-Nielsen, 1987], guaranteed by KART, to

1XCSF is a representative method of Learning Classifier Sys-
tems (LCS) [Urbanowicz and Browne, 2017], a family of rule-based
machine learning algorithms. Historically, rules in LCS, including
XCSF, are called classifiers even when they work as regression mod-
els rather than classification models [Pätzel and Hähner, 2022]. To
avoid this ambiguity in terminology, we use the term rule.

achieve superior approximation accuracy compared to tradi-
tional XCSF approaches.

3 X-KAN
We introduce X-KAN, a function approximation method that
optimizes multiple local KAN models. Fig. 1 schematically
illustrates X-KAN. X-KAN leverages the strengths of KAN’s
high expressiveness and XCSF’s adaptive partitioning to ad-
dress the limitations of conventional global function approxi-
mators. X-KAN has three key characteristics:

• Local KAN Rules. Each rule in X-KAN consists of an
antecedent defined as an n-dimensional hyperrectangle
and a consequent implemented as a single KAN model.
This structure allows each rule to play a role as a local
function approximator, activating only for the local re-
gion specified by its antecedent.

• Dual Optimization. Utilizing the XCSF framework, X-
KAN constructs general and accurate local KAN mod-
els with wide matching ranges. The rule antecedents are
optimized through the EA, while the rule consequents
(local KAN models) are optimized via backpropagation.
This dual optimization enables X-KAN to adaptively
place optimal local KAN models in each local region.

• Divide-and-Conquer. Unlike KAN that operates as a sin-
gle global function approximator, X-KAN functions as
a divide-and-conquer algorithm by integrating multiple
local KAN models having distinct activation functions.

3.1 Rule Representation
An n-dimensional rule k in X-KAN is expressed as:

Rule k : IF x1 ∈
[
lk1 , u

k
1

]
and . . . and xn ∈

[
lkn, u

k
n

]
THEN y = KANk(x) WITH F k, (10)

where:
• Ak = (lk,uk) = (lki , u

k
i)

n
i=1 is the antecedent as a hy-

perrectangle with bounds lk,uk ∈ [0, 1]n and lki < uk
i

for all i [Stone and Bull, 2003];
• KANk(·) is the consequent KAN model of rule k;
• F k ∈ (0, 1] is the fitness value that evaluates both accu-

racy and generality of rule k.

Figure 1: An example of a ruleset of X-KAN with three rules, k1, k2,
and k3, in an input space [0, 1]2. X-KAN partitions the input space
into local hyperrectangular regions defined by rule antecedents and
performs local function approximation within each region using
a KAN model implemented in the rule consequent. Appendix E
schematically illustrates the architecture of X-KAN.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 1 X-KAN training mode
Input: the training dataset D = (X ,Y) = {(x, y) ∈ [0, 1]n × R};
Output: the compacted ruleset PC ;
1: Initialize time t as t← 0;
2: Initialize ruleset P as P ← ∅;
3: while t < the maximum number of iterations do
4: Observe a data point (x, y) ∈ D;
5: Create match setM⊆ P as in Eq. (11);
6: ifM = ∅ then
7: Do covering to generate a new rule kc;
8: Insert kc to P andM;
9: end if

10: Update F k for ∀k ∈M as in Eq. (16);
11: if t−

∑
k∈M numk · tsk/

∑
k∈M numk > θEA then

12: Update time stamp tsk for ∀k ∈M as tsk ← t;
13: Run EA onM;
14: Do subsumption;
15: end if
16: Update time t as t← t+ 1;
17: end while
18: Create compacted ruleset PC ⊆ P as in Eq. (17);
19: return PC

Each rule k maintains four key parameters: (i) Error ϵk ∈
R+

0 , representing absolute approximation error of the con-
sequent KAN model; (ii) Accuracy κk ∈ (0, 1], calculated
based on the error; (iii) Generality numk ∈ N0, indicating the
number of aggregated rules; and (iv) Time stamp tsk ∈ N0,
representing the last time the rule was a candidate for the EA.

Ak, KANk(·), ϵk, and κk are uniquely determined and
fixed when a rule is generated, either during the covering op-
eration or by the EA. In contrast, F k, numk, and tsk are dy-
namically updated throughout the training process.

3.2 Algorithm
X-KAN operates in two distinct modes: training mode and
testing mode. In training mode, X-KAN explores the search
space to identify an accurate and general ruleset using a train-
ing dataset. Afterward, it performs rule compaction to pro-
duce a compact ruleset, denoted as PC . In testing mode, PC

is used to predict the output for testing data points.

Training Mode
Algorithm 1 presents our algorithm for X-KAN training.

Match Set Formation and Covering Operation. Let P be
the current population of rules. At time t, a data point (x, y) is
randomly sampled from the training dataset D (line 4). Sub-
sequently, a match setM is formed as (line 5):

M = {k ∈ P | x ∈ Ak}. (11)

If M = ∅, a new rule kc satisfying x ∈ Akc is generated
and inserted into both P andM (lines 6–9). This operation
is referred to as covering [Wilson, 2002]. Specifically, using
hyperparameters r0 ∈ (0, 1] and P# ∈ [0, 1], the antecedent
of kc, Akc = (lkc ,ukc), is determined as:(
lkc
i , ukc

i

)n
i=1

=

{
(0, 1) if U [0, 1) < P#,

(xi − U(0, r0], xi + U(0, r0]) otherwise,
(12)

where U(0, r0] represents a random number uniformly sam-
pled from the range (0, r0]. Eq. (12) ensures that the range for
xi is set to Don’t Care with probability P#, while otherwise
it is set to a region encompassing xi, based on the hyperpa-
rameter r0. Next, the subset of data points within the range
of kc, denoted as Dkc

, is constructed as:

Dkc
= {(x, y) ∈ D | x ∈ Akc}. (13)

Using this dataset, the local KAN model of kc, KANkc(·), is
trained via backpropagation for a specified number of epochs.
The error of kc, ϵkc , is then calculated as:

ϵkc =
1

|Dkc
|

∑
(x,y)∈Dkc

|y −KANkc(x)|. (14)

The error serves as the absolute error for the consequent KAN
model of the rule. After that, the accuracy of kc, κkc , is cal-
culated as:

κkc =

{
1 if ϵkc < ϵ0,

ϵ0/ϵ
kc otherwise,

(15)

where ϵ0 ∈ R+ is a target error threshold (hyperparame-
ter). Subsequently, key parameters are initialized as follows:
F kc = 0.01, numkc = 1, and tskc = 0.

Rule Fitness Update. The fitness of each rule k ∈ M is
updated using the Widrow-Hoff learning rule [Widrow and
Hoff, 1960] as (line 10):

F k ← F k + β

(
κk · numk∑

q∈M κq · numq
− F k

)
, (16)

where β ∈ [0, 1] is the learning rate. As indicated by Eq.
(15), X-KAN (based on XCSF) defines a rule k as accurate
when its approximation error satisfies ϵk < ϵ0 (i.e., κk = 1).
Consequently, the fitness F k, as defined in Eq. (16), assigns
higher values to rules with both smaller approximation errors
ϵk (i.e., higher accuracy κk) and larger generality numk.

Application of the EA. After updating the rules, the EA is
applied to M (lines 11–15). The EA is triggered when the
average time since its last application over all rules inM ex-
ceeds a threshold defined by the hyperparameter θEA. In this
case, two parent rules kp1 and kp2 are selected from M us-
ing tournament selection with a tournament size of τ . The
selected parent rules are duplicated to create two offspring
rules ko1 and ko2 . Crossover is applied to their antecedents
with a probability of χ. During crossover, for each input di-
mension i, the lower bound li and the upper bound ui are
swapped between the two parents with a probability of 0.5
(i.e., uniform crossover). Subsequently, mutation is applied
to each input dimension of the offspring with a probability of
µ. In mutation, a random value sampled from a uniform dis-
tribution, U [−m0,m0), is added to the bounds lko

i and uko
i ,

where ko ∈ {ko1 , ko2} and m0 ∈ R+ is the maximum mu-
tation magnitude. If the resulting offspring rules ko have an-
tecedents that differ from their parents, their parameters are
reinitialized as follows:

1. Construct the subset of data points within the antecedent
range of ko, denoted as Dko

, using Eq. (13).

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

2. Initialize KANko(·) and train it via backpropagation for
a specified number of epochs.

3. Calculate ϵko and κko using Eqs. (14) and (15).
4. Set F ko = 0.1 · f , where f = (F kp1 + F kp2)/2 if

crossover occurs; otherwise, f = F ko . Set numko = 1.
Finally, ko1 and ko2 are added to P if they are not subsumed
by their parent rules (described below). If the total generality
in P ,

∑
k∈P numk, exceeds the maximum ruleset size N , two

rules are deleted, as in [Preen et al., 2021].
Subsumption Operator. X-KAN employs a subsumption

operator [Wilson, 1998] to aggregate offspring rules into
more general parent rules (line 14). Specifically, for a parent
rule kp ∈ {kp1 , kp2} and an offspring rule ko ∈ {ko1 , ko2}:

1. The parent rule must be more general than the offspring
rule (i.e., Akp ⊇ Ako).

2. The parent rule must be accurate (i.e., κkp = 1).
If these conditions are met, the generality of the parent rule is
updated as numkp ← numkp +numko and the offspring rule
ko is removed from P .

Rule Compaction. After the training is completed, the rule
compaction algorithm [Orriols-Puig et al., 2008] is applied
to obtain a compacted ruleset, denoted as PC (line 18). The
compacted ruleset is defined as:

PC =
⋃
x∈D

{
arg max

k∈M
F k

}
. (17)

For each training data point x, only the rule with the highest
fitness (called single winner rule) in its match setM = {k ∈
P | x ∈ Ak} is copied to PC . Appendix H.1 shows that the
compaction enables X-KAN to reduce the number of rules by
up to 72% while maintaining approximation accuracy.

Testing Mode
For a testing data point xte, X-KAN computes the predicted
value ŷte using PC , obtained during the training mode, and
the single winner-based inference scheme [Ishibuchi et al.,
1999]. The prediction is calculated as:

ŷte = KANk∗
(xte), where k∗ = arg max

k∈Mte
(F k), (18)

with Mte = {k ∈ PC | xte ∈ Ak} as the testing match
set and k∗ as the single winner rule. This inference ensures
that only the rule with the highest fitness, which reflects both
accuracy and generality, contributes to the prediction.

4 Experiments
4.1 Experimental Setup
We evaluate X-KAN’s performance on eight function approx-
imation problems: four test functions shown in Fig. 2 from
[Stein et al., 2018] and four real-world datasets from [Hei-
der et al., 2023]. For details of these problems, kindly refer
to Appendices F and G. For each test function, we uniformly
sample 1,000 data points to create a dataset.

We compare X-KAN against three baseline methods:
XCSF, MLP, and KAN. Through the comparison with XCSF,
we validate the effectiveness of extending rule consequents

from linear models to KAN models. The comparison with
MLP, a standard baseline in machine learning, allows us to
evaluate X-KAN’s overall performance. Finally, comparing
X-KAN with KAN enables us to examine the benefits of ex-
tending from a single global model to multiple local models.

The hyperparameters for XCSF and X-KAN are set to r0 =
1.0, P# ∈ {0.0 (test functions), 0.8 (real-world datasets)},
ϵ0 = 0.02, β = 0.2, θEA = 100, τ = 0.4, χ = 0.8, µ = 0.04,
m0 = 0.1, and N = 50. The maximum number of train-
ing iterations for XCSF and X-KAN is 10 epochs. The same
architecture in Eq. (5) is used for KAN and each rule in X-
KAN, which consists of three layers with 2n + 1 nodes in
the hidden layer, where G = 3 and K = 3 for B-spline pa-
rameters. The three-layer MLP architecture in Eq. (3) with H
hidden nodes is used together with SiLU activation functions.
For a fair comparison, H is set for each problem such that the
total number of parameters in MLP (NMLP in Eq. (4)) equals
that of KAN (NKAN in Eq. (9))2. All network hyperparame-
ters follow the original KAN authors’ implementation3, with
training conducted for 10 epochs. Input features are normal-
ized to [0, 1], and data targets are normalized to [−1, 1].

Performance evaluation uses Mean Absolute Error (MAE)
on test data over 30 trials of Monte Carlo cross-validation,
with 90% training and 10% testing data splits. Statistical
significance is assessed through Wilcoxon signed-rank tests
(α = 0.05) for each problem, while overall performance is
compared using Friedman tests with Holm corrections, re-
porting both raw and Holm-adjusted p-values.

4.2 Results
Table 1 presents the testing MAE of each method and the
number of rules in the compacted ruleset PC of XCSF and
X-KAN at the end of training. For XCSF and X-KAN, the
MAE values are calculated using their compacted rulesets.

The results show that X-KAN achieves significantly lower
testing MAE than all baseline methods across all problems,
with statistical significance confirmed by Holm-adjusted p-
values (pHolm < 0.05). Regarding the number of rules,
XCSF generates 6.2 rules on average while X-KAN gener-
ates 7.2 rules. Although X-KAN generates slightly more
rules than XCSF, this difference is not statistically significant
(p = 0.461). Appendix H.2 shows that X-KAN’s training
MAE is also significantly lower than those of the baseline
methods. These findings demonstrate that X-KAN outper-
forms XCSF, MLP, and KAN in function approximation ac-
curacy while maintaining compact rulesets.

Note that during inference, X-KAN uses only a single rule
with an identical parameter count to the (global) KAN, en-
suring a fair comparison of their core approximation capabili-
ties. Appendix H.3 shows that X-MLP, which replaces KANs
with MLPs in our framework, outperforms the global MLP
but is still outperformed by X-KAN. Appendix H.4 shows
that X-KAN significantly outperforms WideKAN, which ex-
pands the hidden layer to match X-KAN’s total parameter

2For example, in a two-dimensional input problem (n = 2),
KAN has (2 ·22+3 ·2+1)(3+3)+(6 ·22+11 ·2+5) = 141 pa-
rameters. Therefore, H is set to 35 for MLP to match this parameter
count, as 35 · (2 + 2) + 1 = 141.

3https://github.com/KindXiaoming/pykan

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/KindXiaoming/pykan

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

(a) f1: Eggholder function (b) f2: Sine-in-Sine function (c) f3: Cross function (d) f4: Styblinski-Tang function

Figure 2: The two-dimensional test functions f1-f4.

8 DATASETS TESTING MEAN ABSOLUTE ERROR (MAE) #RULES IN PC

Abbr. Name #Instances n XCSF MLP KAN X-KAN XCSF X-KAN
f1 Eggholder Function 1000 2 0.27970 − 0.27170 − 0.22220 − 0.16970 5.600 + 9.200
f2 Sine-in-Sine Function 1000 2 0.64870 − 0.63820 − 0.44610 − 0.12730 4.600 + 10.50
f3 Cross Function 1000 2 0.33190 − 0.30570 − 0.06662 − 0.02379 6.767 − 4.867
f4 Styblinski-Tang Function 1000 2 0.18070 − 0.24100 − 0.12850 − 0.06922 4.833 + 6.400

ASN Airfoil Self-Noise 1503 5 0.19240 − 0.19990 − 0.08407 − 0.05533 5.633 + 7.900
CCPP Combined Cycle Power Plant 9548 4 0.09288 − 0.09521 − 0.08684 − 0.07871 8.567 ∼ 7.800

CS Concrete Strength 1030 8 0.19050 − 0.16490 − 0.08833 − 0.07842 7.233 ∼ 7.900
EEC Energy Efficiency Cooling 768 8 0.12560 − 0.12290 − 0.05232 − 0.02729 6.233 − 2.667

Rank 3.62↓†† 3.38↓†† 2.00↓†† 1.00 1.38↑ 1.62
Number of +/− / ∼ 0/8/0 0/8/0 0/8/0 - 4/2/2 -

p-value 0.00781 0.00781 0.00781 - 0.461 -
pHolm-value 0.0234 0.0234 0.0234 - - -

Table 1: Dataset characteristics and experimental results. Symbols +/ − / ∼: significantly better/worse/similar vs. X-KAN (Wilcoxon
signed-rank test). Arrows ↑ / ↓: rank improvement/decline vs. X-KAN. †/††: significance at α = 0.05 (raw/Holm-adjusted p-values).

count. These results confirm that X-KAN’s advantage stems
from its evolutionary search mechanism enabling special-
ized local approximations, rather than merely from increased
parameters—a benefit that cannot be achieved simply by in-
creasing the size of a single global model like WideKAN.

4.3 Discussion
As shown in Fig. 2, f1 and f2 exhibit strong nonlinearity,
making them challenging for XCSF’s linear models to ap-
proximate effectively. This is reflected in Table 1, where
XCSF shows the highest MAE for these problems (high-
lighted in peach). Conversely, XCSF’s linear models perform
well on problems with mixed linear and nonlinear character-
istics (f4) and predominantly linear problems (CCPP [Heider
et al., 2023]), even outperforming MLP. These results align
with previous findings that XCSF’s performance strongly de-
pends on problem linearity [Lanzi et al., 2007].

X-KAN significantly outperforms the compared algo-
rithms for all problems. Most notably, on f2, which features
strong input interdependencies and high curvature, X-KAN
shows large improvement over KAN. Regarding the number
of rules, X-KAN generates more rules (9–10) for highly non-
linear problems (f1, f2) and fewer rules (4–6) for problems
with lower interdependency and curvature (f3, f4), demon-
strating its ability to adjust to problem complexity.

5 Further Studies
5.1 Analysis on a Discontinuous Function
Since KAN is based on KART, which is designed for contin-
uous functions, it may struggle to approximate discontinuous
functions effectively. To validate this hypothesis, we con-
ducted experiments using 1,000 data points samples from a
discontinuous function with jump discontinuity used in [Shoji
et al., 2023], as shown in Fig. 3a. For details of the function,
kindly refer to Appendix I. The experimental settings fol-
lowed Section 4.1, except for P# = 0.0, r0 = 0.5, ϵ0 = 0.01,
maximum training iterations of 50 epochs for XCSF and X-
KAN, and 50 epochs for MLP, KAN, and X-KAN’s local
KAN models. Figs. 3b and 3c show the prediction plots from
the best trials of KAN and X-KAN, respectively. Fig. 3d il-
lustrates the decrease of the testing MAE during rule learning
for XCSF and X-KAN, with the final MAE values for MLP
and KAN (dashed horizontal lines).

Fig. 3b demonstrates that KAN fails to detect discontinu-
ities, instead producing a smooth continuous function approx-
imation. In contrast, Fig. 3c shows that X-KAN successfully
identifies discontinuities and performs piecewise function ap-
proximation using three rules. The decreasing MAE trends
by XCSF and X-KAN in Fig. 3d validate the effectiveness of
local approximation.

These results demonstrate X-KAN’s ability to handle dis-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

(a) Training dataset (b) Prediction results of KAN (c) Prediction results of X-KAN (d) Testing MAE trends

Figure 3: Performance analysis of each method on a discontinuous function. (c) shows that X-KAN generated three rules.

TRAINING MAE TESTING MAE #RULES IN PC

X-KAN X-KANκ X-KAN X-KANκ X-KAN X-KANκ
f1 0.10780 0.08943 + 0.16970 0.16880 ∼ 9.200 18.60 −
f2 0.07356 0.07860 ∼ 0.12730 0.12940 ∼ 10.50 16.30 −
f3 0.01927 0.01949 ∼ 0.02379 0.02397 ∼ 4.867 9.633 −
f4 0.05171 0.04586 ∼ 0.06922 0.06070 ∼ 6.400 11.83 −

ASN 0.03548 0.03073 + 0.05533 0.05461 ∼ 7.900 19.97 −
CCPP 0.05691 0.05971 ∼ 0.07871 0.08174 − 7.800 17.53 −

CS 0.02687 0.02497 ∼ 0.07842 0.08014 ∼ 7.900 17.40 −
EEC 0.01561 0.01490 ∼ 0.02729 0.03004 − 2.667 7.367 −
Rank 1.62 1.38↑ 1.38 1.62↓ 1.00 2.00↓†

+/− / ∼ - 2/0/6 - 0/2/6 - 0/8/0
p-value - 0.383 - 0.547 - 0.00781

Table 2: Comparison of fitness functions: X-KAN (accuracy and
generality) vs. X-KANκ (accuracy only). Notation follows Table 1.

continuous functions through its adaptive partitioning ap-
proach, overcoming a fundamental limitation of KAN.

5.2 Role of Generality in Fitness
In Table 1, X-KAN never shows higher testing MAE than
KAN. This high performance can be attributed to X-KAN
(XCSF)’s fundamental principle of assigning fitness based
on both accuracy κk and generality numk. To validate this
hypothesis, we conducted experiments comparing X-KAN
against its variant that assigns fitness solely based on accu-
racy (denoted as X-KANκ). For X-KANκ, the fitness update
rule was simplified to F k ← κk. The experimental settings
followed Section 4.1.

In Table 2, X-KANκ achieved significantly lower training
MAE than X-KAN on two problems (f1, ASN). However, for
testing MAE, X-KANκ performed significantly worse than
X-KAN on two problems (CCPP, EEC). This performance
degradation can be attributed to the increased probability of
selecting parent rules with high accuracy but low generality
(overfitting to training data) when generality is not considered
in fitness calculation. Consequently, X-KANκ generated ap-
proximately twice as many rules as X-KAN due to reduced
generalization pressure.

These findings demonstrate that considering both accuracy
and generality, as implemented in XCSF and X-KAN, is cru-
cial for improving generalization performance in evolution-
ary rule-based machine learning models.

5.3 Runtime Analysis
Fig. 4 shows the average runtime per trial under an experi-
mental environment running Ubuntu 24.04.1 LTS with an In-
tel® Core™ i9-13900F CPU (5.60 GHz) and 32GB RAM.

10−1 100 101 102
XCSF.jl

MLP.py

KAN.py

X-KAN.jl+.py

0.13

1.24

6.01

42.9

Runtime (sec.)

Figure 4: Average runtime per trial. Extensions .jl/.py indicate
implementations in Julia/Python.

While MLP, KAN, and local KAN models in X-KAN were
implemented in Python by the original KAN authors, the
XCSF and X-KAN frameworks were implemented in Julia
[Bezanson et al., 2017] by the authors. X-KAN calls Python-
based local KAN models from its Julia framework. Note that,
due to the mixed-use of programming languages, the runtime
comparisons should be interpreted with caution.

As shown in Fig. 4, KAN requires approximately five
times more runtime than MLP, mainly due to the computa-
tional overhead of recursive B-spline functions [Qiu et al.,
2024]. Furthermore, X-KAN requires approximately seven
times more runtime than KAN, as each rule’s consequent im-
plements a separate KAN model that must be trained.

One idea to decrease the runtime of X-KAN is to decrease
the number of rules by increasing the generality of each rule.
For example, dynamic adjustment of the target error threshold
ϵ0 used in subsumption operations [Hansmeier et al., 2020]
can reduce the total number of rules and shorten runtime.

6 Concluding Remarks
We introduced X-KAN which optimizes multiple local KAN
models through an evolutionary framework based on XCSF.
By defining local regions via rule antecedents and implement-
ing local KAN models as rule consequents, X-KAN effec-
tively combines KAN’s expressiveness with XCSF’s adaptive
partitioning capability. Our experimental results showed that
X-KAN significantly outperforms XCSF, MLP, and KAN for
various function approximation problems with 7.2 rules on
average. This improvement stems from X-KAN (XCSF)’s
principle of assigning fitness based on both accuracy and gen-
erality, ensuring high generalization performance.

Future work will explore extending X-KAN as a piecewise
symbolic regressor capable of extracting interpretable expres-
sions inspired by [Chen et al., 2024; Liu et al., 2024].

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work was supported by JSPS KAKENHI (Grant Nos.
JP23KJ0993, JP25K03195), National Natural Science Foun-
dation of China (Grant No. 62376115), and Guangdong
Provincial Key Laboratory (Grant No. 2020B121201001).

References
[Arnol’d, 1957] Vladimir Igorevich Arnol’d. On functions of

three variables. In Doklady Akademii Nauk, volume 114,
pages 679–681. Russian Academy of Sciences, 1957.

[Bao et al., 2022] Dan Bao, Xiaoling Liang, Shuzhi Sam Ge,
and Baolin Hou. Adaptive neural trajectory tracking con-
trol for n-dof robotic manipulators with state constraints.
IEEE Transactions on Industrial Informatics, 19(7):8039–
8048, 2022.

[Bezanson et al., 2017] Jeff Bezanson, Alan Edelman, Ste-
fan Karpinski, and Viral B Shah. Julia: A fresh approach
to numerical computing. SIAM review, 59(1):65–98, 2017.

[Bull and O’Hara, 2002] Larry Bull and Toby O’Hara.
Accuracy-based neuro and neuro-fuzzy classifier systems.
In Proceedings of the 4th Annual Conference on Genetic
and Evolutionary Computation, pages 905–911, 2002.

[Butz et al., 2008] Martin V Butz, Pier Luca Lanzi, and
Stewart W Wilson. Function approximation with XCS:
Hyperellipsoidal conditions, recursive least squares, and
compaction. IEEE Transactions on Evolutionary Compu-
tation, 12(3):355–376, 2008.

[Chen et al., 2024] Xia Chen, Guoquan Lv, Xinwei Zhuang,
Carlos Duarte, Stefano Schiavon, and Philipp Geyer. In-
tegrating symbolic neural networks with building physics:
A study and proposal. arXiv preprint arXiv:2411.00800,
2024.

[Cheon, 2024] Minjong Cheon. Kolmogorov-arnold net-
work for satellite image classification in remote sensing.
arXiv preprint arXiv:2406.00600, 2024.

[Cybenko, 1989] George Cybenko. Approximation by su-
perpositions of a sigmoidal function. Mathematics of con-
trol, signals and systems, 2(4):303–314, 1989.

[De Boor, 1978] Carl De Boor. A practical guide to splines.
Springer-Verlag google schola, 2:4135–4195, 1978.

[De Franceschi et al., 2024] Gianluca De Franceschi,
Inês W Sampaio, Stefan Borgwardt, Joseph Kambeitz,
Lana Kambeitz-Ilankovic, Eva Meisenzahl, Raimo KR
Salokangas, Rachel Upthegrove, Stephen J Wood, Niko-
laos Koutsouleris, et al. Ensemble-kan: Leveraging
kolmogorov arnold networks to discriminate individuals
with psychiatric disorders from controls. In International
Workshop on Applications of Medical AI, pages 186–197.
Springer, 2024.

[de Zarzà et al., 2023] I de Zarzà, J de Curtò, and Carlos T
Calafate. Optimizing neural networks for imbalanced data.
Electronics, 12(12):2674, 2023.

[Elfwing et al., 2018] Stefan Elfwing, Eiji Uchibe, and Kenji
Doya. Sigmoid-weighted linear units for neural network

function approximation in reinforcement learning. Neural
networks, 107:3–11, 2018.

[Gandomi and Alavi, 2011] Amir Hossein Gandomi and
Amir Hossein Alavi. Multi-stage genetic programming:
a new strategy to nonlinear system modeling. Information
Sciences, 181(23):5227–5239, 2011.

[Hansmeier et al., 2020] Tim Hansmeier, Paul Kaufmann,
and Marco Platzner. An adaption mechanism for the er-
ror threshold of XCSF. In Proceedings of the 2020 Ge-
netic and Evolutionary Computation Conference Compan-
ion, pages 1756–1764, 2020.

[Hecht-Nielsen, 1987] Robert Hecht-Nielsen. Kolmogorov’s
mapping neural network existence theorem. In Proceed-
ings of the international conference on Neural Networks,
volume 3, pages 11–14. IEEE press, 1987.

[Heider et al., 2023] Michael Heider, Helena Stegherr, Ro-
man Sraj, David Pätzel, Jonathan Wurth, and Jörg Hähner.
Suprb in the context of rule-based machine learning meth-
ods: A comparative study. Applied Soft Computing,
147:110706, 2023.

[Hornik et al., 1989] Kurt Hornik, Maxwell Stinchcombe,
and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366,
1989.

[Howard et al., 2024] Amanda A Howard, Bruno Jacob,
Sarah H Murphy, Alexander Heinlein, and Panos Stinis.
Finite basis kolmogorov-arnold networks: domain decom-
position for data-driven and physics-informed problems.
arXiv preprint arXiv:2406.19662, 2024.

[Ishibuchi et al., 1999] Hisao Ishibuchi, Tomoharu
Nakashima, and Tadahiko Murata. Performance eval-
uation of fuzzy classifier systems for multidimensional
pattern classification problems. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics),
29(5):601–618, 1999.

[Kolmogorov, 1961] Andreı̆ Nikolaevich Kolmogorov. On
the representation of continuous functions of several vari-
ables by superpositions of continuous functions of a
smaller number of variables. American Mathematical So-
ciety, 1961.

[Lanzi and Loiacono, 2006] Pier Luca Lanzi and Daniele
Loiacono. XCSF with neural prediction. In 2006 IEEE
international conference on Evolutionary Computation,
pages 2270–2276. IEEE, 2006.

[Lanzi and Wilson, 2006] Pier Luca Lanzi and Stewart W
Wilson. Using convex hulls to represent classifier con-
ditions. In Proceedings of the 8th annual conference on
Genetic and evolutionary computation, pages 1481–1488,
2006.

[Lanzi et al., 2005] Pier Luca Lanzi, Daniele Loiacono,
Stewart W Wilson, and David E Goldberg. Extending
XCSF beyond linear approximation. In Proceedings of the
7th annual conference on Genetic and evolutionary com-
putation, pages 1827–1834, 2005.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Lanzi et al., 2007] Pier Luca Lanzi, Daniele Loiacono,
Stewart W Wilson, and David E Goldberg. Generalization
in the XCSF classifier system: Analysis, improvement,
and extension. Evolutionary Computation, 15(2):133–168,
2007.

[Liu et al., 2024] Ziming Liu, Yixuan Wang, Sachin Vaidya,
Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y Hou, and Max Tegmark. KAN: Kolmogorov-
arnold networks. arXiv preprint arXiv:2404.19756, 2024.

[Livieris, 2024] Ioannis E Livieris. C-kan: A new approach
for integrating convolutional layers with kolmogorov–
arnold networks for time-series forecasting. Mathematics,
12(19):3022, 2024.

[Loiacono et al., 2007] Daniele Loiacono, Andrea Marelli,
and Pier Luca Lanzi. Support vector regression for clas-
sifier prediction. In Proceedings of the 9th annual con-
ference on Genetic and evolutionary computation, pages
1806–1813, 2007.

[Mirza et al., 2024] Fuat Kaan Mirza, Tunçer Baykaş,
Mustafa Hekimoğlu, Önder Pekcan, and Gönül Paçacı
Tunçay. Decoding compositional complexity: Identify-
ing composers using a model fusion-based approach with
nonlinear signal processing and chaotic dynamics. Chaos,
Solitons & Fractals, 187:115450, 2024.

[Mohan et al., 2024] Karthik Mohan, Hanxiao Wang, and
Xiatian Zhu. Kans for computer vision: An experimen-
tal study. arXiv preprint arXiv:2411.18224, 2024.

[Narayanan et al., 2021] Deepak Narayanan, Mohammad
Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Pat-
wary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. Effi-
cient large-scale language model training on gpu clusters
using megatron-lm. In Proceedings of the International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–15, 2021.

[Orriols-Puig et al., 2008] Albert Orriols-Puig, Jorge Casil-
las, and Ester Bernadó-Mansilla. Fuzzy-UCS: a michigan-
style learning fuzzy-classifier system for supervised learn-
ing. IEEE Transactions on Evolutionary Computation,
13(2):260–283, 2008.

[Pätzel and Hähner, 2022] David Pätzel and Jörg Hähner.
The bayesian learning classifier system: implementation,
replicability, comparison with XCSF. In Proceedings of
the Genetic and Evolutionary Computation Conference,
pages 413–421, 2022.

[Preen et al., 2021] Richard J. Preen, Stewart W. Wilson, and
Larry Bull. Autoencoding with a classifier system. IEEE
Transactions on Evolutionary Computation, 25(6):1079–
1090, 2021.

[Qiu et al., 2024] Ruichen Qiu, Yibo Miao, Shiwen Wang,
Lijia Yu, Yifan Zhu, and Xiao-Shan Gao. Pow-
erMLP: An efficient version of KAN. arXiv preprint
arXiv:2412.13571, 2024.

[Shiraishi et al., 2022] Hiroki Shiraishi, Yohei Hayamizu,
Hiroyuki Sato, and Keiki Takadama. Beta distribution

based XCS classifier system. In 2022 IEEE Congress on
Evolutionary Computation (CEC), pages 1–8. IEEE, 2022.

[Shoji et al., 2023] Takaharu Shoji, Masaki Kuriyama, and
Masaya Nakata. Piecewise symbolic regression by evo-
lutionary rule-based learning with genetic programming.
IPSJ Transactions on Mathematical Modeling and its Ap-
plications (TOM), 16(2):36–49, 2023.

[Siddique et al., 2024] Abubakar Siddique, Michael Heider,
Muhammad Iqbal, and Hiroki Shiraishi. A survey on
learning classifier systems from 2022 to 2024. In Proceed-
ings of the Genetic and Evolutionary Computation Confer-
ence Companion, pages 1797–1806, 2024.

[Somvanshi et al., 2024] Shriyank Somvanshi, Syed Aaqib
Javed, Md Monzurul Islam, Diwas Pandit, and Subasish
Das. A survey on kolmogorov-arnold network. arXiv
preprint arXiv:2411.06078, 2024.

[Stein et al., 2018] Anthony Stein, Simon Menssen, and Jörg
Hähner. What about interpolation? a radial basis function
approach to classifier prediction modeling in XCSF. In
Proceedings of the Genetic and Evolutionary Computation
Conference, pages 537–544, 2018.

[Stone and Bull, 2003] Christopher Stone and Larry Bull.
For real! XCS with continuous-valued inputs. Evolution-
ary Computation, 11(3):299–336, 2003.

[Tang et al., 2019] Huimin Tang, Peiwu Dong, and Yong
Shi. A new approach of integrating piecewise linear repre-
sentation and weighted support vector machine for fore-
casting stock turning points. Applied Soft Computing,
78:685–696, 2019.

[Urbanowicz and Browne, 2017] Ryan J Urbanowicz and
Will N Browne. Introduction to learning classifier sys-
tems. Springer, 2017.

[Widrow and Hoff, 1960] Bernard Widrow and Marcian E
Hoff. Adaptive switching circuits. Technical report, Stan-
ford Univ Ca Stanford Electronics Labs, 1960.

[Wilson, 1998] Stewart W Wilson. Generalization in the
XCS classifier system. Proc. Genetic Programming, 1998.

[Wilson, 2002] Stewart W Wilson. Classifiers that approxi-
mate functions. Natural Computing, 1(2):211–234, 2002.

[Wilson, 2006] Stewart W Wilson. Classifier conditions
using gene expression programming. In International
Workshop on Learning Classifier Systems, pages 206–217.
Springer, 2006.

[Xu et al., 2024] Kunpeng Xu, Lifei Chen, and Shengrui
Wang. Kolmogorov-arnold networks for time series:
Bridging predictive power and interpretability. arXiv
preprint arXiv:2406.02496, 2024.

[Yu et al., 2024] Runpeng Yu, Weihao Yu, and Xinchao
Wang. KAN or MLP: A fairer comparison. arXiv preprint
arXiv:2407.16674, 2024.

[Zeydan et al., 2025] Engin Zeydan, Cristian J Vaca-Rubio,
Luis Blanco, Roberto Pereira, Marius Caus, and Abdul-
lah Aydeger. F-kans: Federated kolmogorov-arnold net-
works. In 2025 IEEE 22nd Consumer Communications &
Networking Conference (CCNC), pages 1–6. IEEE, 2025.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

