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Abstract

We study a temporal voting model where vot-
ers have dynamic preferences over a set of pub-
lic chores—projects that benefit society, but im-
pose individual costs on those affected by their im-
plementation. We investigate the computational
complexity of optimizing utilitarian and egalitar-
ian welfare. Our results show that while optimizing
the former is computationally straightforward, min-
imizing the latter is computationally intractable,
even in very restricted cases. Nevertheless, we
identify several settings where this problem can be
solved efficiently, either exactly or by an approx-
imation algorithm. We also examine the effects of
enforcing temporal fairness and its impact on social
welfare, and analyze the competitive ratio of online
algorithms. We then explore the strategic behavior
of agents, providing insights into potential malfea-
sance in such decision-making environments. Fi-
nally, we discuss a range of fairness measures and
their suitability for our setting.

1 Introduction

The local government is launching a multi-year initiative to
enhance community programs and boost tourism, aiming to
create a vibrant and sustainable future for the district. At the
beginning of every year, the government will unveil a calen-
dar of planned initiatives for the year ahead, featuring events
for each month. These initiatives include popular recurring
activities such as food and music festivals, farmers’ markets,
fireworks displays, and sports tournaments. As part of this
effort, residents are invited to participate in a voting process
to voice their preferences on which initiatives should take
place in the following year. However, residents living near
proposed event locations often raise concerns about poten-
tial negative impacts on their quality of life. These concerns
include crowding, noise pollution, traffic congestion, or dis-
ruptions to the community’s character. Consequently, some
members of the community may oppose specific events, even
those deemed beneficial for the district as a whole.
This phenomenon is often referred to as “Not in My Back-

yard” (NIMBY), and usually comes in the form of an orga-
nized effort by local residents or community groups to op-

pose certain developments or activities in their neighborhood,
often due to perceived adverse effects on their local environ-
ment or daily lives. NIMBY groups often present a significant
challenge to public policy design: while they may be driven
by legitimate concerns, they can delay or obstruct important
community goals. This tension between local concerns and
broader societal needs makes such movements a complex and
often polarizing issue to address.
Thus, the question that we focus on in this work is: how can

we effectively handle such preferences to derive an outcome
that is good for everyone and/or treats everyone fairly?
We approach this problem by viewing it through the lens of

temporal voting [Chandak et al., 2024; Elkind et al., 2024c;
Lackner, 2020]. However, instead of voters having approval
preferences (indicating which candidates they would like to
support) over a set of candidates, voters now express disap-
proval preferences (indicating which candidates they object
to) over a set of candidates.
Disapproval preferences are also relevant in settings where

there are too many candidates to consider, and agents only
have strong opinions about candidates they do not want cho-
sen (which could be due to proximity concerns as men-
tioned earlier), but are indifferent among the rest (because
this choice does not affect them). However, results for ex-
isting models on temporal voting with “positively-valued”
candidates (sometimes also known as public goods or is-
sues [Conitzer et al., 2017; Fain et al., 2018; Skowron and
Górecki, 2022]) do not automatically transfer to this set-
ting of “negatively-valued” candidates (which we call public
chores1); we discuss this briefly at the end of the next subsec-
tion. This is also the case in the standard fair allocation of in-
divisible itemsmodel, whereby the fairness concepts or corre-
sponding results for goods and chores could be vastly differ-
ent. In these models, items (goods or chores) are considered
to be privately allocated to agents, and are not shared among
agents. Considering a model with agents that have disutili-
ties over candidates is also relatively new to temporal voting
(apart from costs associated with implementing projects in
participatory budgeting, as opposed to disutilities here).

1We feel that the term public chores reflect the property of these
candidates that while they lead to positive outcomes for the commu-
nity at large, they often require sacrifices that may not be immedi-
ately appreciated by some.
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1.1 Our Contributions

We consider a novel variant of the temporal voting model,
where agents express disapproval over candidates.
In Section 3, we investigate the computational complex-

ity of two welfare objectives: minimizing the sum of agents’
disutilities (MIN-SUM) and minimizing the maximum disu-
tility (MIN-MAX). We show that, while finding a MIN-SUM
outcome is easy, the decision problem associated with MIN-
MAX is NP-complete even in simple settings. Nevertheless,
we provide several positive parameterized complexity results
for the MIN-MAX objective. We also also provide an approx-
imation ratio for the corresponding optimization problem.
In Section 4, we analyze the price of enforcing temporal

constraints with respect to both objectives; for both cases, we
derive tight bounds.
In Section 5, we shift our focus to the study of strategic

manipulation with respect to both welfare objectives. We
show that while MIN-SUM is compatible with strategyproof-
ness (i.e., no agent can strictly benefit from misreporting their
preferences), this is no longer true for MIN-MAX. Addition-
ally, we show that while MIN-SUM is incompatible with a
stronger group-strategyproofness property, finding a ‘suitable
manipulation’ is computationally hard. We present similar
results for MIN-MAX, but with respect to strategyproofness.

In Section 6, we consider the online setting where informa-
tion on future projects are unknown, and analyze the compet-
itive ratio of online algorithms.
Finally, in Section 7, we discuss other popular fairness no-

tions such as proportionality and equitability, and show that
they are either not well-defined in the public chores setting,
or comes at a very high cost to welfare.
We wish to emphasize that many of our results involve

multiplicative upper and lower bounds, addressing challenges
such as computational intractability (Section 3), the need for
temporal fairness and its impact on welfare (Section 4), and
the lack of information relating to future projects (Section 6).
Importantly, the nature and analysis of these multiplicative
bounds differs substantially between the ‘public goods’ set-
ting (analogous to temporal voting) and the ‘public chores’
setting (our focus), and they are not directly transferable.
To illustrate, consider an example with 100 timesteps

where the optimal outcome (with respect to the MIN-MAX
objective) satisfies all agents in 95 timesteps. In the pub-
lic goods’ setting, an outcome that satisfies all agents in 50
timesteps would be considered a 1

2 -approximation. However,
in the public chores’ setting, this same outcome only provides
a 10-approximation. This distinction in bounds has signifi-
cant implications for how agents perceive and engage in col-
lective decision-making. Revisiting our motivating example
of NIMBY movements, where agents derive limited personal
benefit from approved projects, but experience considerable
disutility from disapproved ones, it is more accurate to inter-
pret the outcome above as agents being 10 times more un-
happy, rather than 1

2 as happy.

1.2 Related Work

Sequential Decision-Making Works in this area mostly
consider positively-valued candidates. Elkind et al. [2024b]
is the most relevant one, which looks into the computational

questions associated with welfare maximization, and its com-
patibility with strategyproofness and proportionality (a pop-
ular fairness measure) in the setting with positively-valued
candidates. They also look extensively at the welfare cost
of mandating proportionality. Our work also looks at analo-
gous welfare objectives, and we also consider their compati-
bility with strategyproofness. However, on top of the distinc-
tions raised earlier, several other key differences are (i) we
consider a more general version of the decision problem for
MIN-MAX, which imposes constraints involving the sequen-
tial nature of timesteps; (ii) for manipulability, we consider
computational problems in manipulation and also a stronger
version of strategyproofness; (iii) we analyze the online set-
ting; (iv) we discuss why proportionality is not well-defined
in our setting and consider equitability as an additional fair-
ness measure.
Another relevant line of work in this area is that of perpet-

ual voting [Lackner, 2020; Lackner and Maly, 2023], which
focuses on temporal extensions of traditional multiwinner
voting rules. Bulteau et al. [2021], Chandak et al. [2024],
Elkind et al. [2025b], and Phillips et al. [2025] build on the
temporal voting framework and consider temporal extensions
of popular proportional representation (or group fairness) ax-
ioms. Kahana and Hazon [2023] study several popular alloca-
tion rules (round-robin, maximumNash welfare, and leximin)
with respect to approximately proportional fairness axioms.
Kozachinskiy et al. [2025] study a similar model, but look
into the conditions under which there is a sublinear growth of
dissatisfaction. However, we note that their definition of ‘dis-
satisfaction’ is inherently different from our ‘disutility’ and
studying disapprovals more generally: they consider a model
where agents still express approval preferences, and the dis-
satisfaction of an agent is number of rounds where the project
chosen was not approved by the agent.
Bredereck et al. [2020; 2022] and Zech et al. [2024] look

at sequential committee elections, whereby an entire commit-
tee (set of candidates) is elected in each round, and impose
constraints on the extent a committee can change, whilst en-
suring that the candidates retain sufficient support from the
electorate.
We refer the reader to the survey by Elkind et al. [2024c]

for an analysis of other works in this area.

Public Decision-Making Conitzer et al. [2017] study sev-
eral relaxations of proportionality and its axiomatic guaran-
tees towards individual voters. Fain et al. [2018] consid-
ered the notion of an approximate core, whereas Skowron
and Górecki [2022] proposed another variant of proportion-
ality that guarantees fairness to groups of voters. Lackner
et al. [2023] studied strategic considerations in the same set-
ting. Alouf-Heffetz et al. [2022] consider a model of issue-
by-issue voting, which can be viewed as a special case of the
temporal voting framework. Again, all works in this setting
look at positively-valued issues/candidates and the focus gen-
erally revolves around proportionality, which is ill-defined in
the setting with negatively-valued candidates (as we demon-
strate towards the end of our paper)

Temporal Fair Division Another related model is that of
temporal fair division [Cookson et al., 2025; Elkind et al.,
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2025a; Igarashi et al., 2024; Neoh et al., 2025]. The key dif-
ference is that in this model, a single item (good or chore) is
privately allocated to an agent at each round (i.e., rivalrous in
ownership). This is in contrast to our model, which can be
thought of as allocating public items (i.e., every agent gets a
copy of the item chosen at each round).

Fair Allocation of Indivisible Chores Chores have also
been studied in the field of fair division, but works in the
area typically consider private chores that are rivalrous in
ownership [Aziz et al., 2022a; Bogomolnaia et al., 2017;
Dehghani et al., 2018; Elkind et al., 2024a] (see also re-
cent survey by Aziz et al. [2022b]). The study of private
and public goods is known to be vastly different, and this
distinction can also be observed in the context of chores.
In fact, even in the case of binary chores (i.e., agents hav-
ing disutility in {0, 1} for each chore), the difference is
stark. Under binary valuations (which is a very popular
model in several fair allocation settings [Halpern et al., 2020;
Suksompong and Teh, 2022]), the problem of allocating pri-
vate chores is known to be easy: popular (approximate) no-
tions of fairness such as EF1 can be trivially obtained. How-
ever, when considering public chores, the problem becomes
non-trivial even under disapproval preferences.

2 Preliminaries

For each positive integer z, let [z] := {1, . . . , z}. LetN = [n]
be the set of n agents, let P = {p1, . . . , pm} be the set
of m projects (or candidates), and let T = [`] be the set
of ` timesteps. Symmetrically to the literature on multiwin-
ner/temporal voting with approval preferences [Lackner and
Skowron, 2023; Elkind et al., 2024c], we will assume that
voters have disapproval preferences. For each i 2 N and
k 2 T , let Dik ✓ P denote the disapproval set of agent i
at timestep k, and let the disapproval vector of an agent i be
Di = (Di1, . . . , Di`). An instance of our problem is a tuple
(N,P, T, (Di)i2N ).

An outcome is a vector o = (o1, . . . , o`), where ok 2 P
for each k 2 T . Let ⇧(I) denote the space of all possible
outcomes for an instance I. For every k 2 T and o 2 ⇧(I),
the k-truncation of o is the vector o(k) = (o1, . . . , ok).

The disutility of an agent i 2 N from an outcome o is
given by di(o) = |{k 2 T : ok 2 Dik}|. We extend
this definition to truncated outcomes by writing di(o(k)) =
|{t 2 [k] : ot 2 Dit}|. A mechanism maps an instance
I = (N,P, T, (Di)i2N ) to an outcome in ⇧(I).
We assume that the reader is familiar with basic notions of

classic complexity theory [Papadimitriou, 2007] and param-
eterized complexity [Flum and Grohe, 2006; Niedermeier,
2006]. All omitted proofs can be found in the appendix.

3 Social Welfare Optimization

Two commonly studied welfare objectives in collective
decision-making are maximizing the sum of agents’ utili-
ties (i.e., utilitarian welfare) or maximizing the utility of the
least happy agent (i.e., egalitarian welfare). In our con-
text, these objectives translate to, respectively, minimizing
the sum of agents’ disutilities

P
i2N di(o) (we will refer to

this as the MIN-SUM objective) or minimizing the maximum
disutility maxi2N di(o) (we will refer to this as the MIN-
MAX objective)2. Accordingly, given an instance I, we re-
fer to outcomes o 2 ⇧(I) that minimize

P
i2N di(o) (resp.,

maxi2N di(o)) as MIN-SUM (resp., MIN-MAX) outcomes.
We will now discuss the complexity of finding MIN-SUM

and MIN-MAX outcomes, starting with the former.

3.1 Minimizing the Sum of Agents’ Disutilities

To find a MIN-SUM outcome, we can greedily select, at
each timestep, a project with the lowest number of disap-
provals at that timestep. It is easy to observe that this greedy
algorithm runs in polynomial time. However, just like in
the case of positively-valued projects, the outcomes of the
greedy algorithm may be unfair. Indeed, consider an instance
with 2 + 1 agents N = {1, . . . , 2 + 1}, two projects
P = {p1, p2}, and ` timesteps. Let  + 1 agents disapprove
of p2 at each timestep, and the remaining  agents disapprove
of p1 at each timestep. Then, the MIN-SUM algorithm will
select p1 at every timestep, favoring the  + 1 agents and
disadvantaging the other  agents. Arguably, this is not a
fair outcome. This motivates us to explore another welfare
objective—MIN-MAX—that specifically focuses on fairness.

3.2 Minimizing the Maximum Agents’ Disutility

When considering the egalitarian welfare, we aim to take into
account the temporal nature of our problem, by imposing con-
straints on agents’ disutilities not just at timestep `, but also
at earlier checkpoints.
Formally, a set of constraints for an instance I =

(N,P, T, (Di)i2N ) is a set A = {(t1,�1), . . . , (t⌧ ,�⌧ )},
where tj 2 T , �j 2 {0, . . . , `} for each j 2 [⌧ ], and
t1  · · ·  t⌧ , �1  · · ·  �⌧ .
A pair (I,A) defines a decision problem as follows.

MIN-MAX-DEC

Input: A problem instance (N,P, T, (Di)i2N ) and a set
of ⌧ constraints A.

Question: Is there an outcome o such that for each
(t,�) 2 A it holds that maxi2N di(o(t))  �?

In words, each pair (tj ,�j) 2 A mandates that at timestep
tj , the cumulative disutility of every agent should be at most
�j . Having a single constraint (`,�) can be seen as a decision
version of MIN-MAX. We note that for utilitarian welfare
constraints of this form have no impact on the choice of out-
come: if there is a solution that satisfies all constraints, then
so does the greedy solution described in Section 3.1.
We will now investigate the complexity of MIN-MAX-

DEC, both in the worst case, and from a parameterized per-
spective. In addition to the natural parameters of our prob-
lem, i.e., n, m and `, we will consider a parameter � =
maxk2T,p2P |{i : p 2 Dik}|, i.e., the maximum number of
disapprovals that each project has at any timestep.

2Another popular welfare objective is Nash welfare, which max-
imizes the geometric mean of agents’ utilities. However, it is well-
known that Nash welfare is ill-defined for negative utilities.
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As a warm-up, we first show that the special case � = 1
admits a polynomial-time algorithm. The constraint � = 1
is satisfied in settings where each project is “very local” and
only affects a single agent (but an agent can still disapprove
of multiple projects).
Theorem 3.1. If � = 1, there is a polynomial-time algorithm
for MIN-MAX-DEC.

Proof sketch. Consider a timestep k 2 T . If there exists a
project that receives no disapprovals at timestep k, we should
select some such project. Thus, without loss of generality,
since � = 1, we can assume that at each timestep each project
is disapproved by exactly one agent.
Construct a bipartite graphG = (N⇥[�⌧ ], T, E)with parts

N ⇥ [�⌧ ] and T ; for all (i,�) 2 N ⇥ [�⌧ ], k 2 T the graphG
contains the edge {(i,�), k} if and only if agent i disapproves
a project at timestep k, and for all �0 < � and k0 � k, we have
(k0,�0) /2 A. We claim that the maximum matching in G has
cardinality |T | if and only if there is an outcome o satisfying
MIN-MAX-DEC, and, given a size-|T |matching inG, we can
transform it into an outcome that satisfies all constraints inA
in polynomial time; the proof is deferred to the appendix.

Notably, increasing � from 1 to 2 leads to a hardness result
for MIN-MAX-DEC, even if there are at most two projects per
timestep and ⌧ = |A| = 1. Importantly, since our hardness
proof works for ⌧ = 1, it follows that even finding MIN-MAX
outcomes is computationally hard.
Theorem 3.2. MIN-MAX-DEC is NP-complete, even with
m = 2, � = 2, and ⌧ = 1.

On the positive side, if both the number of agents and the
number of constraints are small, MIN-MAX-DEC becomes
tractable. This provides a practical solution for small-group
voting (e.g., when the voting process can be broken down into
smaller districts, so that only the people that can be directly
affected by the projects get to vote).
Theorem 3.3. MIN-MAX-DEC is FPT with respect to n+ ⌧ .

If only the number of agents is small, we obtain a weaker
tractability result.
Theorem 3.4. MIN-MAX-DEC is XP with respect to n.
We also prove a similar tractability result (XP) with respect

to the number of timesteps `. This result is applicable in set-
tings where the planning timeline is limited (e.g., short-term
policy cycles), even if the number of agents or projects can
be substantial. Moreover, we show that our XP result cannot
be strengthened to FPT unless FPT = W[2].
Theorem 3.5. MIN-MAX-DEC is XP and W[2]-hard with
respect to `.
Having explored our problem from the parameterized com-

plexity perspective, we would like to understand whether it
admits an approximation algorithm. However, MIN-MAX-
DEC is inherently a feasibility problem, so it does not have
a natural optimization version. Nevertheless, we can provide
some insights for the case ⌧ = 1, which corresponds to the
standard notion of egalitarian welfare.
We first present an inapproximability result, derived as a

corollary of the proof of Theorem 3.2: our reduction from

3-OCCUR-3SAT shows that we cannot hope to obtain an ap-
proximation ratio better than 3/2 in polynomial time.

Corollary 3.6. For any " > 0, if there exists a polynomial-
time algorithm for MIN-MAX-DEC with ⌧ = 1 and approxi-
mation ratio 3

2 � ", then P = NP.

Now, let `+ be the number of timesteps where every project
is disapproved by some agent. Then, we give an algorithm
that achieves a min(m, 1 + n2

`+ ) approximation ratio, thereby
providing an upper bound.
Notably, there are many settings (including the one de-

scribed in our introductory example) where the number of
projects is small (e.g., the projects have been shortlisted by
the local government and put up for voting). Moreover, if `+

is large relative to n, the quantity 1 + n2

`+ is close to 1.

Theorem 3.7. There exists amin(m, 1+ n2

`+ )-approximation
algorithm for the MIN-MAX objective.

Proof. First, for the timesteps where some project receives
no disapprovals, we can always choose some such project.
Hence, it suffices to consider the `+ timesteps in which each
project is disapproved by some agent. From now on, we will
assume that ` = `+.

We construct a polynomial-size integer program for finding
MIN-MAX outcomes as follows. For each p 2 P and k 2 T ,
we define a variable c(p,k) 2 {0, 1}: c(p,k) = 1 if and only
if project p is selected at timestep k. Our constraints require
that (1) for each k 2 T , at least one project has to be chosen
in timestep k:

P
p2P

c(p,k) � 1, and (2) the disutility of each

agent i 2 N is at most ⌘:
P
k2T

P
p2Dik

c(p,k)  ⌘. By relaxing

the 0–1 variables c(p,k) to take values in R+, we obtain the
following LP relaxation:

minimize ⌘ (P1)

subject to
X

p2P

c(p,k) � 1, for all k 2 T,

X

k2T

X

p2Dik

c(p,k)  ⌘, for all i 2 N,

c(p,k) � 0, for all p 2 P and k 2 T.

Let ((c⇤(p,k))p2P,k2T , ⌘) be an optimal solution to P1 that
lies at a vertex of the respective polytope. Construct an out-
come o by selecting, at each timestep k 2 T , a project p⇤ 2

argmaxp2P c⇤(p,k). We first show thatmaxi2N di(o)  m ·⌘

and then argue that maxi2N di(o) 

⇣
1 + n2

`

⌘
· ⌘. As the

value of the optimal integer solution is at least ⌘, this proves
the theorem.
For each i 2 N , let Ti = {k : ok 2 Dik} be the set

of timesteps where i disapproves the outcome selected by o.
Consider a timestep k 2 T . Since

P
p2P c⇤(p,k) � 1, we have

c⇤(ok,k) �
1
m . Thus, for all i 2 N we have di(o) = |Ti| P

k2Ti
m · c⇤(ok,k) 

P
k2T m · c⇤(ok,k)  m · ⌘. Hence,

maxi2N di(o)  m · ⌘.
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Next, we will show that di(o) 
⇣
1 + n2

`

⌘
·⌘ for all i 2 N ,

and thus maxi2N di(o) 

⇣
1 + n2

`

⌘
· ⌘. We first note that

our linear program P1 has m` + 1 variables and n + ` +m`
constraints. As we consider a vertex solution, there are at
least m` + 1 constraints that are tight. Thus, at most n + `
variables of the form c(p,k) are non-zero. Let T 0 be the set of
timesteps where at least two projects are assigned a positive
weight by our solution to the LP. For each k 2 T we haveP

p2P c⇤(p,k) � 1, so each k 2 T contributes at least one
non-zero variable. Thus, there are at most (n + `) � |T | =
n additional non-zero variables, i.e., |T 0

|  n. Moreover,
c⇤(ok,k) = 1 for all k 2 T \ T 0, so for each i 2 N we have

|{k 2 T \ T 0 : ok 2 Dik}| =
X

k2T\T 0:ok2Dik

c⇤(ok,k)



X

k2T\T 0

X

p2Dik

c⇤(p,k) 
X

k2T

X

p2Dik

c⇤(p,k)  ⌘,

where the last transition follows since ((c⇤(p,k))p2P,k2T , ⌘) is
feasible for P1. Therefore, for each i 2 N we have di(o) =
|{k 2 T : ok 2 Dik}| = |{k 2 T 0 : ok 2 Dik}| + |{k 2

T \ T 0 : ok 2 Dik}|  |T 0
|+ ⌘  n+ ⌘.

Furthermore, as each project is disapproved by at least one
agent at each timestep, we have

n · ⌘ �

X

i2N

X

k2T

X

p2Dik

c⇤(p,k) =
X

k2T

X

i2N

X

p2Dik

c⇤(p,k)

�

X

k2T

X

p2P

c⇤(p,k) � `,

and hence n2/` � n/⌘. Thus, for all agents i 2 N we have
di(o) 

⌘+n
⌘ · ⌘ =

⇣
1 + n

⌘

⌘
· ⌘ 

⇣
1 + n2

`

⌘
· ⌘.

It is easy to see that the described algorithm runs in poly-
nomial time with respect to n, m, and `.

4 Price of Temporal Fairness

Next, we consider the impact of imposing temporal con-
straints A on the agents’ welfare. Our analysis belongs to
the line of work on the price of fairness, initiated by Bei
et al. [2021]. Similar questions have been considered by a
number of authors in the multiwinner voting [Brill and Pe-
ters, 2024; Elkind et al., 2022a; Lackner and Skowron, 2020]
and temporal voting literature [Elkind et al., 2024b]. Unsur-
prisingly, our setting, too, exhibits a fundamental tension be-
tween fairness and efficiency.
Our analysis applies to both MIN-SUM and MIN-MAX, but

we only consider constraints of the form maxi2N di(o(t)) 
�. We note that constraints of the form

P
i2N di(o(t))  �

have no impact on the utilitarian welfare, but may reduce
egalitarian welfare. While it may be interesting to investigate
the impact of utilitarian constraints on egalitarian welfare,
this question does not quite fit the price of fairness frame-
work, so we leave it to future work.
Given a problem instance I and a set of constraints A =

{(t1,�1), . . . , (t⌧ ,�⌧ )}, let ⇧A(I) ✓ ⇧(I) denote the set of

outcomes for I that satisfy constraints in A. We say that A
is feasible if ⇧A(I) 6= ?, i.e., if there is an outcome that
satisfies all constraints inA.
For the objectives MIN-SUM and MIN-MAX, let

P
and

max be the corresponding welfare operation (with respect
to agents’ disutilities). Then, for a welfare objective W 2

{MIN-SUM,MIN-MAX}, we denote byWop(o) theW -value
of an outcome o, i.e., the result of applying the welfare oper-
ation corresponding to W to o.
We now define the price of temporal fairness, which mea-

sures the cost of imposing (feasible) temporal constraints A.
Definition 4.1 (Price of Temporal Fairness). For an objective
W 2 {MIN-SUM,MIN-MAX}, the price of temporal fair-
ness with respect to W (PoTFW ) is the supremum over all
instances I and feasible constraints A of the ratio between
the minimum W -value of an outcome for I that satisfies A
and the minimumW -value of an outcome for I:

PoTFW = sup
I,A:A feasible

mino2⇧A(I) Wop(o)

mino2⇧(I) Wop(o)
.

We derive tight bounds for both welfare objectives. For
MIN-SUM, the price of temporal fairness scales with the
number of agents.
Theorem 4.2. PoTFMIN-SUM = ⇥(n).

Proof. We first prove the upper bound of O(n). Let T+ =
{k 2 T : [i2NDik = P}; for each timestep k in T 0 each
project is disapproved by at least one agent,so no matter how
we select ok, this will contribute to the disutility of some
agent. Hence, for each outcome o we have

P
i2N di(o) �

|T+
|. On the other hand, since A is feasible, there is an out-

come o that satisfies all constraints inA. We modify this out-
come as follows: for each k 2 T \T+ the set P \[i2NDik is
not empty, so let ok be some project in this set. For the mod-
ified outcome, the disutility of every agent is at most |T+

|,
so the total disutility is at most n · |T+

|. This completes the
proof of the upper bound.
For the lower bound, consider an instance with two projects

P = {p1, p2} and two timesteps. Let D11 = D12 = {p1}
and Di1 = Di2 = {p2} for all other agents i 2 N \ {1}.
Let A contain a single constraint (2, 1), which requires that
at the end of timestep 2 the disutility of every agent is at most
1. The only outcomes that satisfy this constraint are (p1, p2)
and (p2, p1); under either outcome the total disutility is n.
On the other hand, the total disutility of (p1, p1) is 2. Thus,
PoTFMIN-SUM �

n
2 = ⌦(n).

For MIN-MAX, the price of fairness is small if there are
few constraints or if the number of agents is small.
Theorem 4.3. PoTFMIN-MAX = ⇥(min(⌧, n)).
Theorem 4.3 shows that one needs to proceed with caution

when imposing fairness constraints, especially if the number
of agents is large.

5 Strategic Manipulation

In our motivating example, ensuring that agents cannot en-
gage in strategic manipulation is vital for maintaining trust
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and participation in the voting process. To address these con-
cerns, we will now focus on agents’ strategic considerations
with respect to both welfare objectives.
One popular concept in the social choice literature is that of

strategyproofness, which states that no agent should be able
to strictly benefit (in this case, decrease their disutility) by
misreporting their preferences. It is formally defined as fol-
lows. Note that agent i’s disutility function di is computed
with respect to her (truthful) disapproval vector Di.
Definition 5.1 (Strategyproofness). For each i 2 N , let D�i

denote the list of all disapproval vectors except that of agent
i: D�i = (D1, . . . ,Di�1,Di+1, . . . ,Dn). A mechanismM

is strategyproof (SP) if for each instance (N,P, T, (Di)i2N ),
each agent i 2 N and each disapproval vectorD0

i it holds that
di(M(D�i,Di))  di(M(D�i,D0

i)).

5.1 Mechanisms for MIN-SUM

We first show that the greedy algorithm for obtaining a MIN-
SUM outcome, which chooses a project with the lowest num-
ber of disapprovals at each timestep (with lexicographical tie-
breaking) is strategyproof. We will refer to this algorithm as
GREEDY MIN-SUM.
Theorem 5.2. GREEDY MIN-SUM is strategyproof.
A natural follow-up question is whether the MIN-SUM ob-

jective is compatible with a stronger version of strategyproof-
ness. A well-known generalization of strategyproofness is
group strategyproofness (GSP). Intuitively, GSP states that no
group of agents should be able to misreport their preferences
so as to benefit every member of the group. Unfortunately,
we show that the MIN-SUM objective is incompatible with
GSP.
We start by presenting the formal definition of group strat-

egyproofness. Recall that agent i’s disutility function di is
computed with respect to her (true) disapproval vector Di.
Definition 5.3 (Group-strategyproofness). For each S ✓ N ,
letD�S denote the list of all disapproval vectors except those
of agents in S. A mechanism M is group-strategyproof
(GSP) if for each instance (N,P, T, (Di)i2N )), each sub-
set of agents S ✓ N , each agent i 2 S and
each list of disapproval vectors (D0

j)j2S , it holds that
di(M(D�S , (Dj)j2S))  di(M(D�S , (D0

j)j2S)).
Note that GSP reduces to SP if we only consider singleton

groups. Then, our negative result is as follows.
Proposition 5.4. LetM be a mechanism that always returns
a MIN-SUM outcome. Then M is not group-strategyproof.
Notably, while we only defined GSP (and SP) for deter-

ministic mechanisms, the above negative result also applies to
an analogous definition of GSP for randomized mechanisms.
This is because the instance constructed in the counterexam-
ple has a unique MIN-SUM outcome, and any randomized
mechanism behaves exactly like a deterministic one.
The above results indicate that the MIN-SUM objective

is compatible with disincentivizing strategic manipulation
by individuals (Theorem 5.2), but not by groups (Proposi-
tion 5.4). We further show that, while groups may have op-
portunities for manipulation, identifying a ‘suitable manipu-
lation’ that strictly benefits every agent within the group can

be computationally intractable. Following the conventions of
the literature on voting manipulation [Conitzer and Walsh,
2016], we assume the group has knowledge of the reported
disapproval vectors of agents outside the group.
Theorem 5.5. Let M be a mechanism that always
returns a MIN-SUM outcome. Given an instance
(N,P, T, (Di)i2N ) and a subset of agents S ✓ N , deter-
mining whether there exists disapproval vectors (D0

i)i2S such
that di(M(D�S , (Di)i2S)) > di(M(D�S , (D0

i)i2S)) for
all i 2 S is NP-complete.

5.2 Mechanisms for MIN-MAX

Next, we turn to the same questions for the MIN-MAX objec-
tive. However, in contrast, we show that MIN-MAX is fun-
damentally incompatible with strategyproofness. Intuitively,
agents are incentivized to appear ‘worse off’ by misreporting
disapproval for projects they do not actually disapprove of.
Proposition 5.6. LetM be a mechanism that always returns
a MIN-MAX outcome. ThenM is not strategyproof.
Again, while we only defined SP for deterministic mecha-

nisms, the above negative result also applies to an analogous
definition of SP for randomized mechanisms.
Despite the stronger negative result above, we show that for

any mechanism returning a MIN-MAX outcome with ties bro-
ken lexicographically, it may be computationally intractable
for any agent to find a manipulation that decreases their disu-
tility. Our proof places this problem at the second level of
the polynomial hierarchy; this is because computing a MIN-
MAX outcome is already a hard problem (see Theorem 3.2).
Theorem 5.7. LetMlex be a mechanism that returns a MIN-
MAX outcome with lexicographical tiebreaking. Given some
instance (N,P, T, (Di)i2N ) and an agent i 2 N , determin-
ing whether there exists a disapproval vector D0

i such that
di(Mlex(D�i,Di)) > di(Mlex(D�i,D0

i)) is ⌃P
2 -complete.

6 Online Setting

In practice, multi-year plans often face discontinuities due to
political shifts or other unforeseen changes, leading to po-
tential failure in execution mid-way. Consequently, ensuring
fairness for voters only at the conclusion of X years may be
inadequate; voters might instead expect satisfaction at every
consecutive timestep. Further, project plans (and hence avail-
ability/feasibility) themselves may evolve over time, making
it difficult, if not impossible, to predict the project availability
in advance. In both of these scenarios, it is natural to con-
sider an online setting where agents’ preferences for future
projects are unknown, and decisions are made without access
to future information. We utilize competitive analysis for on-
line algorithms to measure the impact of this lack of future
information on our ability to achieve optimal welfare.
Let B be an online algorithm for our setting, i.e., an algo-

rithm that for each k 2 T selects ok based on (Dit)i2N,t2[k].
Let B(I) denote the output of B on instance I.
Definition 6.1 (Competitive Ratio). For an online algorithm
B and objective W 2 {MIN-SUM,MIN-MAX}, the compet-
itive ratio (CR) of B with respect toW is the supremum over
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all instances I of the ratio between theW -value of B(I) and
the minimum W -value of an outcome for I:

CRW (B) = sup
I

Wop(B(I))

mino2⇧(I) Wop(o)
.

Note that GREEDY MIN-SUM is an online algo-
rithm, and it outputs a MIN-SUM allocation. Hence,
CRMIN-SUM(GREEDY MIN-SUM) = 1.
However, for the MIN-MAX objective, the lack of informa-

tion about the future can significantly impact the MIN-MAX
value. For the remainder of this section, we focus on the com-
petitive ratio with respect to MIN-MAX.
Similarly to the greedy algorithm for MIN-SUM, we

consider the greedy egalitarian algorithm, which, at each
timestep k, picks a project so as to minimize the maximum
disutility over the first k timesteps. We refer to this algorithm
as GREEDY-MIN-MAX. Unfortunately, it turns out that for
both GREEDY-MIN-MAX and GREEDY-MIN-MAX the com-
petitive ratio is lower-bounded by ⌦(n).

Proposition 6.2. GREEDY MIN-SUM and GREEDY MIN-
MAX both have a competitive ratio of ⌦(n) with respect to
MIN-MAX.

Next, we present a lower bound for all online algorithms.
We consider a weak, non-adaptive adversary that does not
have access to the randomized results of the algorithm and
show that even against such an adversary, any online algo-
rithm has a competitive ratio of at least ⌦(log n).

Proposition 6.3. Against a non-adaptive adversary, any on-
line algorithm (deterministic or randomized) has a competi-
tive ratio of ⌦(log n) with respect to MIN-MAX.

7 Other Fairness Notions

Throughout this paper, we focused on the MIN-MAX
objective—a fairness criterion that has been extensively stud-
ied across many topics in social choice. A natural extension
of this work would be to explore other well-established fair-
ness concepts, such as envy-freeness, proportionality or equi-
tability. While envy-based measures are commonly studied in
the fair division literature, these do not adapt well to the pub-
lic goods or chores setting. In the remainder of this section,
we discuss proportionality and equitability in more detail.

7.1 Proportionality

The first concept we consider is a widely studied notion
of fairness in both the fair division of private goods/chores
and public goods settings, called proportionality [Barman
and Krishnamurthy, 2019; Brânzei and Sandomirskiy, 2023;
Conitzer et al., 2017]. More specifically, for private chores,
proportionality mandates that no agent should receive more
than 1/n of their pessimal (worst-case) disutility; and for pri-
vate/public goods, it requires that all agents receive at least
1/n of their optimal (best-case) utility. While proportionality
may not always be achievable in these settings, mild relax-
ations of the concept are known to always exist. However,
an analogous definition for public chores proves to be unintu-
itive, as illustrated by the following example.

Example 7.1. Consider an instance with n agents, `
timesteps, and set of projects P = {p1, . . . , pn}. At ev-
ery timestep, each agent i 2 N disapproves all projects in
P \ {pi}.
Then, every outcome o is disapproved by n � 1 agents in

each round, so by the pigeonhole principle we have di(o) �
` · n�1

n for some i 2 N . This is despite the fact that i’s disutil-
ity from (pi, . . . , pi) is 0. Thus, no outcome is close to being
proportional for the standard definition of proportionality.

Identifying a suitable notion of proportionality for the pub-
lic chores setting remains an intriguing open problem.

7.2 Equitability

Another potentially suitable fairness notion is equitability,
which mandates that agents’ disutilities should be equal
[Elkind et al., 2022b; Freeman et al., 2019]. While it may not
always be achievable in practice (this is also the case for many
similar fairness properties in the social choice literature), we
may be interested in obtaining an equitable outcome when
one exists. Unfortunately, we can show that even determining
if an instance admits an equitable outcome is computationally
intractable.

Theorem 7.2. Determining if there exists an equitable out-
come is NP-complete.

Moreover, enforcing equitability comes at a very high cost
to (both MIN-SUM and MIN-MAX) welfare. Our definition
of price of equitability is structurally similar to the definition
of the price of temporal fairness, and leads to the following
result.

Theorem 7.3. The price of equitability is ⌦(n2) with respect
to MIN-SUM and at least ⌦(n) with respect to MIN-MAX.

Exploring more suitable fairness concepts in this setting
remains an intriguing direction for future work.

8 Conclusion

In this work, we introduced and studied a model of tempo-
ral voting where agents can express disapprovals over can-
didates. We investigated the computational complexity of
two well-studied welfare objectives—MIN-SUM and MIN-
MAX—and identified several settings where the problem can
be solved efficiently, together with accompanying algorithms.
We also quantified the effects of enforcing temporal fairness
on social welfare, and analyzed the strategic implications as-
sociated with these welfare objectives. Further, we derived
bounds on the price of temporal fairness and the competitive
ratio of algorithms in the online setting. Finally, we made a
case for why proportionality and equitability may not be suit-
able as fairness measures for the public chores setting.
Directions for future work include defining and studying

weaker forms of strategyproofness that may be compatible
with MIN-MAX in this setting, or identifying an appropriate
(potentially weaker) notion of proportionality in this setting.
It would also be interesting to consider a model with both
positively- and negatively-valued candidates.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


