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Abstract
It is often challenging to identify a valid instru-
mental variable (IV), although the IV methods have
been regarded as effective tools of addressing the
confounding bias introduced by latent variables.
To deal with this issue, an Interaction-Data-guided
Conditional IV (IDCIV) debiasing method is pro-
posed for Recommender Systems, called IDCIV-
RS. The IDCIV-RS automatically generates the
representations of valid CIVs and their correspond-
ing conditioning sets directly from interaction data,
significantly reducing the complexity of IV selec-
tion while effectively mitigating the confounding
bias caused by latent variables in recommender sys-
tems. Specifically, the IDCIV-RS leverages a vari-
ational autoencoder (VAE) to learn both the CIV
representations and their conditioning sets from
interaction data, followed by the application of
least squares to derive causal representations for
click prediction. Extensive experiments on two
real-world datasets, Movielens-10M and Douban-
Movie, demonstrate that IDCIV-RS successfully
learns the representations of valid CIVs, effectively
reduces bias, and consequently improves recom-
mendation accuracy.

1 Introduction
With the rapid development of the Internet, the amount of
information has exploded, making it increasingly difficult
for users to sift through vast amounts of data to find con-
tent that aligns with their preferences [Luo et al., 2025;
Gao et al., 2021; Zhang, 2021]. Recommender systems have
emerged as a critical solution to this problem by analysing
user behaviour data to deliver personalised recommendations,
thereby enhancing user engagement and satisfaction [Wang

∗Corresponding author

U
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I
(a)

U Y
I

Ci

(b)

W Y

Z C

(c)

Figure 1: Three causal graphs illustrate the assumptions underlying
existing work. The variables are defined as follows: U : user prefer-
ences, I: displayed items, Y : user feedback or outcome variables,
Ci: confounding factors affecting items, C: confounding factors, Z:
instrumental variables, W : treatment variables (i.e., embeddings of
user-item pairs). (a) The causal graph represents the traditional rec-
ommendation model; (b) the causal graph represents the debiasing
method using causality; (c) the causal graph representation of the
debiasing method using standard IV.

et al., 2020]. Recommender systems have become an inte-
gral part of many digital platforms, finding extensive applica-
tions across various domains, including e-commerce [Shoja
and Tabrizi, 2019], streaming media [Gomez-Uribe and Hunt,
2015], and social networks [Liao et al., 2022], significantly
improving information retrieval efficiency and user experi-
ence.

The performance of recommendation systems is often af-
fected by latent confounders that are neither directly observ-
able nor reflected in historical user-item interactions. For in-
stance, factors such as social influence or peer preferences
can significantly shape user behavior but are rarely captured
in logged data. This misalignment may cause to recommen-
dation systems misinterpret user intent, ultimately degrading
recommendation quality. Effectively addressing latent con-
founders is thus vital for enhancing both the accuracy and
robustness of recommender systems.

User behaviour data is crucial for recommender systems
in predicting user preferences. Existing models often assume
this data is unbiased and accurately reflects user preferences,
meaning the data accurately reflects user preferences [Lan et
al., 2024]. Based on this assumption, many methods have
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been proposed, such as Matrix Factorisation (MF) [Koren et
al., 2009] and Neural Network-based Collaborative Filtering
(NCF) [He et al., 2017]. These methods achieve the goal of
predicting user preferences by fitting user behaviour data, as
depicted in the causal Directed Acyclic Graph (DAG) [Pearl,
2009; Cheng et al., 2022] shown in Figure 1 (a), which illus-
trates the causal relationships between user preferences (U)
and user feedback (Y ), as well as between displayed items
(I) and Y . However, in the real-world, user behaviour is
inevitably influenced by various unobservable confounding
factors, such as item popularity (e.g., frequent recommenda-
tion of an item limits users’ choices) and user psychology
(e.g., choosing to watch a movie for socialising) [Chen et al.,
2023]. These factors introduce biases like popularity and con-
formity bias, leading models to learn false correlations and
reducing their ability to accurately predict preferences.

Causal inference [Zhang et al., 2024; Li et al., 2024]
has been applied to reduce bias in recommender systems
by designing causal DAGs to model data generation, iden-
tify biases, and guide model design [Wang et al., 2020;
Gao et al., 2024]. For instance, Zhang et al. [Zhang et al.,
2021] introduced a causal graph to analyse item popularity’s
impact and proposed the PDA training paradigm to correct
popularity bias. Similarly, Zheng et al. [Zheng et al., 2021]
addressed conformity bias with the DICE model, disentan-
gling user interest from conformity. However, these meth-
ods rely on the assumption that the real data follows the de-
signed causal graphs, which may not hold in practice [Cai et
al., 2024]. Complex real-world confounding makes such as-
sumptions difficult to satisfy, potentially limiting the models’
effectiveness.

Latent confounders, which are unobserved variables that
simultaneously affect both the treatment (e.g., recommenda-
tion process) and the outcomes, present significant challenges
for debiasing recommender systems. Instrumental Variables
(IVs) are a common solution to this issue [Caner and Hansen,
2004; Pearl, 2009], with a valid IV (e.g., Z in Figure 1(c))
satisfying three key criteria [Pearl, 2009]: (i) relevance to
the treatment variable; (ii) an exclusive impact on the out-
come through the treatment; and (iii) no shared confounders
with the outcome. Several IV-based methods have been pro-
posed for recommendation settings to reduce latent bias with-
out relying on strict causal graph assumptions [Si et al., 2022;
Si et al., 2023a; Si et al., 2023b]. For example, IV4Rec [Si et
al., 2022] leverages self-collected search data as an IV to ef-
fectively address latent confounding. However, verifying the
latter two IV conditions from observational data alone is prac-
tically infeasible [Brito and Pearl, 2012; Cheng et al., 2023b],
making the identification of valid IVs particularly challeng-
ing.

In causal inference, researchers have used conditional IVs
(CIVs) to tackle the limitations of standard IVs [Pearl, 2009;
Brito and Pearl, 2012; Cheng et al., 2024a; Cheng et al.,
2023a]. CIVs offer more relaxed application conditions
than standard IVs. Recently, Cheng et al. [Cheng et al.,
2023b] developed a CIV method (CIV.VAE) based on the
variational autoencoder (VAE) [Kingma and Welling, 2013;
Schölkopf et al., 2021; Schölkopf, 2022] model, which gen-
erates CIVs and their conditional sets from data, signifi-

Zt Zc

W Y

Uc

X

Figure 2: A causal DAG illustrating our proposed IDCIV-RS method
for discovering CIVs and their conditional sets from observational
data. W , Y , X , and Uc are the treatment, outcome, set of measured
pretreatment variables, and latent confounders between W and Y ,
respectively. Zt and Zc denote the representations of the CIVs and
their conditional sets learned from X .

cantly relaxing the constraints of standard IVs. However, this
method is designed for tabular data, and no attempt has been
made to adapt it to interactive data in recommender systems.

To address the challenge of using CIV in interactive data,
we first propose a causal DAG, as shown in Figure 2, to rep-
resent the causal relationships between observed and latent
variables in interaction data within recommender systems.
Building on this causal DAG, we develop an interaction-data-
guided conditional IV (IDCIV) debiasing method for recom-
mender systems, called IDCIV-RS. Specifically, IDCIV-RS
uses the embeddings of user-item pairs (including users with
the selected items, i.e., positive samples, and users with their
pre-selected items, i.e., negative samples) as the treatment
variable W , the user feedback as the outcome Y , and the
user interaction data (only positive samples) as the pretreat-
ment variable X . We assume that at least one CIV exists
within X , capturing latent information such as user search
behaviours that lead to interactions. The assumption is rea-
sonable because in real-world scenarios, users are often influ-
enced by certain external factors that cause their interactions
to be not fully consistent with their true preferences. For ex-
ample, users may interact with items because of certain ex-
ternal incentives (e.g., search recommendations, promotions,
etc.) even though these items do not exactly match their true
preferences. IDCIV-RS employs a VAE to generate the repre-
sentations of the CIV and its conditional set from X , denoted
as Zt and Zc, as shown in Figure 2. The contribution of our
work is summarised below:

• We propose a novel causal DAG to represent the causal
relationships between observed and latent variables in
interaction data within recommender systems.

• We develop an interaction-data-guided conditional IV
(IDCIV) debiasing method for recommender systems,
called IDCIV-RS, for learning representations of CIVs
and its conditional sets under the proposed causal DAG.
To the best of our knowledge, this is the first work to
generate representations of CIVs and their conditional
sets from interaction data for mitigating bias in recom-
mender systems.

• Extensive experiments on two real-world datasets
demonstrate that IDCIV-RS achieves optimal debiasing
results and recommendation performance compared to
state-of-the-art causal debiasing methods.
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2 Related Work
In this section, we review the recommender methods most
closely related to our IDCIV-RS, including traditional recom-
mender methods and causal recommender methods.

2.1 Traditional Recommender Methods
Traditional recommender methods, primarily based on Col-
laborative Filtering (CF), typically assume that user be-
haviour data is unbiased [Koren et al., 2021]. The mainstream
approach is model-based CF, which trains a model on user be-
haviour data to recommend items that align with user prefer-
ences. A classic method is MF [Koren et al., 2009], which de-
composes the user-item rating matrix to predict preferences.
However, MF assumes that unselected items are incompat-
ible with user preferences, ignoring cases where users may
not have encountered those items. To address this, Rendle
et al. [Rendle et al., 2012] proposed Bayesian Personalized
Ranking (BPR), which assumes users prefer selected items
over unselected ones, enhancing preference inference in MF.

With the rise of deep learning [Luo et al., 2024; Zhang et
al., 2022], He et al. [He et al., 2017] proposed NCF, which
uses multi-layer perceptrons (MLPs) to model non-linear user
preferences. To capture richer behavioural signals, Wang et
al. [Wang et al., 2019] introduced Neural Graph Collaborative
Filtering (NGCF), leveraging Graph Convolutional Networks
(GCNs) to embed user-item interactions. He et al. [He et al.,
2020] further simplified this with LightGCN, improving both
efficiency and accuracy. However, these methods often over-
look popularity bias, which can be amplified during training
and skew recommendations toward popular items.

2.2 Causal Recommender Methods
To mitigate biases in recommender systems, researchers have
increasingly adopted causal inference techniques. Early ap-
proaches used the Inverse Propensity Score (IPS) [Wang et
al., 2021; Schnabel et al., 2016; Bottou et al., 2013] to re-
duce bias by assigning an inverse propensity score (e.g., the
inverse of item popularity) to user-item interactions during
training, balancing the influence of popular and less popular
items. However, IPS methods often suffer from high variance
and instability. Building on IPS success, researchers have
explored causal graph-based methods [Zheng et al., 2021;
He et al., 2023; Zhang et al., 2021] that model the genera-
tion mechanisms of user behaviour. These methods design
specific models to address biases like popularity and confor-
mity bias. Yet, the presence of unobserved confounders in
real-world data limits the effectiveness of these causal graph
assumptions [Cai et al., 2024].

IVs are commonly used in causal inference to address con-
founding. Recently, methods leveraging user search data
as IVs have emerged, with the IV4Rec framework by Si et
al. [Si et al., 2022] being a notable example. IV4Rec uses
user search data to decompose user-item representations into
causal and non-causal components, addressing some limita-
tions of causal graph-based methods and reducing bias. How-
ever, identifying valid user search data as IVs remains chal-
lenging. Unlike these approaches, our work focuses on learn-
ing the representations of CIVs and their conditional sets,
which are less restrictive than standard IVs.

3 The Proposed IDCIV-RS Method
In this section, we first introduce the problem definition, then
explain the feasibility and rationality of our method by the
causal graph, and then introduce the four main steps of our
method. The overall workflow of our proposed IDCIV-RS is
visualised in Figure 3.

3.1 Problem Definition
In the recommender system, user behaviour data D usually
consists of a user set U and an item set I . D contains two
parts, namely: user u and selected items p to form positive
sample pairs, and user u and pre-selected items n to form
negative sample pairs. The user interaction data X consists of
positive sample pairs derived from D. X implicitly contains
a wealth of information, including user interactions stemming
from search behaviours.

In recommendation models, users and items are usually
represented as low-dimensional embedding representations
W , and the corresponding user-item pairs can be represented
as W = {(wu, wi) |u ∈ U, i ∈ I}. However, in addition
to reflecting user preferences, user behaviour data D contains
spurious correlations caused by various latent confounding
factors Uc (e.g., item exposure, conformity influence). Al-
though existing methods have mitigated the impact of these
confounding factors to some extent through causal inference
techniques, they often come with strong assumptions. We
aim to address this challenging problem in our work, and our
problem definition is described as follows.

Definition 1. In a recommender system, the latent variables
Uc affect the choice made and introduce bias. We assume that
at least one CIV exists within X , capturing latent information
that leads to interactions. The causal relationships between
measured and latent variables are shown in Figure 2. Our
goal is to learn the representations of the CIV Zt and its con-
ditional set Zc from the user interaction data X to address
the confounding biases introduced by Uc.

3.2 The Proposed Causal DAG
In this work, we proposed a causal DAG G as shown in Fig-
ure 2 to represent the causal relationships between the mea-
sured and latent variables. Let GW be the manipulated graph,
obtained by deleting all arrows emerging from nodes in W
within G. In GW , Zt and W are d-connected when condi-
tioned on Zc because of the existence of the edge Zt → W .
However, Zt and Y are d-separated by Zc since Zt, Zc and Uc

form a collider at W , and Zc blocks the path Zt ← Zc → Y .
Furthermore, the effect of Zt on Y is mediated solely by
W through the causal path Zt → W → Y . Therefore, Zt

is a CIV, and Zc is its corresponding conditional set. Note
that Zc may contain information about latent factors Uc due
to the complex relationships in interactive data, as indicated
by the dashed line between Uc and Zc [Wu et al., 2022;
Cheng et al., 2024b]. Many existing works have shown that
confounding factors can affect recommendation outcomes,
specifically Zc → Y [Si et al., 2022; Si et al., 2023a;
Si et al., 2023b]. Furthermore, since Zt and Zc are derived
from the user interaction data X , they will affect W , i.e.,
Zt →W and Zc →W in G.
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Figure 3: The overall structure of IDCIV-RS consists of four main steps, labelled 1, 2, 3, and 4 in the diagram. First, during feature encoding,
IDCIV-RS uses a backbone (MF or LightGCN) to encode the input data into a latent space representation. Second, the CSEM module is used
to learn the CIV Zt and its condition set Zc from the user-item interaction data X . Third, the representation of CIV is used to decompose the
treatment variable Wu,i, obtain the causal relationship representation Ŵu,i, and fuse it with the conditional set representation Zc to get the
reconstructed treatment variable W re

u,i. Finally, W re
u,i is used for the click prediction.

Based on the proposed causal DAG, we present IDCIV-
RS, an interaction-data-guided CIV debiasing method for rec-
ommender systems. IDCIV-RS offers two key advantages
over existing approaches: it eliminates the need for domain-
specific IV specification and leverages CIVs, which provide
a more general framework for mitigating confounding bias
from latent factors.

3.3 The Concepts of Treatment Variable, CIV and
Its Conditional Set

We define the concepts for the treatment variable, the CIV,
and its conditional set based on user behaviour data. The
treatment variable Wu,i using user-item pairs is defined as:

Wu,i = {(wu, wi) |u ∈ U, i ∈ I}, (1)

where wu and wi represent the embeddings of user u and item
i, respectively. The concepts for the representations of CIV
Zt and its conditional set Zc from the user interaction data X
are as follows:

Zt = {
(
ztu , ztp

)
|u, p ∈ X}, (2)

Zc = {
(
zcu , zcp

)
|u, p ∈ X}, (3)

where ztu and zcu indicate the representations of the CIV of
the user u and its conditional set, respectively, ztp and zcp
denote the representations of CIV of the corresponding item
p and its conditional set, respectively. To estimate the causal
effects of users and items on Y (user feedback), it is necessary
to construct the CIV and its conditional set for the user u and
item p, respectively.

3.4 Learning the Representations of CIV and Its
Condition Set

In our IDCIV-RS framework, we employ a VAE structure
as the generative model to generate the representations of
the CIV Zt and its conditional set Zc [Kingma and Welling,
2013; Sohn et al., 2015] from the user interaction data X ,

X

q(Zt|X)

q(Zc|X)

p(Zt)

p(Zc)

p(X|Zt,Zc)

……

……

Inference Network Generative Network

…

Figure 4: The CSEM components used to learn the latent represen-
tation of CIV Zt and its conditional set Zc consist of an inference
network and a generation network. The grey boxes represent sam-
ples drawn from the corresponding distribution, and the white boxes
represent the neural network.

referred to as the CIV and conditional Set Extraction Mod-
ule (CSEM), as shown in Figure 4. We use the inference and
generation networks of VAE to approximate the posterior dis-
tributions p (Zt|X) and p (Zc|X) for the two representations
Zt and Zc.

In the inference network, we use two independent encoders
to learn the posterior distributions q (Zt|X) and q (Zc|X).
The variational approximations of their posterior distributions
are as follows:

q (Zt|X) =

DZt∏
m=1

N
(
µ = µ̂Ztm

, σ2 = σ̂2
Ztm

)
, (4)

q (Zc|X) =

DZc∏
m=1

N
(
µ = µ̂Zcm

, σ2 = σ̂2
Zcm

)
, (5)

where µ and σ are the mean and variance of the Gaussian dis-
tribution captured by neural networks. It is worth noting that
Zt and Zc are composed of pairs of user and item samples, so
each q (Zt|X) and q (Zc|X) has two components: item and
user. In the generative network, the prior distribution p (Zt)
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follows a Gaussian distribution:

p (Zt) =

DZt∏
m=1

N (Ztm |0, 1) . (6)

The prior distribution p (Zc) is obtained based on the Con-
ditional VAE (CVAE) [Sohn et al., 2015] model. We use
Monte Carlo (MC) sampling to condition p(Zc) on X:

Zc ∼ p(Zc|X). (7)

Then, the decoder for X is described as follows:

p(X|Zt, Zc) =

DX∏
m=1

p (Xm|Zt, Zc) . (8)

For inference, we optimise the parameters by maximising
the evidence lower bound (ELBO):

Lciv =Eq[log p (X|Zt, Zc)]−DKL[q (Zt|X) ||p (Zt)]

−DKL[q (Zc|X) ||p (Zc|X)].
(9)

Note that using CVAE to condition p(Zc) on X is a critical
step for learning the representations of Zc and Zt because Zc

and Zt are independent given X , which ensures that Zt cap-
tures the CIV information, while Zc capture the confounding
information given X in the interactive data.

3.5 Decomposition of Treatment Variable
After obtaining the representations of CIV (Zt) and its con-
ditional set (Zc) from X , we use the CIV (Zt) to reconstruct
the treatment variable (W ) and decompose W to derive the
causal relationship, specifically, user preference. We apply
the least squares (LS) method based on IV4Rec [Si et al.,
2022] to decompose W and obtain the representation Ŵu,i

that is not affected by Uc:

Ŵu,i = fpro (Zt,Wu,i) , (10)
where fpro is the projection function that maps Zt and Wu,i

into the same space, allowing the unbiased Ŵu,i. The func-
tion fpro(·) is defined as:

fpro (Zt,Wu,i) = Zt · Wu,i, (11)

where Wu,i is the closed-form solution of the LS method, and
its calculation formula is as follows:

Wu,i = arg min
Wu,i

∥Zt ·Wu,i −Wu,i∥22 = Z†
t ·Wu,i, (12)

where Z†
t is the Moore-Penrose pseudo-inverse of Zt. Thus,

the decomposed Wu,i captures the causal relationship from
Zt while separating the latent confounding bias introduced by
Uc, which reflects user preferences. Additionally, we need to
incorporate Zc to obtain the reconstructed W re

u,i, as Zc blocks
the confounding bias between Zt and Y . Therefore, our final
reconstructed W re

u,i is obtained by:

W re
u,i = αŴu,i + (1− α)Zc, (13)

where α is a hyperparameter used to balance Ŵu,i and Zc.

3.6 Click Prediction
To improve click prediction, we optimize the reconstructed
treatment variables with BPR loss.

Lclick =−
∑

(u,p,n)∈D

ln sigma
( 〈

wre
u , wre

p

〉
− ⟨wre

u , wn⟩
)
,

(14)

where ⟨·⟩ denotes the inner product, and wn is the nega-
tive sample item that user u has not interacted with, se-
lected by the Popularity-based Negative Sampling with Mar-
gin (PNSM) strategy [Zheng et al., 2021]. By combining the
ELBO and BPR, the final loss function of our IDCIV-RS is:

Ltotal = Lciv + Lclick. (15)

Therefore, our IDCIV-RS obtain W re
u,i for click prediction

by learning the representations of CIV Zt and its condition
set Zc from X and by decomposing W .

4 Experiments
In this section, we conduct experiments on two real-world
datasets to validate the recommendation performance and de-
biasing effectiveness of IDCIV-RS.

4.1 Experimental Settings
Datasets. We use two publicly real-world datasets: the
Movielens-10M and the Douban-Movie datasets. Both
datasets include user IDs, movie IDs, and ratings (1-5) for
movies and are widely used in recommender system debi-
asing research. We use a dataset setup commonly used in
the field of debiased recommender systems; specifically, the
training set is biased and the test set is unbiased. We adopt the
data pre-processing approach used in previous studies [Zheng
et al., 2021].

Dataset # User # Item # Interaction
Movielens-10M 37,962 4,819 1,371,473
Douban-Movie 6,809 1,5012 173,766

Table 1: Statistics of datasets.

Baselines. Causal debiasing methods are typically applied
as enhancements to backbone recommendation models. In
our experiments, we use MF and LightGCN as the backbone
models. We compare our approach against five causality-
based debiasing methods:

• IPS [Schnabel et al., 2016]: This method assigns
weights that are the inverse of an item’s popularity,
thereby enhancing the impact of less popular items while
reducing the influence of more popular ones.

• IPS-C [Bottou et al., 2013]: This approach caps the
maximum value of IPS weights to reduce variance
across the entire weight distribution.

• CausE [Bonner and Vasile, 2018]: This method gener-
ates two sets of embeddings from the data, which are
then aligned using regularization techniques to ensure
their similarity.
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Dataset Movielens-10M
TopK=20 TopK=50

Backbone Method Recall↑ HR↑ NDCG↑ Imp.↑ Recall↑ HR↑ NDCG↑ Imp.↑

MF

Original 0.1276 0.4397 0.0832 – 0.2332 0.6308 0.1156 –
IPS 0.1228 0.4210 0.0779 -3.76% 0.2168 0.6016 0.1070 -7.03%

IPS-C 0.1277 0.4335 0.0809 +0.08% 0.2224 0.6150 0.1102 -4.63%
CausE 0.1164 0.4144 0.0770 -8.77% 0.2076 0.5940 0.1047 -10.98%
DICE 0.1626 0.5202 0.1076 +27.42% 0.2854 0.6941 0.1459 +22.38%
DCCL 0.1503 0.4874 0.0975 +17.79% 0.2636 0.6676 0.1326 +13.04%

IDCIV-RS-Causal 0.1660 0.5282 0.1108 +30.09% 0.2895 0.7012 0.1495 +24.14%
IDCIV-RS 0.17090.17090.1709 0.53620.53620.5362 0.11480.11480.1148 +33.93%+33.93%+33.93% 0.29730.29730.2973 0.70730.70730.7073 0.15420.15420.1542 +27.49%+27.49%+27.49%

LightGCN

Original 0.1462 0.4831 0.0952 – 0.2631 0.6688 0.1316 –
IPS 0.1298 0.4438 0.0849 -11.22% 0.2325 0.6196 0.1170 -11.63%

IPS-C 0.1327 0.4533 0.0871 -9.23% 0.2383 0.6302 0.1201 -9.43%
CausE 0.1164 0.4099 0.0727 -20.38% 0.2204 0.6080 0.1046 -16.23%
DICE 0.1810 0.5564 0.1228 +23.80% 0.3109 0.7219 0.1632 +18.17%
DCCL 0.1462 0.4824 0.0947 0% 0.2644 0.6711 0.1311 +0.49%

IDCIV-RS-Causal 0.1784 0.5511 0.1205 +22.02% 0.3056 0.7160 0.1602 +16.15%
IDCIV-RS 0.18170.18170.1817 0.55820.55820.5582 0.12410.12410.1241 +24.28%+24.28%+24.28% 0.31190.31190.3119 0.72320.72320.7232 0.16450.16450.1645 +18.55%+18.55%+18.55%

Table 2: The performance of all methods on Movielens-10M. The “original” indicates that only the backbone is used, with no additional
causal debiasing methods. The best results are highlighted in bold, and the second-best results are underlined.

Dataset Douban-Movie
TopK=20 TopK=50

Backbone Method Recall↑ HR↑ NDCG↑ Imp.↑ Recall↑ HR↑ NDCG↑ Imp.↑

MF

Original 0.0214 0.0542 0.0128 – 0.0371 0.0933 0.0171 –
IPS 0.0172 0.0444 0.0099 -19.63% 0.0282 0.0755 0.0130 -23.99%

IPS-C 0.0166 0.0446 0.0095 -22.43% 0.0271 0.0761 0.0125 -26.95%
CausE 0.0149 0.0410 0.0074 -30.37% 0.0273 0.0761 0.0108 -26.42%
DICE 0.0231 0.0615 0.0133 +7.94% 0.0396 0.1012 0.0178 +6.74%
DCCL 0.0217 0.0595 0.0123 +1.40% 0.0385 0.1040 0.0170 +3.77%

IDCIV-RS-Causal 0.0278 0.0736 0.0162 +29.91% 0.0462 0.1213 0.0213 +24.53%
IDCIV-RS 0.02990.02990.0299 0.07770.07770.0777 0.01710.01710.0171 +39.71%+39.71%+39.71% 0.04800.04800.0480 0.12130.12130.1213 0.02200.02200.0220 +29.38%+29.38%+29.38%

LightGCN

Original 0.0375 0.0557 0.0118 – 0.0640 0.0908 0.0155 –
IPS 0.0352 0.0928 0.0208 -6.13% 0.0619 0.1576 0.0281 -3.28%

IPS-C 0.0368 0.0980 0.0219 -1.87% 0.0643 0.1657 0.0295 -4.69%
CausE 0.0263 0.0693 0.0143 -29.87% 0.0463 0.1216 0.0199 -27.66%
DICE 0.0401 0.1088 0.0232 +6.93% 0.0679 0.1755 0.0310 +6.09%
DCCL 0.0401 0.1046 0.0225 +6.93% 0.0693 0.1732 0.0306 +8.28%

IDCIV-RS-Causal 0.0407 0.1125 0.0239 +8.53% 0.0704 0.1840 0.0321 +10.00%
IDCIV-RS 0.04350.04350.0435 0.11780.11780.1178 0.02520.02520.0252 +16.00%+16.00%+16.00% 0.07240.07240.0724 0.18860.18860.1886 0.03320.03320.0332 +13.13%+13.13%+13.13%

Table 3: The results of all methods on Douban-Movie. The best is highlighted in bold, and the second-best is underlined.

• DICE [Zheng et al., 2021]: This method uses Structural
Causal Modeling (SCM) [Pearl, 2009] to define user-
item interactions. This approach leverages the collision
effect of causal reasoning to enhance training effective-
ness.

• DCCL [Zhao et al., 2023]: This method uses contrastive
learning to address data sparsity and the separation of
these components.

We did not compare IDCIV-RS with IV-based methods like
IV4Rec [Si et al., 2022], as these require explicit IVs de-
rived from domain knowledge or user search data, which our
datasets lack. In contrast, IDCIV-RS learns CIV represen-
tations directly from user interactions, avoiding dependence

on unavailable or domain-specific data. This confers greater
flexibility and applicability in real-world scenarios.
Metrics. We evaluate Top-K recommendation under im-
plicit feedback using Recall, Hit Rate (HR), and NDCG. Re-
sults reflect each method’s best performance under optimal
settings. “Imp.” denotes the percentage improvement in Re-
call over the base model.

4.2 Comparison of Experimental Results
Tables 2 and 3 present the results of IDCIV-RS and all
baseline approaches on two real-world datasets. IDCIV-RS-
Causal is a variant of IDCIV-RS that denotes click prediction
using only the unbiased embeddings Ŵu,i, which capture the
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causal relationship.
The analysis of Tables 2 and 3 shows that IDCIV-RS and

IDCIV-RS-Causal significantly improve performance metrics
compared to the original backbone, with the highest improve-
ment reaching 39.71%, demonstrating statistical significance
and the superiority of our approach. Notably, IDCIV-RS con-
sistently outperforms IDCIV-RS-Causal, aligning with the
understanding that incorporating appropriate confounders en-
hances recommendation performance. This confirms that
Zc in IDCIV-RS effectively captures relevant confounders in
user interaction data.

Tables 2 and 3 provide several key insights: (1) IPS-based
debiasing methods perform poorly due to their reliance on
the inverse propensity score, which is sensitive to data distri-
bution. In our experiments, training on a biased dataset and
testing on an unbiased one led to distribution mismatches. (2)
CausE also underperforms, as it requires an unbiased training
dataset to align user-item embeddings. (3) Although DICE
and DCCL, which are based on causal graph assumptions,
improve performance, they still fall short of optimal results.
This is because they target specific biases based on predefined
causal graphs, while real-world datasets often contain diverse
biases from latent confounders, limiting their effectiveness.

4.3 Evaluation on Debiasing Experiments Ability
We use the Intersection Over Union (IOU) [Zheng et al.,
2021] metric to evaluate the debiasing ability of all methods.
A higher IOU reflects more popular items in the recommen-
dations, indicating weaker debiasing performance.

Figure 5: The IOU of recommended items and popular items for all
methods on the Douban-movie dataset. (a) IOU of all methods on
the MF; (b) IOU of all methods on the LightGCN.

Figure 5 shows the IOU for all methods on the Douban-
movie dataset. IDCIV-RS and IDCIV-RS-Causal exhibit the
lowest IOU, indicating superior debiasing ability. Notably,
the IOU for all baseline methods increases significantly as the
number of recommended items grows, suggesting that their
debiasing ability diminishes with more recommendations. In
contrast, the debiasing ability of our IDCIV-RS and IDCIV-
RS-Causal remains relatively stable, demonstrating greater
robustness.

Figure 5 also illustrates that the IOU of IDCIV-RS is higher
than that of IDCIV-RS-Causal, due to IDCIV-RS incorporat-

ing confounding factor information. This suggests that Zc

effectively captures confounding factors in user interaction
data, validating our method.

4.4 Ablation Studies
We perform ablation studies to evaluate the effectiveness of
each component in IDCIV-RS. To verify the effectiveness of
CIV and its condition set, we propose IDCIV-RS-Con, which
uses only Zc for click prediction. Figure 6 presents the IOU
and Recall of IDCIV-RS and its variants. The results show
that IDCIV-RS-Con has the highest IOU and lowest Recall,
highlighting the effectiveness of Zc in capturing confounding
factor information. In contrast, IDCIV-RS-Causal exhibits
higher Recall but lower IOU than IDCIV-RS-Con, indicat-
ing its effectiveness in capturing user preference information
and mitigating confounding factors through Zt. IDCIV-RS,
by integrating both user preference and confounding factor
information, achieves higher Recall and IOU than IDCIV-RS-
Causal, demonstrating the combined effectiveness of Zt and
Zc.

Figure 6: Recall and IOU of MF-based IDCIV-RS and its variants
on the Douban-movie dataset. Where the bar represents Recall and
the curve represents IOU.

5 Conclusion
In this paper, we propose a data-driven CIV debiasing method
called IDCIV-RS. We learn the representations of CIV and
its conditional set from user interaction data. The CIV is
used to decompose the treatment variable and uncover the
causal relationships between variables, while the conditional
set captures confounding factors in the user interaction data.
Unlike existing IV-based debiasing methods, IDCIV-RS im-
poses fewer constraints and does not require the selection of
specific IVs based on domain knowledge. By integrating con-
founding factors and the causal relationships of the treatment
variable, IDCIV-RS achieves high-quality recommendations
and effective debiasing. We conducted extensive experiments
on two real-world datasets to validate the effectiveness and
superiority of IDCIV-RS in both recommendation and debi-
asing performance.
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[Bottou et al., 2013] Léon Bottou, Jonas Peters, Joaquin
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