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Abstract

The success of current graph contrastive learning
methods largely relies on the choice of data aug-
mentation and contrastive objectives. However,
most existing methods tend to optimize these two
components independently, neglecting their poten-
tial interplay, which leads to suboptimal quality
of the learned embeddings. To address this issue,
we propose Uncertainty-guided Graph Contrastive
Learning (UGCL) from a unified perspective. The
core of our method is the introduction of sample
uncertainty, a critical metric that quantifies the de-
gree of class ambiguity within individual samples.
On this basis, we design a novel multi-scale data
augmentation strategy and a weighted graph con-
trastive loss function, both of which significantly
enhance the quality of embeddings. Theoretically,
we demonstrate that UGCL can coordinate over-
all optimization objectives through uncertainty, and
through experiments, we show that it improves the
performance of tasks such as node classification,
node clustering, and link prediction, thereby veri-
fying the effectiveness of our method.

1 Introduction

Graph data as a type of complex non-Euclidean data, is
widely used in applications such as social networks, recom-
mendation systems, and biological networks [Meng ef al.,
2024]. With its intricate structure and diverse attributes,
obtaining effective graph representations is crucial for im-
proving the performance of downstream tasks. However,
traditional graph data analysis methods rely on supervised
or semi-supervised paradigms and obtaining high-quality la-
beled data is often challenging [Chen et al., 2020a; Peng et
al., 2020; Song et al., 2023]. Recently, graph self-supervised
learning, which uses pretext tasks to extract meaningful su-
pervisory signals for downstream tasks, has emerged as a
key technique to reduce label dependency [Tian er al., 2021;
Baevski er al., 2022; Wang et al., 2023]. Among these,
graph contrastive learning (GCL) has gained prominence due
to its exceptional performance [Li ef al., 2021; Xiao et al.,
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2023al. It generates contrastive views through data augmen-
tation, bringing positive examples closer and negative exam-
ples further away in the embedding space, thereby producing
discriminative representations.

The success of current GCL relies on the choice of data
augmentation and contrastive objectives. Data augmenta-
tion generates multiple views by perturbing the graph struc-
ture or properties to capture invariances and obtain gen-
eral representations [Liu et al., 2024; Zhang et al., 2023;
Xiao et al., 2023b]. On the other hand, contrastive objectives
guide the learning process by selecting positive and negative
sample pairs, aiming to maximize the similarity between pos-
itive samples and minimize the similarity between negative
samples, thereby improving the model’s generalization abil-
ity [Xia et al., 2022; Niu e al., 2024].

However, existing methods often treat data augmentation
and contrastive objectives as separate processes, lacking a
deep understanding of the potential relationship between
them. In such frameworks, the data augmentation strategy
may not be well-aligned with the contrastive objective, re-
sulting in the failure to fully capture the complex structural
relationships between nodes and edges in the graph. Fur-
thermore, due to the independent optimization of data aug-
mentation and contrastive objectives, the model may learn
conflicting embeddings that fail to capture deeper semantic
information in the graph. As a result, the lack of a unified
guiding principle between the augmentation strategy and con-
trastive objectives in current GCL methods hinders the quality
of the learned embeddings. And, as an unsupervised learn-
ing paradigm, GCL lacks explicit label information, leading
to ambiguous boundaries between classes and increasing the
uncertainty in positive and negative sample selection.

To address this issue, we propose an Uncertainty-guided
Graph Contrastive Learning (UGCL) algorithm, which sys-
tematically optimizes the interaction between data augmenta-
tion and contrastive objectives through a unified uncertainty
measure. Specifically, we introduce sample uncertainty to
quantify the degree of class ambiguity in graph data. This
metric plays a core role throughout the entire life cycle of
GCL, effectively aligning data augmentation with contrastive
objectives. On this basis, we construct a homogeneity ma-
trix to generate multi-scale augmented views and design a
weighted graph contrastive loss to further optimize the con-
trastive learning process. Through the unified perspective
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of uncertainty, our method effectively aligns the selection of
data augmentation and contrastive objectives, ensuring their
collaborative optimization and significantly enhancing the
quality of graph embeddings. In conclusion, the main con-
tributions of our method can be summarized as follows:

¢ Introduction of Unified Perspective: We propose a
unified perspective to jointly optimize data augmen-
tation and contrast objectives for Graph Contrastive
Learning.

¢ Uncertainty-guided Learning Process: Based on sam-
ple uncertainty, we propose a multi-scale data augmen-
tation strategy and a weighted graph contrastive loss to
enhance the quality of learned embeddings.

* Theoretical and Experimental Verification: We pro-
vide theoretical proofs to support the proposed method
and demonstrate its effectiveness through extensive ex-
periments in various tasks, such as node classification,
node clustering, and link prediction.

2 Related Work
2.1 Graph Contrastive Learning

Contrastive learning is a self-supervised learning method pri-
marily used to learn low-dimensional embeddings, where
similar samples are placed closer in the embedding space,
and dissimilar samples are farther apart [Hassani and Ah-
madi, 2020; Sun et al., 2020; Luo ef al., 2023]. Recently, con-
trastive learning has achieved significant unsupervised perfor-
mance in computer vision, with methods such as MOCO [He
et al., 2020], BYOL [Grill et al., 20201, and others [Ma et al.,
2024; Shi et al., 2024], which has also inspired its applica-
tion to graph data. To date, many graph contrastive learning
(GCL) methods have been proposed to enhance graph rep-
resentation learning. For example, DGI [Velickovic et al.,
2019] learns node embeddings by maximizing the mutual in-
formation between local node features and global graph fea-
tures. GCC [Qiu er al., 2020] designs a pretext task for sub-
graph instance recognition within the network. POT [Yu et
al., 2023] regularizes GCL training to better encode node em-
beddings that follow GCL principles.

2.2 Graph Contrastive Learning Paradigms

Most existing graph contrastive learning methods focus on
either data augmentation or contrastive objective selection.
Data augmentation-based methods, such as GraphCL [You et
al., 2020], systematically investigate the impact of various
combinations of graph data augmentations on multiple tasks
by designing four different graph data augmentation scenar-
ios. Based on GRACE [Zhu et al., 2020], GCA [Zhu et al.,
2021] preserves important structural and attribute features in
graph data, forcing the model to identify underlying semantic
information. JOAO [You er al., 2021] automatically com-
bines different augmentation strategies. NCLA [Shen et al.,
2023] uses a multi-head attention mechanism to generate aug-
mented views, effectively avoiding the use of extensive prior
knowledge. In terms of contrastive objective selection, pos-
itive samples are chosen based on corresponding nodes in

augmented views, while various methods for selecting nega-
tive samples have been proposed. For example, GDCL [Zhao
et al., 2021] suggests using clustering results from GCL to
eliminate false negatives and reduce their occurrence. CUCO
[Chu et al., 2021] introduces a curriculum learning method,
designing scoring and pacing functions to select appropriate
negative samples from the negative sample pool. ProGCL
[Xia et al., 2022] proposes mining hard negative samples by
fitting the negative sample distribution and avoiding the se-
lection of similar neighboring nodes as negative samples to
mitigate false negatives. AUGCL [Niu et al., 2024] intro-
duces the concept of affinity uncertainty and applies it to mea-
sure hard negative samples. However, the above graph con-
trastive learning methods primarily focus on either augmen-
tation strategies or contrastive objective selection, neglecting
the potential interplay between the two, which limits the qual-
ity of graph contrastive learning embeddings.

3 Methodology

In this section, we first present the problem formulation. Then
we introduce the sample uncertainty in GCL, which serves as
the foundation for our multi-scale data augmentation strategy
and weighted graph contrastive loss.

3.1 Problem Statement
Let G = (V,€) represent a graph, where V =
{v1,v2,...,0n} is the set of nodes and £ C V x V is the
set of edges. X € RM*F denotes the node feature matrix,
where each node is associated with a F'-dimensional feature
vector, and A € {0, 1}V <V represents the adjacency matrix,
which describes the connections between nodes. The objec-
tive of UGCL is to learn a GNN encoder f (X, A) € RN*F
that embeds nodes into a low-dimensional space without re-
lying on label information. The core formula for the encoder
is as follows:

H(X,A) =o(D 2 AD 3 XW), (1)

f(X,A) = H (H(X,A),4), 2

where A represents the adjacency matrix of the graph plus
a self-connection term I, D represents the degree matrix of
A, W represents the weight matrix, and o is the activation
function.

Most mainstream GCL methods are similarities with the
InfoNCE objective, where the training objective for each pos-
itive pair is to:

L(ui, ;)
F(ui,v;)

F(ui,vi) + Zk# Ui (F(ug, vg) + F(ui, ug))’
3)

where F(-,-) = exp (6(-,)/7). 8(-,) = s(g(-), g(-)), here

s(-, -) is the cosine similarity and g(-) is the linear projection

to augment the expressive power [Chen er al., 2020b], and

T is the temperature coefficient. Owing to the symmetry of

these two views, the overall loss is defined as the average of

all positive pairs:

= —log

N

> [L(us,vi) + L{vi,ug)]. (4)

i=1

1

La =3y
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Figure 1: Overview of the UGCL model framework. This model consists of three components: multi-scale data augmentation, embedding
representation, and weighted contrastive loss. Specifically, the model significantly improves the quality of graph contrastive learning embed-
dings by unifying data augmentation and contrastive objectives selection through uncertainty.

3.2 The Proposed Model: UGCL

Most existing GCL methods focus on optimizing either data
augmentation or contrastive objectives independently, ne-
glecting their potential interaction, which leads to suboptimal
embedding quality. Therefore, we develop an algorithm uti-
lizes a unified perspective on uncertainty to enhance GCL.
The entire algorithm framework is illustrated in Figure 1.

Introduction of Sample Uncertainty

In GCL, we introduce sample uncertainty to quantify the
degree of class ambiguity, and assign an uncertainty mea-
sure to each sample. Sample uncertainty refers to the de-
gree of variation in a sample’s distance to various cluster cen-
ters, which indicates class uncertainty. Specifically, we first
obtain the node embeddings by applying parameter-shared
GCN to the original views. Then, we use the K-means algo-
rithm based on these embeddings to obtain K cluster centers
{14, pt2; - - ., i}, and compute the distance d;; from node z;

to node p; in each cluster:
dij = llzi — ;- Q)

Then, calculate the standard deviation to quantify this un-
certainty. The specific formula is as follows:

1 1< i
oi= g dii— g D digr | (6)
j=1 j'=1

where o; represents the uncertainty of node v;, which is cal-
culated based on the variance of its distances to all cluster
k

centers. é > d;j is the average distance from node v; to the
i=1

k cluster centers. o; measures the distributional variation of

node v; relative to all cluster centers in the embedding space.

Therefore, a smaller calculated standard deviation indicates

higher uncertainty of the node. The uncertainty matrix be-
tween node pairs (v;,v;) based on node uncertainty is defined
as follows:

zi — 2| - 0
Uij = exp (—II CIII j) ) (7N
here, z is the embedding representation of the node, ||z; — z;||
represents the Euclidean distance between node pairs, and
C' is a scaling constant, typically set to 1. The uncertainty
between node pairs is highest when and only when both
|zi — z;|| and o; are small, making node v; more likely to
be a hard negative example relative to node v;. This lays the
foundation for building a unified perspective on GCL.

Multi-Scale Data Augmentation

As shown in Figure 1, we first construct a similarity matrix
before the data augmentation phase. The purpose of this ma-
trix is to perform an initial screening of samples. The con-
struction process involves several steps. Firstly, an Multi-
Layer Perceptron (MLP) is employed as a feature extractor.
After applying the MLP to the node features of the original
view, a Softmax operation is performed to obtain the node
embedding matrix. Since the MLP does not involve neigh-
borhood aggregation, it effectively preserves the discrimina-
tive power of the samples. The specific formula is as follows:

P = Softmax (MLP (X)) . (8

Next, we compute the similarity matrix between each pair
of nodes by performing the dot product of the matrix of the
obtained node embeddings with its transpose. Based on the
obtained similarity matrix, we calculate the median of the
similarities between all samples and the anchor points, de-
noted as S,,,.. Similarities lower than this median are masked
as 0. These negative samples, having a significant similarity
gap with the anchor points, can be considered as samples of
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a different class from the anchor points. This results in an
similarity matrix, with the specific formula given as follows:
P,-Pl, if P,- P’ > S,

SU:{ b T 2 )

0, otherwise

In order to explore the deep connection between data aug-
mentation and contrast objectives, we consider the advan-
tages of difficult samples from the perspective of multi-scale
data augmentation and construct a homogeneous matrix H;;
based on the uncertainty matrix U;; obtained from node pairs.
The aim is to reduce the connections between nodes of differ-
ent classes in various augmentation views and learn the in-
variance of hard negative samples across augmentation views
at different scales. Specifically, we generate e™ = KN (K €
1,2,3,..;m =1,..., M) edges based on the number of nodes
N, establishing the edge connections and thus reconstructing
the adjacency matrix. The specific formulas are as follows:

Hy=(1-Uy;)-Sij. (10)
m ]'7

where H;; is the probability matrix for nodes of the same
class, which favors pairs of nodes being of the same class.
The enhancement of node features is achieved by randomly
masking nodes. Specifically, it refers to the node features ran-
domly generated based on all node attributes. The calculation
formula is as follows:

Zf Hij n tOpk Of {H@J}

) 7 (1)
otherwise

Xm:[$1Om;$20m§-~-§$N°m]Tv (12)

here, X" represents randomly generated node features; o de-
notes element-wise multiplication; m € {0,1}” is a ran-
domly sampled vector, and D is the dimension of the ran-
dom vector, with each dimension independently drawn from
a Bernoulli distribution. Finally, based on the obtained edge
and node feature enhancements, the final enhanced view is
obtained, as specified by the following formula:

G = tm (Xm,Am) . (13)

Weighted Graph Contrastive Loss

Based on the obtained uncertainty matrix U;;, we construct a
weighted graph contrastive loss by multiplying U;; with the
negative samples in each pair of views. This increases the
weight of hard negative samples in the contrastive target from
an uncertainty perspective. The specific formula is as follows:

F(ui ), ;)
R0 0) § Neg (4 )
(14)

l (u(.a) v(b)) = —log

(2 » Y

F(-,-) = exp(6(-,-)/7). Based on view symmetry, the total
loss of the UGCL can be defined as the average of all positive
pairs, with the specific formula as follows:

£ugcl
M

N
1
3 SR )]

a,b=1,a#b i=1
(15)

Update the GCN encoder parameters through the total loss.
The entire algorithm is shown in Appendix A.

3.3 Theoretical analysis of UGCL

To gain a deeper understanding of the core mechanism of
UGCL, we leverage the adjusted triplet loss as an interme-
diate bridge to analyze the role of sample uncertainty in con-
trastive learning. By introducing the uncertainty measure U,
between sample pairs during the data augmentation phase and
designing an adaptive margin m;; = (7/2)/log Uy, our
method dynamically adjusts the decision boundary between
positive and negative sample pairs, achieving collaborative
optimization between data augmentation and contrastive tar-
get selection.

We further propose the following theorem to demonstrate
how UGCL improves the optimization of hard negative sam-
ples through the adjusted triplet loss and theoretically validate
its effectiveness:

Theorem 3.1. Let G be a graph with N nodes V =
{vi,v9,...,on}, G1,Go,...,Gn is the M views generated
by multi-scale data augmentation. Randomly given two view
embeddings U,V € RF ' from M views. When the projection
Sunction is the identity function and Uy, is the metric for mea-
suring sample uncertainty between node pairs. The greater
the value of U;, the node uy, is more likely to be a hard nega-
tive sample based on anchor u;. Minimizing the loss function
Eq (14) is equivalent to minimizing the adjusted triplet loss
with an adaptive margin m;, = (7/2)/logU;y, the following
is abbreviated as:

l(ui,vi)
.F(Ui,l}i)
F(ui,v;) + Zk# Ui (F(ui,vg) + F(ug, ug))

o ANT + 3 [ (s = villy = llws = wil13) +ma
ki

7 [ (s = well3 = lws = wil3) + o] -
ki

(16)

Detailed proofs can be found in Appendix B. We can see

that the optimal embeddings for Eq(14) are equivalent to op-
timizing the following objectives:

> maz |[[us = vell3 ~ [[ue = villy + ma, 0]
k#i

= —log

(17)
andZmax [||uz — uk||§ — ||u; — UZ||§ + mik,O} ,
k#i
where m;r;, = (7/2)/logU;, and Uy, is a measure of

the uncertainty between node pairs. The formula Eq (17)
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can be rewritten as mg, < ||lu; — vil|5 — |lu; — vl and
2 2 . 2
mip < |lu; = villy = [ — upll5. Assuming [[u; — vsf5 re-
mains approximately fixed, a decrease in m;;, imposes looser
constraints on |lu; — vk||§ and ||u; — uk||§, allowing them to
increase during optimization. The underlying reason is that
m;k, as an adaptive margin, dynamically adjusts the deci-
sion boundary, reducing the strict constraints on hard negative
samples. This enables the model to handle negative samples
more flexibly, thereby achieving a more balanced coordina-
tion between data augmentation and contrastive objective.
This theorem fully demonstrates UGCL’s ability to opti-
mize under a unified perspective. The key lies in effectively
coordinating the overall optimization objectives through sam-
ple uncertainty, which is consistent with the goal of graph
contrastive learning.

4 Experiments

This section evaluates the proposed method by detailing the
datasets, experimental settings, and assessing model perfor-
mance in key tasks such as node classification, clustering, and
link prediction. It also presents findings from ablation studies
and hyperparameter analysis.

4.1 Experimental Setup

Dataset. This paper evaluates the proposed method using six
commonly used datasets, including four citation networks
(Cora [Sen et al., 2008], Citeseer [Sen et al., 2008], Pubmed
[Sen et al., 2008], and DBLP [Yang and Leskovec, 2012])
and two Amazon co-purchase networks (Amazon-Computers
[Shchur et al., 2018] and Amazon-Photo [Shchur et al.,
2018]). Detailed dataset information is provided in Table 1.
In the citation networks, nodes represent articles, and edges
indicate citation relationships. In the Amazon co-purchase
networks, nodes represent products, with edges connecting
frequently co-purchased items. Each dataset contains a node
feature matrix X and a graph structure matrix A.

Datasets Nodes Edges Features Classes
Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
DBLP 17,716 52,867 1,639 4
Amazon-Computers 13,752 245,861 767 10
Amazon-Photo 7,650 119,081 745 8

Table 1: Statistics of Datasets Used in Experiments.

Implementation Details. In the experiments, the algo-
rithm proposed in this paper was implemented using the
Python programming language and the PyTorch framework.
For each dataset, we follow the experimental setup of GCA
[Zhu et al., 20211, 10%, 10%, and 80% of the nodes were
allocated for training, validation, and testing, respectively.

4.2 Node Classification

Node classification involves assigning each node in a graph
to a predefined class. The procedure starts with learning node
embeddings in an unsupervised way, followed by classifying

the nodes using a logistic regression model based on these
embeddings.

Comparison Methods. To assess the node classification
performance of our method, we compare it with two types
of representative algorithms: traditional methods like Deep-
Walk [Perozzi et al., 2014] and deep learning methods such
as GAE [Schulman et al., 2016], VGAE [Kipf and Welling,
2016], GAT [Veli¢kovié et al., 2017], DGI [Velickovic et al.,
2019], GRACE [Zhu et al., 2020], GCA [Zhu et al., 20211,
GDCL [Zhao et al., 2021], ProGCL [Xia et al., 2022], and
AUGCL [Niu et al., 2024].

Results Analysis. Table 2 shows that our model improves
performance across six public datasets by addressing the mis-
alignment between data augmentation and contrastive objec-
tives in existing GCL methods. By using sample uncertainty
from UGCL, our approach identifies hard negative examples,
preserves homophily, and removes edges between nodes of
different classes. This unified framework captures complex
graph structures and enhances the semantic depth of embed-
dings, significantly boosting GCL performance.

4.3 Node Clustering

Node clustering seeks to partition nodes in graph data into
distinct clusters. A cluster is formed by closely connected
nodes sharing similar attributes. This paper generates node
embeddings using UGCL and applies K-means to produce
the clustering results.

Comparison Methods. To evaluate the node clustering
performance of the proposed method, the paper uses Accu-
racy (ACC), Normalized Mutual Information (NMI), and Ad-
justed Rand Index (ARI) to measure the quality of the clus-
tering results. Specifically, experiments are conducted on the
Cora, Citeseer, and Pubmed datasets, and comparisons are
made with the following baseline methods: Spectral[Ng et
al., 2001], K-means[Hartigan and Wong, 19791, GAE[Pan et
al., 2018], VGAEIKipf and Welling, 2016], ARVGA[Pan et
al., 2018], GRACEI[Zhu et al., 2020], GCA[Zhu et al., 2021],
GDCLI[Zhao et al., 2021], ProGCLI[Xia et al., 2022]], and
AUGCLI[Niu et al., 2024].

Results Analysis. Table 3 shows that the proposed method
significantly outperforms baseline methods on the Cora, Cite-
Seer, and PubMed citation network datasets, while the exper-
imental results on the DBLP, Computers, and Photo datasets
are provided in Appendix C. UGCL unifies data augmen-
tation and contrastive objectives, enabling better capture of
deep semantic information in complex graph structures and
effectively distinguishing different clusters, demonstrating
superior performance in node clustering tasks.

4.4 Link Prediction

Link prediction identifies potential edges between nodes in a
graph using data from known nodes and edges. In the exper-
iments, UGCL generates node embeddings, which are subse-
quently used for link prediction.

Comparison Methods. To evaluate the link prediction per-
formance of the proposed method, the Area Under Curve
(AUC) and Average Precision (AP) are employed to mea-
sure the quality of the link prediction results. Specifically, ex-
periments are conducted on the Cora, Citeseer, and Pubmed
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Methods Cora CiteSeer PubMed DBLP Computers Photo Avg
DeepWalkl[Perozzi et al., 2014] 70.7+0.25 51.4+036 74.3+0.18 75.9+0.10 85.64-0.07 89.440.05 74.5
GAEI(Schulman et al., 2016] 71.540.39 60.6+0.43 72.1+0.27 81.2+0.07 85.2+0.13 91.640.06 77.0
VGAEIKipf and Welling, 2016] 78.9+0.26 61.2+0.59 79.0+0.35 81.740.05 86.340.15 92.240.07 79.8
GAT | Veli¢kovié et al., 20171 83.040.30 72.540.65 79.040.40 81.540.03 85.240.09 91.240.05 82.0
DGl Velickovic et al., 2019] 83.8+0.36 72.0+0.72 76.8+0.45 83.2+0.15 83.9+0.05 91.640.09 81.9
GRACEI(Zhu et al., 20201 83.2+0.75 72.1+1.51 86.7+0.19 84.1+0.34 86.8+0.32 91.840.15 84.1
GCAIZhu et al., 2021] 83.740.79 72.5+1.29 86.8+0.21 84.240.23 87.5+0.35 92.240.43 84.4
GDCLIZhao et al., 20211 84.540.59 72.84+1.13 81.540.35 82.14+0.42 85.940.50 90.140.59 83.0
ProGCLIXia et al., 2022] 83.7+0.45 72.741.09 85.9+0.26 83.7+0.36 88.1+0.43 93.2+0.32 84.6
AUGCLINiu et al., 2024] 84.240.43 72.6+1.25 85.540.35 84.1+0.26 88.9+0.39 93.640.53 84.8
Ours 85.8+0.35 73.7+1.01 87.7+0.20 85.3+0.19 88.540.26 93.7+0.31 85.8

Table 2: Accuracy (%) for Experimental Results of Node Classification. Bold denotes the best performance, and underline represents the

second best performance.

Cora Citeseer PubMed

Methods

ACC NMI ARI ACC NMI ARI ACC NMI ARI
Spectral  36.7 12.6 3.1 238 55 1.0 528 9.7 62
K-means 49.2 32.1 229 540 305 27.8 59.5 31.5 28.1
GAE 59.6 429 347 408 17.6 124 672 27.7 279
VGAE 502 329 254 46.7 26.0 205 63.0 229 213
ARVGA 64.0 450 374 544 26.1 245 69.0 29.0 30.6
GRACE 64.6 475 442 655 398 395 69.3 36.1 35.1
GCA 65.5 50.5 49.6 657 40.5 39.7 69.5 33.5 32.0
GDCL 68.2 55.1 51.0 67.5 43.2 433 71.0 352 343
ProGCL 66.5 512 49.5 66.2 393 395 70.1 353 36.1
AUGCL 668 532 48.7 65.8 395 392 703 373 37.1
Ours 69.7 549 528 679 423 415 72.0 39.6 39.5

Table 3: Experimental Results of Node Clustering.

datasets, and comparisons are made with the following base-
line methods: Spectral [Ng er al., 2001], DeepWalk [Perozzi
et al., 2014], GAE [Schulman et al., 2016], VGAE [Kipf and
Welling, 2016], ARVGA [Pan er al., 2018], GRACE [Zhu et
al., 2020], GCA [Zhu et al., 2021], GDCL [Zhao et al., 2021],
ProGCL [Xia et al., 2022], and AUGCL [Niu et al., 2024].
Results Analysis. Table 4 shows that the UGCL method
significantly outperforms baseline methods on the Cora, Cite-
Seer, and PubMed citation network datasets, while the exper-
imental results on the DBLP, Computers, and Photo datasets
are provided in Appendix C. It performs well across different
datasets, highlighting its potential in link prediction tasks.

4.5 Ablation Experiment

This section includes two ablation experiments to evaluate
the model components. The first experiment focuses on the
effect of data augmentation with sample uncertainty, while
the second investigates the weighted graph contrastive loss.
The results of these experiments are illustrated in Figure 2.
Multi-Scale Data augmentation. In this section, the data
augmentation based on sample uncertainty is replaced with
random edge dropping to compare and evaluate its effective-
ness in the model. The results indicate that, compared to the
baseline method UGCL/ran with random edge dropping, data
augmentation based on sample uncertainty leads to signifi-

Cora Citeseer PubMed

Methods

AUC AP AUC AP AUC AP
Spectral 84.6 88.5 80.5 85.0 842 878
DeepWalk  83.1 85.0 80.5 83.6 84.4 84.1
GAE 91.0 92.0 89.5 89.9 964 96.5
VGAE 914 92,6 90.8 92.0 944  94.7
ARGE 924 932 919 93.0 96.8 97.1
ARVGA 924 92,6 924  93.0 96.5 96.8
GRACE 909 91.0 92.1 922 97.0 97.1
GCA 914 915 92.0 92.6 963 96.5
GDCL 91.7 909 919 92.0 96.5 96.3
ProGCL 929 935 93.1 933 96.1 96.7
AUGCL 93.3 932 925 928 963 96.5
Ours 95.6 953 949 94.7 978 975

Table 4: Experimental Results of Link Prediction.

cant improvements in tasks such as node classification, node
clustering, and link prediction. This suggests that generating
multi-scale augmentation views based on the sample uncer-
tainty plays a crucial role in improving the discriminability
of embedded representations.

Weighted Graph Contrastive Loss. This paper removes
the weighted graph contrastive loss based on the sample un-
certainty to verify its effectiveness. The experimental results
demonstrate that the weighted graph contrastive loss in this
paper significantly improves the performance of node classi-
fication, node clustering, and link prediction. This indicates
that the weighted graph contrastive loss based on the sample
uncertainty has a significant role in GCL.

4.6 Hyperparameter Analysis

This section analyzes how the choice of parameters affects
the performance of the proposed model. It specifically ex-
amines how different hyperparameter settings influence the
performance of UGCL on various metrics in the node classi-
fication task. The results of these experiments are illustrated
in Figure 3.

The Number of Views M. This section examines the
optimal number of views for our method across different
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Figure 3: Hyperparameter Analysis Experiment Results.

datasets. Figure 3(a) displays the performance changes with
varying numbers of views M across six public datasets. Our
experiments reveal that increasing the number of views en-
hances performance on the Cora, Citeseer, and Amazon-
Photo datasets, with the best results occurring at five views.
Beyond this point, adding more views either stabilizes or
decreases performance, indicating that the optimal number
of views is key to capturing the essential features of these
datasets. Conversely, the PubMed, DBLP, and Amazon-
Computers datasets achieve optimal performance with just
two views.

The Number of Views M and Edge Retention Ratio K.
This section studies the relationship between the number of
views M and the edge retention ratios K of the proposed
method in different datasets. As illustrated in Figure 3(b),
experiments were conducted on the PubMed dataset, with

additional datasets detailed in Appendix C. In each view,
the minimum number of edges was set to /KN, with subse-
quent values at 2K N, 3K N, etc. Experimental results show
that smaller datasets require larger numbers of views M and
higher edge retention ratio K, while larger datasets bene-
fit from fewer views and lower K values. This is because
smaller datasets have less inherent information, necessitating
increased views and edge density to enhance feature diver-
sity and aid learning. Conversely, larger datasets, being more
information-rich, require fewer views and lower edge density
to avoid redundancy and reduce noise. These findings con-
firm the effectiveness of our multi-scale data augmentation
strategy.

5 Conclusion

This paper proposes an uncertainty-guided graph contrastive
learning (UGCL) method, which considers the deep connec-
tion between data augmentation and contrastive objectives
from a unified perspective. Based on the proposed sample un-
certainty measure, we design a multi-scale data augmentation
strategy and a weighted graph contrastive loss, which signif-
icantly improve the embedding quality. This paper provides
theoretical proofs for the proposed method and validates its
effectiveness through extensive experiments.
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