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Abstract

Backdoor attacks in vertical federated learning
(VFL) are particularly concerning as they can
covertly compromise VFL decision-making, pos-
ing a severe threat to critical applications of VFL.
Existing defense mechanisms typically involve ei-
ther label obfuscation during training or model
pruning during inference. However, the inherent
limitations on the defender’s access to the global
model and complete training data in VFL environ-
ments fundamentally constrain the effectiveness of
these conventional methods. To address these lim-
itations, we propose the Universal Backdoor De-
fense (UBD) framework. UBD leverages Label
Consistent Clustering (LCC) to synthesize plau-
sible latent triggers associated with the backdoor
class. This synthesized information is then uti-
lized for mitigating backdoor threats through Lin-
ear Probing (LP), guided by a constraint on Batch
Normalization (BN) statistics. Positioned within
a unified VFL backdoor defense paradigm, UBD
offers a generalized framework for both detection
and mitigation that critically does not necessitate
access to the entire model or dataset. Extensive
experiments across multiple datasets rigorously
demonstrate the efficacy of the UBD framework,
achieving state-of-the-art performance against di-
verse backdoor attack types in VFL, including both
dirty-label and clean-label variants.

1 Introduction

With the rise of deep learning, data privacy and security have
gained significant attention. Federated Learning (FL), a col-
laborative training paradigm that maintains data locally, has
garnered significant attention. FL are principally categorized
into Horizontal Federated Learning (HFL) and Vertical Fed-
erated Learning (VFL) based on the data distribution across
participating parties [Yang et al., 2019]. VFL is applicable
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when datasets share the same sample space (e.g., the same
users) but possess different feature spaces. For example, a
bank could enhance its credit assessment model by integrat-
ing more features from local retailers (the same users) and
maintaining data privacy [Fu et al., 2022; Qiu et al., 2024;
Zheng et al., 2024; Zheng et al., 2023; Xu et al., 2025;
Xiang et al., 2024].

While FL is designed to enhance data security, it is
nonetheless vulnerable to attacks such as backdoor injection,
which leverages the exchange of intermediate training infor-
mation [Jin et al., 2023]. A backdoor attack involves an ad-
versary embedding a specific trigger pattern into a subset of
poisoned data, aiming to establish a connection between the
trigger and a chosen target class during model training. The
result is a compromised model that, during inference, consis-
tently classifies any input containing the trigger as the back-
door target class. Because these attacks generally do not im-
pact the model’s performance on clean, trigger-free data, they
are inherently stealthy, seriously threatening the integrity of
model decision-making, especially in VFL with model and
data splitting structure [Li er al., 2024b].

Backdoor attacks in VFL can be classified as dirty-label
and clean-label variants. In dirty-label attacks, the adver-
sary, acting as a passive participant party, substitutes local
feature embeddings and gradients of poisoned and clean sam-
ples, linking them to the clean target label by tampering with
intermediate feature embeddings [Zou et al., 2022]. In con-
trast, clean-label attacks leverage prior knowledge or label
inference to identify target samples and embed triggers into
their local inputs, associating them with the target class dur-
ing the VFL training process without altering the labels or
feature embeddings. [Naseri et al., 2024; Bai et al., 2023;
Chen et al., 2023; Chen et al., 2024].

Existing VFL backdoor defense methods fall into two
main categories: label protection and backdoor purifica-
tion methods. Label protection methods [Li er al., 2022;
Fu et al., 2022] attempt to prevent attacks by limiting infor-
mation leakage, particularly ground truth labels, which the
adversary exploits. Purification methods [Liu er al., 2022;
Bai et al., 2023; Wu and Wang, 2021] focus on pruning poi-
soned model neurons or filtering malicious samples to sup-
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press backdoor effects. However, both approaches are signif-
icantly hampered by the information asymmetry inherent in
VFL: the active party acting as the defender lacks access to
the passive parties’ data and local bottom models. This pre-
vents tailored label protection against varied poisoning strate-
gies targeting unseen data and limits the scope of purifica-
tion methods that require visibility into the fully distributed
model. Consequently, these methods often result in subop-
timal backdoor defensive performance while simultaneously
degrading the utility of the VFL model.

To address these challenges, this paper proposes a Uni-
versal Backdoor Defense (UBD) framework designed to de-
fend against both dirty-label and clean-label backdoor at-
tacks, which consists of Label Consistent Clustering (LCC)
and Linear Probing (LP) mitigation modules. The LCC mod-
ule identifies the backdoor target class and synthesizes trig-
gers within the latent feature space controlled by the defender.
It predicts potential poisoned samples by analyzing the con-
sistency between ground truths and prediction results, com-
bined with a clustering method. Backdoor triggers are then
generated in the latent feature space by examining discrepan-
cies between the predicted poisoned samples and a small set
of clean validation data. LP mitigates attacks by fine-tuning
the defender’s top model using the identified backdoor class
and triggers, with Batch Normalization (BN) statistics con-
straint to preserve the utility of the VFL model.

In summary, the main contributions of this paper can be
summarized as:

* We propose a backdoor defense framework, UBD, for
VFL systems that efficiently defends against generic
backdoor attacks, including dirty-label and clean-label
variants, without accessing models and data of passive
parties, requiring only 5% of clean validation data.

L]

The proposed LCC module features a backdoor trigger
inversion strategy that enables the identification of latent
triggers and backdoor target class using minimal clean
validation data without requiring model training.

We design an efficient backdoor mitigation module LP
with BN statistics constraint to achieve state-of-the-art
defense performance, which does not need to fine-tune
the whole VFL model.

We perform extensive experiments on multiple datasets
to validate the effectiveness, robustness, and efficiency
of the proposed defense method in VFL.

2 Related Work

2.1 Backdoor Attacks in VFL

Backdoor attacks in VFL can be classified as dirty-label and
clean-label variants, distinguished by whether or not the la-
bels are tampered with during poisoning. As a typical dirty-
label backdoor attack, LRB [Zou et al., 2022] assumes the
adversary has a few clean samples of the target class. Then,
the adversary exchanges the intermediate information of poi-
soned and target samples, establishing an implicit connection
between the target class and poisoned samples. Although la-
bels in the active party cannot be directly modified, the re-
placement operation in the intermediate layer realizes a dirty-

label backdoor attack [Chen ez al., 2017; Doan et al., 2021;
Li et al., 2024b]. In contrast, Methods [Chen et al., 2024;
Bai et al., 2023] utilize label inference to identify samples
belonging to the target class, subsequently injecting the back-
door by directly embedding triggers into the inputs of these
samples. Similarly, approaches described in [Naseri ef al.,
2024; He et al., 2023; Chen et al., 2023] assume the adver-
sary has access to a limited number of target samples and
conducts clean-label backdoor attacks by directly associating
triggers with these target samples.

2.2 Backdoor Defenses in VFL

Existing VFL backdoor defense methods fall into two main
categories: label protection and backdoor purification meth-
ods. Label protection methods [Li er al., 2022; Fu et al.,
2022; Wu et al., 2022; Bai et al., 2023] attempt to dis-
rupt the malicious mapping between poisoned samples and
the target label by interfering with label-derived informa-
tion, often by perturbing transmitted gradients. Backdoor
purification methods [Wu and Wang, 2021; Bai et al., 2023;
Xu et al., 2024] aim to eliminate backdoor effects within the
VFL model, for instance, by devising masks to identify and
suppress poisoned features or neurons.

However, both approaches are significantly limited by the
VFL setting. Label protection often leads to substantial util-
ity decreases due to indiscriminate application to all training
data, while purification is hampered by the defender’s lack of
access to passive parties’ bottom models and data, prevent-
ing comprehensive fine-tuning or pruning. To address these
limitations, this paper aims to design a generic backdoor de-
fense framework capable of addressing both dirty-label and
clean-label attacks. This framework conducts solely on the
defender’s accessible top model and requires only a minimal
validation dataset, enabling efficient and practical defense
against VFL backdoors.

3 Preliminaries

3.1 Backdoor Attacks in Vertical Federated
Learning

VFL is a collaborative distributed machine learning system in
which data is vertically partitioned into different participants.
The system consists of K passive parties and one active party.
Passive parties only possess local feature data, while the ac-
tive party has access to and controls the labels. For a classifi-
N
cation task with the training dataset D 2 {(xf, yi)fﬂ}
=1)i=1
in VFL, where x¥ denotes the i-th samples of k-th passive
participant. The objective of VFL can be formulated as [Liu
etal.,2024; Ye et al., 2024]:

A1 N K+1
m@in 0;D) = N Zﬁ(@ﬂ(i’yi) + A Z 7(O) (D
i=1 k=1

where © = {61, - ,0k;0i0p} and L(-) denote the whole
model parameters and loss function of VFL respectively; v(-)
and )\ represent the regularizer and corresponding hyperpa-
rameter. We omit the k-th notation in x for simplicity.
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During the training stage of VFL, each passive party com-
putes the local feature embedding HF = ®;(zF,0;) with
its local data and bottom model, and then, the active party
receives all feature embeddings from passive parties and uti-
lizes the top model and labels to compute the objective func-
tion in Eq.(1). Next, the active party computes the gradients

aeai ~to update its top model 6;,,. Afterwards, the gradients
ae

of the loss function with respect to feature embeddings -7+

are transmitted to each passive party. Finally, each passive
party k updates its local bottom model 8 with the gradients.
In the inference phase, the active party outputs predictions
based on feature embeddings sent by the bottom model of
each passive party, where input samples are locally split.
Backdoor attacks aim to implant a hidden task in the VFL
model during training, causing it to misclassify inputs with
the specific trigger while maintaining main task performance
on clean inputs during inference [Li er al., 2024b]. The ob-
jective of backdoor attacks in VFL can be formulated as:

rn(gn ]E(;c,y)N’DC‘C(e; X, y) + E(w,y)NDpE(@; X, 63 T) 2)

Main Task Backdoor Task
where D, and D), denote the clean and poisoned data respec-
tively, D = D.UD,; ¢ and T represent backdoor triggers and
target class; x and y refer to the set of inputs and labels, re-
spectively. For simplicity, the regularizer in Eq.(1) is omitted.

3.2 Threat Model

Adversary’s capacity. Since the active party controls the
top model and labels, it can easily modify labels or manip-
ulate the predictions of the top model. Therefore, this paper
investigates scenarios where the adversary is a malicious pas-
sive party. This adversary strictly adheres to the VFL proto-
col, limiting its actions to exchanging local feature embed-
dings and gradients with the active party.

Defender’s capacity. The defender, acting as the active
party in VFL, also adheres to the VFL protocol. The de-
fender’s goal is to detect the backdoor target class and mit-
igate backdoor attacks during the inference stage of VFL. In
accordance with the VFL protocol, the defender has access
to the feature embeddings from all passive parties, as well as
the labels and prediction results for the training dataset. In ad-
dition, the defender has access to an extra validation dataset
Dyai, which consists of a small number of clean samples from
each class. This is a reasonable assumption, as model perfor-
mance must be validated during the VFL training stage and
aligns with existing backdoor defense efforts [Xu et al., 2024,
Zhu et al., 2024; Guo et al., 2023; Ma et al., 2023].

4 Universal Backdoor Defense Framework

The goal of the Universal Backdoor Defense (UBD) frame-
work is to mitigate backdoor attacks in VFL systems. As
depicted in Fig.1, UBD achieves this through the integration
of two core modules: the Label Consistent Clustering (LCC)
module and the Linear Probing (LP) module. The LCC mod-
ule identifies the backdoor target class and generates latent
backdoor triggers, while the LP module utilizes the identified
backdoor class and triggers to mitigate the backdoor effects
in the VFL model.

4.1 LCC Backdoor Detection

The LCC method comprises two modules for generating trig-
gers of the backdoor target class in VFL: Label Consistency
Purification (LCP) and Feature Clustering Detection (FCD).
The LCP module identifies suspicious poisoned training sam-
ples by analyzing the consistency between predictions and
ground truth labels. Subsequently, the FCD module leverages
the clustering of these suspicious samples to directly infer the
backdoor target class and corresponding triggers.

Label Consistency Purification. Considering a scenario
where the VFL model has already completed the training pro-
cess, the backdoor has already been injected into the model.
Consequently, the backdoor triggers are strongly associated
with the target class, leading the VFL model to classify poi-
soned samples containing these triggers as the backdoor tar-
get class. In this context, the defender retains all feature em-
beddings and labels of the training data obtained during train-
ing and controls the VFL outputs through ownership of the
top model in the active party.

For both clean-label and dirty-label backdoor attacks, any
poisoned sample x € D, is directly mapped to the backdoor
target 7:

®(x)— 7 forallx € D,. 3)
where ®(-) denotes the feature mapping function of VFL, re-
spectively.

In clean-label attacks, the adversary injects triggers di-
rectly into samples whose true label is already 7, further tight-
ening the connection ®(x) — 7. By contrast, dirty-label
attacks substitute D,, with target samples in ways that induce
®(x) — 7. From the defender’s perspective, regardless of the
specific backdoor injection method, the observed outcome is
consistently the same: all poisoned feature embeddings con-
centrate in a region identified with the target label 7.

Definition 1 (Label Consistency Property). Let G be the label
mapping function, and suppose FP°' = G o ® represents the
victim VFL model. For each training example (x,y) € D
with y = 7, define a trigger function 1(-) that injects the
backdoor triggers (if any) into x. We say (x,y) satisfies label
consistency with respect to T if

FPo(x) = T,
pri(n(x)) = T

Then the set of all such samples that satisfy the label consis-
tency property is

Dicp = {(x,y) eD . y=r, ]—'pOi(x) =T,

FPoi(n(x)) = 7'}.
In essence, every sample in D «p is one whose true label is
T but also predicted as T by the poisoned model whether or
not the backdoor 1)(-) is applied. Such label consistency may
indicate suspicious poisoned samples.

According to Eq.(5), the defender can identify suspicious
poisoned samples for the target class by selecting those where
the predictions match their true labels. Utilizing label consis-
tency, the process of identifying poisoned samples within the
target class can be framed as a binary classification task [Xi-
ang et al., 2023b; Xiang et al., 2023al.

“4)

®)
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Figure 1: A sketch of our proposed UBD framework for VFL.

Feature Clustering Detection. Furthermore, as a binary
classification task, the suspicious poisoned samples Drcp
can be decomposed by the clustering algorithm. This is be-
cause the identified samples now contain at most two cate-
gories: clean samples and poisoned samples with triggers for
the same ground truth category.

Specifically, we adopt the K-means clustering method to
locate the poisoned samples with triggers. For the concate-
nated feature embeddings sent from passive parties H =
[H',H? .-  HX], where H refers to the set of feature
embeddings of suspicious poisoned data Drcp, the FCD
method leverages the K-means clustering algorithm to obtain
two clusters CI*, m € {0, 1}. The poisoning rate of backdoor
attacks maintains a low level because they are typically con-
strained by limited adversary’s knowledge. This means the
number of poisoned samples is significantly smaller than that
of clean samples. As a result, the FCD method identifies the
cluster with fewer samples as the poisoned cluster, denoted as
Cf . Using the available validation dataset, the defender can
then infer the backdoor triggers in the latent feature space.
[Guo et al., 2023].

§ = E[H(x) | x; € C5] — E[H(x;) | x; € D},

val

(6)
where § denotes latent backdoor triggers with respect to 7)(x);
D; ., refers to the subset of the validation dataset D,,; with
class 7; E[-] represents the element-wise average operation.

Furthermore, the latent backdoor triggers 4 can cause the
benign samples to be incorrectly classified as the backdoor
target class:

ASR? =

N--

le > I(Fre (xi;& @) =7) ()
i=1

where ASR? represents the attack success rate for the cate-

gory 7; I(-) denotes the indicator function; the data used in

Eq.(7) consists of all samples in the validation set D,,; , ex-

cluding those belonging to category 7, resulting in a total size

of N—r; latent backdoor triggers 4 is added to the concate-

nated feature embeddings H in an element-wise operation.

Remark 1. For the sake of illustration, the LCC method de-
scribed above assumes the ground truth is the backdoor tar-
get T. However, in practice, the defender does not know the

Algorithm 1 LCC backdoor detection on the VFL system.

Require:
Pretrained model parameters ©; Training and validation
dataset D, D, q;-
Ensure: )
Backdoor target class 7 and latent triggers §
1: for each batch B in D do
2:  foreachparty k = 1,2,..., K in parallel do
3: k computes feature embeddings {H¥};cp accord-
ing to its bottom model fy;
% Feature embeddings are actually retained from
the VFL training process

4:  end for
5: end for
6: Active party (Defender):
7. for each category m = 1,2,--- , M do
8: % Step 1: Label Consistency Purification
9:  computes Eq. (5), and then purify the training data D
to get the DY, p for class m;
10: % Step 2: Feature Clustering Detection
11:  CS = clustering(DV%.p)
12:  candidate backdoor triggers 6™ are computed accord-
ing to Eq. (6) using D™, and C;>.;
13:  computes ASRS, for category m with Eq. (7);
14: end for
15: identifies the backdoor class as:
16: S = argmax_, ASRS ;
17: Output backdoor target class S latent triggers 6

backdoor target class in advance. Without loss of generality,
LCC is suitable for each category in the VFL classification
task. More importantly, the method evaluates all categories
individually to calculate the ASR for each category using Eq.
(7). The category with the highest backdoor ASR is identified
as the backdoor target class, and the corresponding latent

triggers & are obtained simultaneously.

Analysis of LCC for dirty-label and clean-label attacks.
With the LCP method iteratively performed on each cate-
gory, the data obtained by the defender consisted of two parts:
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clean samples correctly classified in each category and poi-
soned samples misclassified into the target class. Then, the
FCD module utilizes K-means clustering to identify poisoned
samples of the target class by iteratively evaluating all cate-
gories. The intuition is to treat the backdoor target class as
ground truth and frame the problem as a binary classifica-
tion task, using the clustering method to distinguish poisoned
from clean samples. The feature embeddings of poisoned and
clean samples for the backdoor target class inherently exhibit
distinguishable inter-cluster distances, which K-means clus-
tering exploits for binary classification.

In the case of clean-label backdoor attacks, poisoned and
clean samples from the target class differ only in the back-
door triggers, which enlarge inter-cluster distances for clus-
tering. Similarly, in dirty-label backdoor attacks, while the
poisoned feature embeddings received by the defender ex-
hibit a strong connection to the target class, they also retain
intrinsic non-target features. These non-target features, com-
bined with backdoor triggers, further amplify the inter-cluster
distances between poisoned and clean samples. In essence,
the inter-cluster distances can be interpreted as the backdoor
triggers themselves. Using these generated backdoor triggers,
along with the known validation set, the defender can reliably
identify the backdoor target class. In fact, there are various
clustering methods that can be employed in the LCC module,
such as DBSCAN, etc., and we use K-means only because of
its easy applicability to the binary classification task.

As outlined in Algorithm 1, after the VFL training process,
the defender retains the labels and feature embeddings of the
training dataset. The defender locally executes the LCC back-
door detection to identify the backdoor target class and its
associated triggers. Specifically, the defender iteratively ap-
plies LCP and FCD modules to each category. By evaluating
the ASR and the suspicious latent triggers for each category,
the defender selects the category with the highest ASR as the
backdoor target class and assigns the corresponding gener-
ated trigger as its associated triggers.

4.2 LP Backdoor Mitigation

The LCC detection method allows the defender to identify
the backdoor target class and triggers. However, detection is
insufficient as the backdoor has already been implanted into
the model, threatening the VFL system. To address this issue,
the UBD framework adopts a linear probing (LP) backdoor
mitigation method to eliminate the backdoor in VFL.

We observed that for the backdoor target class, the cluster-
ing method in the embedded feature space could effectively
separate poisoned samples from clean ones. However, in the
output space, the top model predicts poisoned and clean sam-
ples as the target class, rendering them indistinguishable. In
other words, top model parameters have a remarkable impact
on the backdoor manipulation. Therefore, LP aims to fine-
tune the top model parameters to remove the triggers’ impact
on poisoned samples.

With the identified backdoor target class and triggers, the
defender can directly formulate the loss function to fine-tune
the top model. In particular, the objective function can be

formalized as:
s )
min — Z AlE(Hi;et()p) + AQLﬁlter(HiayivéaS;atOP)

Ot
P v
=1

+ A3 Lomaingain (Hi 5; Otop) + MRy (H;) |
®)

where NV, denotes the number of samples in the validation
dataset D,,q;; S refers to the identified backdoor target class
of LCC backdoor detection; H; represents concatenated fea-
ture embeddings of the i-th sample in the validation dataset
Duals A1, A2, Az and )4 are hyperparameters to balance the
loss function.

In Eq.(8), the first part of the loss function aims to con-
strain the top model parameters with the cross-entropy loss
on clean samples to prevent deviation from the main task of
VFL. The second part aims to eliminate the connection be-
tween backdoor triggers and the target class in the top model,
while at the same time, the third part wants to re-establish the
link between poisoned samples and their ground truth. The
specific loss functions can be expressed respectively as [Zhu
et al., 2024]:

L;=—log (1 - gS(H;S;etop)> ) ©)

Ly = —log (gy(H;S;amp))
i (10)
— log (1 —max Gy (H; 6; 9top)> :
97y

where G, G, and Gy, denote the probability of predicting con-
catenated feature embeddings H to label S, y and ¢ by the
active party G respectively. The latent triggers 6 are added to
concatenated feature embeddings H, etc. H ) 5.

It is worth noting that Eq.(8) includes a regularization term
Rpn, which indicates that LP is based on the running statis-
tics of the BN layer as prior constraints. This aims to reduce
sensitivity to poisoned samples while enhancing the gener-
alization of the main task by leveraging the stable statistics
obtained during the BN training process, as expressed below:

Ren(H) =3 || (H) ~ BN(mean) |, +
l

(1D
Z HO'lQ(H) — BNZ(Valriance)H2 .
1

where 4 (H)and o7(H) are the batch-wise mean and vari-
ance estimates of feature maps corresponding to the [-th layer
of the top model. BN;(mean) and BN, (variance) represent
the running mean and variance of the [-th batch normalization
layer during training.

S Experiments

In this section, we conduct comprehensive experiments to
evaluate the effectiveness of the proposed UBD framework.
Specifically, we first briefly illustrate the experiment setup.
Then, we assess the UBD framework on the state-of-the-art
dirty-label and clean-label backdoor attacks. In addition, we
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Dataset| Defense— No Defense DP-SGD BTI-DBF UBD
Attack| BA ASR BA ASR BA ASR BA ASR
CIFAR-10 LRB 73.504+4.19 94.1043.38 | 67.68£15.51 16.76425.50 | 72.964+2.99 40.764+30.23 | 76.51+3.57 1.71+3.42
) VILLAIN | 82.5040.14 99.8240.35 | 77.81+0.68 22.60+38.70 | 75.774+0.65 17.85+15.18 | 82.46+0.24  1.354+0.21
NUSWIDE LRB 87.10+0.73 95.8842.00 | 73.93+1.05 2.75+0.96 | 86.36+0.34 40.59+17.21 | 84.194+0.48  4.9045.22
VILLAIN | 85.8240.11 99.99+0.01 | 87.39+0.73 99.994+0.01 | 82.01£0.51 22.104+27.11 | 85.57+0.20  2.2240.59
CINIC-10 LRB 61.12+3.92 88.20+5.70 | 60.66+7.67 47.53+18.80 | 61.17+4.19 17.76+12.34 | 65.55+3.96 10.84+11.60
VILLAIN | 75.16+0.50 99.93+0.09 | 57.90+0.72  99.9540.09 | 70.37+£0.61 41.22435.96 | 71.68+0.83 5.74+11.08
ImageNette LRB 59.69+1.98 93.85+5.02 | 61.34+2.75 87.184+5.85 | 61.17+4.19 17.76+12.34 | 61.38+1.62  0.00+0.00
g VILLAIN | 73.244+1.07 99.98+0.02 | 69.31+0.95 99.824+0.26 | 70.37+0.61 41.22435.96 | 72.23+0.97  0.00£0.00

Table 1: The performance (%) of backdoor defenses on CIFAR-10, NUSWIDE, CINIC-10, and ImageNette datasets. A larger BA metric
indicates better performance, while a smaller ASR metric reflects better defense effectiveness. The optimal results are highlighted in bold.

also introduce the defensive baseline of VFL to validate the
superiority of the proposed backdoor defense approach. Fi-
nally, we implement an overall ablation study to analyze the
UBD framework.

5.1 Experiment Setup

Datasets and Models. This section conducts extensive ex-
periments on four datasets to evaluate the performance of
the UBD framework: three image datasets, i.e. CIFAR-
10 [Krizhevsky er al., 2009; Li et al., 2024a], Imagenette
[Howard and Gugger, 2020], CINIC-10 [Darlow et al., 2018]
and one image-text multimodal dataset i.e. NUS-WIDE
[Chua et al., 2009]. For CIFAR-10, CINIC-10 and Ima-
genette, we employed ResNet-18 as the model structure. For
NUSWIDE, we adopt a 3-layer MLP as the VFL model.
The feature extractor of ResNet-18 and the first two fully
connected layers of MLP serve as the bottom models of
passive parties in VFL. While the UBD framework sup-
ports multiple participants in VFL, we conducted experi-
ments using a two-participant setting for simplicity, consis-
tent with related works [Bai et al., 2023; Fu et al., 2022;
Qiu et al., 2024]. The experiments randomly divide 5% from
the training set as the validation set for the defender.

Evaluation Metrics. For a fair comparison, we evaluate the
effectiveness of the backdoor defense in the UBD framework
using Benign Accuracy (BA) and Attack Success Rate (ASR),
following prior studies [Li ef al., 2024b]. Additionally, we
report TPR, FPR, and AUC metrics to assess the performance
of the LCC method, consistent with related works [Guo et al.,
2023; Mo et al., 2024].

Attack Baselines. We exploit two representative and ad-
vanced backdoor attacks to evaluate the UBD framework, in-
cluding (1) a dirty-label backdoor attack: LRB [Zou et al.,
20221, (2) a clean-label backdoor attack: VILLAIN [Bai et
al., 2023]. To verify the defense performance of UBD, we
adjusted the hyperparameters of the related work [Zou et al.,
2022; Bai et al., 2023] to achieve the best attack performance.
Specifically, we set the poisoning rate as 1% and 5% for LRB
and VILLAIN respectively.

Defense Baselines. To evaluate the effectiveness of UBD,
we compare it with two representative and advanced defense
methods: DP-SGD [Wu et al., 2022; Bai et al., 2023] and
BTI-DBF [Xu et al., 2024]. These methods represent the two

primary defense categories outlined in Section 2: label pro-
tection and backdoor mitigation. The ratio of DP-SGD is set
to 1.0 and the hyperparameters of BTI-DBF are configured
following the original paper [Xu et al., 2024].

Training Details. The experiments are conducted with Py-
Torch with two NVIDIA 3090 GPU cards. Each experiment
is repeated 5 times with random seeds. The hyperparameters
A1, A2, Az and A\g are set to 1, 0.1, 1, 1. We used Adam op-
timizer to train LP, with learning rates ranging from 0.001 to
0.1 for different datasets.

5.2 Experimental Results

Performance of UBD. We systematically compare the per-
formance of the UBD framework with current mainstream
defense methods under dirty-label and clean-label backdoor
attacks. Tab.1 illustrates the results of comparison. In terms
of ASR metric, the UBD framework almost achieves the best
performance compared with DP-SGD and BTI-DBF, espe-
cially for CIFAR10, CINIC-10 and Imagenette datasets. For
the NUS-WIDE dataset, the UBD method achieved the best
performance under the VILLAIN attack. In contrast, under
the LRB attack, the DP-SGD method outperformed UBD
on the ASR metric, achieving a 2.15% lower ASR and a
4.26% variance advantage. However, considering the BA
metric, DP-SGD’s lower ASR comes at the cost of a signifi-
cant BA loss, with a 13.17% decrease compared to the LRB
attack baseline. This characteristic is consistent across other
datasets, where reductions in ASR are accompanied by sub-
stantial losses in BA. This trade-off highlights the limitations
of label protection methods such as DP-SGD. For BTI-DBF,
the trigger generator can only be added at the intermediate
layer of the VFL, as the defender lacks access to the passive
party’s input data and bottom model. The method’s inability
to synchronize fine-tuning with bottom models not only hin-
ders its effectiveness in eliminating ASR but also adversely
affects the BA metric.

Impact of LCC. To evaluate the effectiveness of the LCC
module, the comparison results for the use of label consis-
tency in the LCC module are presented in Tab. 2. The exper-
imental results indicate that incorporating prediction ground
truth consistency provides a notable advantage in detecting
poisoned samples, particularly for the VILLAIN method. For
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Dataset \ LCC \ Attack \ TPR FPR AUC
w/le | LRB 8933 948 89.93
CIFARIO VILLAIN | 100  0.00 100
wiole | LRB 93.19 926 91.96
VILLAIN | 100 0 100
w/le | LRB 69.59 4571 61.94
NUSWIDE VILLAIN | 100  0.00 100
wiole | LRB 4034 4234 49.00
VILLAIN | 100 000 100
W/l | LRB 60.34 39.81 60.26
€™ VILLAIN | 53.10 4449 5431
wiole | LRB 57.44 3628 60.58
VILLAIN | 30.14 40.04 45.05
/1. | LRB 91.01 156 94.72
WHC 1 VILLAIN | 100 0.00  100.0
ImageNette
olc | LRB 94.83  1.02 9691
WIOIC  VILLAIN | 100 87  95.65

Table 2: Comparison of the label consistency in the LCC module (
w/ lc denotes “with label consistency” and w/o Ic indicates “without
label consistency).
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Figure 2: Comparison of LP effectiveness under the UBD frame-
work (Standard Deviation Included.)

instance, on the CINIC-10 dataset, the use of label consis-
tency improves AUC performance for backdoor detection by
9.26%. 1t should be noted that, for the LRB approach, label
consistency does not appear to provide a significant advan-
tage, particularly on the CIFAR-10 and Imagenette datasets.
This limitation may stem from a performance bottleneck in
the BA metric. For instance, on the Imagenette dataset, LRB
shows a 13.55% lower BA compared to VILLAIN. This dis-
parity reduces the label consistency strategy’s ability to iden-
tify sufficient suspicious poisoned samples, thereby impact-
ing the backdoor detection performance of the LCC module.
Nevertheless, label consistency successfully achieved effec-
tive backdoor detection across all four datasets.
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LRB LRB
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Figure 3: Comparison of different poisoning rates under the UBD
framework (Standard Deviation Included.)

Impact of BN. To demonstrate the effectiveness of the LP
module, we present a comparison of results with and without
BN statistics in Fig.2. The experimental results clearly show
that incorporating BN parameters significantly mitigates or
even eliminates backdoor effects. For instance, against the
VILLAIN attack, the LP method effectively mitigates back-
door effects across all four datasets, achieving an ASR of no
more than 6% on the CINIC-10 dataset while limiting BA
performance degradation to within 4%.

Impact of poison rate. In Fig.3, we illustrate the impact of
varying proportions of poisoned samples on the UBD frame-
work, using the CINIC-10 dataset as an example. The re-
sults demonstrate that even with only 1% poisoned samples,
UBD remains effective in defending against both dirty-label
and clean-label backdoor attacks. For the VILLAIN attack,
some variance in UBD performance is observed with 1% poi-
soned samples. Nonetheless, clean-label backdoor attacks
like VILLAIN, which rely on label inference, typically can
obtain a large number of poisoned pseudo samples to inject
backdoors. Therefore, UBD remains effective and valuable
in mitigating clean-label backdoor attacks.

6 Conclusion

This paper proposes a novel backdoor defense VFL frame-
work called UBD, which integrates the LCC and LP mod-
ules to detect and mitigate backdoor attacks simultaneously.
Specifically, the LCC module synthesizes latent triggers of
the backdoor class with the label consistency strategy. Fur-
thermore, the LP module combines the identified backdoor
class and generated triggers to efficiently mitigate backdoors
in the VFL system by leveraging the statistics of the BN layer,
requiring only linear probing of the classifier header. Ex-
tensive experiments across multiple datasets demonstrate that
UBD significantly outperforms state-of-the-art backdoor de-
fense methods in terms of both model utility and backdoor
elimination.
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