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Abstract
The prediction of information popularity propaga-
tion is critical for applications such as recommen-
dation systems, targeted advertising, and social me-
dia trend analysis. Traditional approaches primar-
ily rely on historical cascade data, often sacrificing
timeliness for prediction accuracy. These methods
capture aggregate diffusion patterns but fail to ac-
count for the complex temporal dynamics of early-
stage propagation. In this paper, we introduce Dif-
fusion Guided Propagation Augmentation(DGPA),
a novel framework designed to improve early-stage
popularity prediction. DGPA models cascade dy-
namics by leveraging a generative approach, where
a temporal conditional interpolator serves as a nois-
ing process and forecasting as a denoising process.
By iteratively generating cascade representations
through a sampling procedure, DGPA effectively
incorporates the evolving time steps of diffusion,
significantly enhancing prediction timeliness and
accuracy. Extensive experiments on benchmark
datasets from Twitter, Weibo, and APS demonstrate
that DGPA outperforms state-of-the-art methods in
early-stage popularity prediction.

1 Introduction
Information propagation, often termed as an information cas-
cade, is a widespread phenomenon in online social networks
that describes the dynamic process through which messages
are accessed and disseminated by users. Popularity predic-
tion aims to quantify the level of attention a message will re-
ceive, typically measured by the volume of retweets or shares
[Leskovec et al., 2007]. Accurately predicting the popu-
larity of information cascades is highly valuable, as it pro-
vides deeper insights into the virality of messages or prod-
ucts, thereby informing more effective recommendations and
targeted advertising strategies [Kempe et al., 2003]

Existing popularity prediction approaches can be summa-
rized into two categories.The first category comprises feature-
based approaches [Chen et al., 2022], where researchers

∗Tianqi Yang is the first student author.
†Xi Zhang is the corresponding author.

Observe window=1
(a) Feature-based  approches: Early-Stage High Accuracy. 

Feature-based

(b) Deep learning approches:

(c) Our generative DGPA model: 

content
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Representation
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... ...
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Figure 1: Comparison of popularity predition methods

manually extract specific features, such as content quality,
publisher information,and publication time, and other fea-
tures from observed cascades to predict popularity. As il-
lustrated in Figure 1(a), these methods enable early detec-
tion of information diffusion without requiring extensive ob-
servation. However, due to the intricate design of fea-
ture selection, these methods often suffer from limited ac-
curacy. The second category includes deep learning-based
approaches, In recent years, with the advent of deep learn-
ing, researchers have developed models capable of capturing
the intrinsic characteristics of information diffusion. Such
as recurrent neural networks (RNNs) including LSTM and
GRU [Cho et al., 2014]are used to model sequential pro-
cesses, while graph neural networks (GNNs) capture the un-
derlying graph structures[Lu et al., 2023; Xu et al., 2021;
Sun et al., 2022]. As shown in Figure 1(b), these models
significantly enhance predictive accuracy. However, they de-
pend heavily on prolonged observation periods, and their per-
formance diminishes when the observation window is short-
ened, posing challenges for meeting the real-time demands of
information dissemination.

This brings us a question: Can we leverage the rich social
context embedded within cascades to enhance early-stage
popularity prediction? Different from existing models,our
motivation lies in generating the forthcoming cascades rep-
resentation up to a specified timestamp based on the propa-
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gation patterns gleaned from previous propagation, as illus-
trated in Figure 1(c). our objective is to discern the underly-
ing dynamics beneath the cascade’s evolution, which enables
the simulation of information diffusion, thus facilitating the
early detection of emerging information. This generation-
based strategy does not necessitate long-time observed cas-
cades and is anticipated to yield rich structural and temporal
propagation features.

However, designing generative models for cascade rep-
resentation is non-trivial for several reasons. First, accu-
rately modeling the distribution of discrete cascades is chal-
lenging for generative models. For instance, GAN-based
approaches often face stability issues [Cao et al., 2019;
Lee et al., 2021], while VAE-based methods suffer from pos-
terior collapse [Tang et al., 2021a; Zhao et al., 2019]. Sec-
ond, real-world information diffusion is irregularly sampled;
the temporal sequence of user activities is non-uniform, and
generating continuous time series while handling missing in-
termediate points remains difficult. This limitation hinders
the model’s ability to effectively capture dynamic changes
between observations, as seen in conditional-diffusion mod-
els like CasDO[Cheng et al., 2024]. Third, generative mod-
els often struggle to align generated dynamics with the actual
cascade propagation processes, leading to divergence from
real-world behaviors over time.

To address these challenges, we propose Diffusion
Guided Propagation Augmentation for Popularity Predic-
tion (DGPA), a novel generative framework leveraging a
diffusion-based backbone. Unlike traditional approaches,
DGPA integrates temporal dynamics into the diffusion pro-
cess. Specifically, we employ a time-conditioned interpo-
lation network in the forward process to bridge sparse cas-
cade snapshots, ensuring temporally coherent intermediate
representations. In the reverse process, DGPA predicts user-
specific characteristics at designated timestamps. By aligning
generated representations with specific time points, DGPA re-
duces error propagation.

Our contributions are summarized as follows:

• We propose DGPA, a novel generative model designed
to generate realistic cascade representations for early-
stage popularity prediction, overcoming key challenges
in discrete cascade modeling.

• We develop a strategy to align generated time points
with specific timestamps, reducing computational com-
plexity and alleviating error accumulation during the
generation process.

• Extensive experiments on real-world datasets demon-
strate the effectiveness of DGPA, outperforming SOTA
baselines in early-stage popularity prediction tasks.

2 Problem Formulation
Cascade Snapshot. A cascade characterizes the process by
which a message m disseminates among a set of users U .
The initial broadcast of m by user u0 at time t0 is denoted
as (u0, t0), signifying that u0 initiates the cascade at time t0.
Subsequent transmission events, where user vi forwards the
message m received from ui at time ti, are represented as

(ui, vi, ti). The cascade’s state at a particular time to is ex-
pressed as cto = {(ui, vi, ti) | ti < to}.

Cascade snapshots are extracted at uniform time intervals,
denoted as timesteps. For example, the ith snapshot corre-
sponds to the time to = t0 + i · |timestep| and is denoted as
ci. If we aim to extract h snapshots, the resulting collection
of cascade snapshots is represented as C = {(ci, i) | 0 ≤ i <
h}.
Early Popularity Prediction. Building on the aforemen-
tioned definitions, we derive the set of snapshots C. In sce-
narios where early prediction is required, the number of avail-
able snapshots may be limited, indicating that the value of
i remains small. By employing our generative DGPA ap-
proach, we can generate reasonably cascade representation
after h additional timesteps, referred to as ĉh. This refined
representation ĉh allows us to effectively estimate the popu-
larity increment ∆P up to the prediction time tp, even when
constrained by a brief observation window.

3 Model
Figure 2 illustrates the framework of the proposed DGPA
model. The framework of the proposed DGPA model consists
of three core modules:the Cascade Representation Module,
which generates embedding for cascade snapshots by aggre-
gating both the temporal and structural information of the par-
ticipating users; the Dynamic Cascade Generation Module,
which simulates temporal dynamics and generates cascade
representations over subsequent time periods. This module
employs a diffusion model as its backbone, coupling the dif-
fusion steps within the model to the time steps in cascades [Li
et al., 2018]. At a high level, it treats dynamic temporal inter-
polation as a forward process and next-user forecasting as a
denoising process. Finally, the Prediction Module utilizes the
cascade representations generated by the previous modules to
predict the increment in popularity [Li et al., 2021].

3.1 Cascade Representation Learning Module
The Cascade Representation Learning module serves as the
foundation for generating cascade embeddings by aggregat-
ing representations of participating users.This module is di-
vided into three submodules: Temporal Learning, Structural
Learning, and Embedding Fusion.

Temporal Learning
By modeling the cascade as a sequence of user engagements,
this submodule is designed to extract temporal patterns that
are crucial for comprehending cascade evolution trends.

For a given cascade observed within a specified observa-
tion time to, we sequentially organize the cascade based on
the chronological order of user participation, forming a user-
time sequence S≀ = {(ui, ti)|ti < to}. This sequence is then
input into the Transformer for encoding. The Transformer
processes this input and computes the temporal representa-
tion sui for each user ui based on the entire sequence up to
time ti. The encoding process can be mathematically repre-
sented as follows:
sui

= Transformer ({(u1, t1), (u2, t2), . . . , (ui, ti)})i (1)
This results in a temporally encoded sequence S =

{(sui , ti) | ti < to}.
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Figure 2: The overview framework of DGPA model.

Structural Learning
The Structural Learning submodule leverages a Graph Atten-
tion Network (GAT) to effectively capture the structural infor-
mation inherent within the cascade graph. Specifically, given
the input G≀ = {(ui, vi, ti) | ti < to}, the cascade can be rep-
resented as a directed acyclic graph (DAG) with a root node.
This graph is then input into the GAT to update the repre-
sentation of each node. The update process for each node’s
representation can be mathematically expressed as follows:

h′
ui

= Whui
(2)

eij = LeakyReLU
(
aT [h′

ui
∥h′

vi
]
)

(3)

αij =
exp(eij)∑

k∈N (ui)
exp(eik)

(4)

h′′
ui

= σ

 ∑
j∈N (ui)

αijh
′
vj

 (5)

gui
=

∥∥K
k=1

h′′
ui,k (6)

Here, gui
denotes the updated representation of node ui

after the application of the GAT. The final output is the struc-
turally encoded graph Gt

o = {(gui
, ti) | ti < to}.

Embedding Fusion
The Embedding Fusion submodule combines the temporal
and structural representations, St

o and Gt
o, by concatenating

them according to the corresponding timestamps. The fusion
process is mathematically represented as follows:

F t = {([sui
⊕ gui

], ti) | ti < to} (7)

Here, ⊕ denotes the concatenation operation.
Given a pre-defined timestep length, we select l snapshots

from the sequence F t by considering the last observation
time to and moving backward through the sequence. Specif-
ically, we select representations at intervals of the timestep
from the sequence F t, resulting in the set of snapshots
{ct−l+1, ct−l+2, . . . , ct}. Each snapshot ci represents the
temporal embedding of the cascade at timestep i. In case
of missing values, the corresponding snapshot is interpolated
using the nearest neighboring values.

In the subsequent module, these l snapshots will be used
to learn the conditional distribution P (ct+1:t+h | ct) where
h < l. This enables the model to predict h future steps while
leveraging the historical context provided by the l snapshots.

3.2 Dynamic Cascade Generation Module
Inspired by the diffusion model, we integrate the temporal dy-
namics inherent in the data with the model’s diffusion steps.
The training process is divided into two distinct stages, akin
to the noise addition and denoising process in diffusion mod-
els, as illustrated in Figure 2(b). First, we train a temporal
interpolator for forward interpolation. In the second stage,

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

we freeze the temporal interpolator and train a predictor to
generate a cascade representation at a specified timestep. Ul-
timately, the trained model produces the cascade representa-
tions through sampling.

Temporal Interpolation as Forward Diffusion
The temporal interpolation process leverages a time-
conditioned network Iϕ to interpolate between cascade snap-
shots. Given a cascade snapshot sequence C = {(ci, i) | 0 ≤
i < l}, we sample a cascade representation ct and its sub-
sequent representation at timestep ct+h. The objective is to
generate intermediate cascade representations at time t + i,
where i is a randomly chosen step within the horizon h. This
is formally expressed as:

Iϕ (ct, ct+h, i) ≈ ct+i, i ∈ {1, . . . , h− 1} (8)
The optimization objective for the interpolation network is

defined as:

min
ϕ

Ei∼U [1,h−1],ct,ct+i,ct+h∼C

[
∥Iϕ (ct, ct+h, i)− ct+i∥2

]
(9)

where U [1, h−1] represents a uniform distribution over the
horizon.

The cascade representation ct+i is generated by concate-
nating the conditioning variable i with the representations
ct and ct+h. This concatenated input is processed through
an encoder-decoder architecture. The encoder, consisting
of convolutional layers, residual cross-attention mechanisms,
and time embeddings, progressively encodes the input. The
decoder, symmetric to the encoder, reconstructs the interpo-
lated output. The interpolation stage applies nearest-neighbor
interpolation to produce the final output ĉt+i. The process is
represented as:

ĉt+i = Interpolation (Decoder (Encoder ([i; ct; ct+h])))
(10)

Forecasting as Reverse Denoising
In the second training phase, the forecasting network Fθ is
optimized to recover the future state ct+h from partially dif-
fused representations. This is formulated as a supervised re-
gression task:

Fθ (Iϕ (ct, ct+h, in | ξ) , in) ≈ ct+h, in ∈ S = {in}N−1
n=0 ,

(11)
Here, S denotes a temporal schedule that defines the cor-

respondence between the diffusion steps and intermediate
timesteps. The interpolation network Iϕ is fixed during this
stage, and stochasticity is introduced via a noise variable ξ,
modeled as randomly dropped weights to reflect inference
uncertainty. This stochastic input is omitted from further no-
tation for clarity.

The optimization objective for the forecaster is defined as:

min
θ

En∼U[0,N−1], ct,ct+h∼C

[∥∥∥Fθ

(
Iϕ(ct, ct+h, in | ξ), in

)
− ct+h∥2

]
(12)

To generalize across different levels of prediction diffi-
culty, we include the initial state as a special case by setting

Algorithm 1 Two-stage Training

Input: Forecasting model Fθ, Interpolator Iϕ, norm ∥·∥, pre-
diction horizon h, timestep schedule {in}N−1

n=0 , weighting
factors λ1, λ2, and auxiliary condition function cond
/* Stage 1: Training the interpolator, Iϕ */

1: Select temporal offset i uniformly from {1, . . . , h− 1}
2: Sample ct, ct+i, ct+h from training set C
3: Update Iϕ by minimizing:

Lϕ = ∥Iϕ(ct, ct+h, i)− ct+i∥2

/* Stage 2: Training the diffusion-based forecaster, Fθ */

4: Freeze the parameters of Iϕ and introduce stochasticity
during inference (e.g., dropout)

5: Draw a timestep index n ∈ {0, . . . , N − 1} and retrieve
ct, ct+h from dataset

6: Compute initial prediction:

ĉ
(1)
t+h ← Fθ (Iϕ(ct, ct+h, in), in, cond(ct, n))

7: If n < N − 1, apply one-step refinement:

ĉ
(2)
t+h ← Fθ

(
Iϕ(ĉ

(1)
t+h, ct+h, in+1), in+1, cond(ct, n+ 1)

)
8: Otherwise, set ĉ(2)t+h ← ct+h

9: Minimize the joint objective:

Lθ = λ1

∥∥∥ĉ(1)t+h − ct+h

∥∥∥2 + λ2

∥∥∥ĉ(2)t+h − ct+h

∥∥∥2

i0 := 0 and Iϕ (ct, ·, i0) := ct. This allows supervision over
all timesteps in the defined temporal resolution, where typi-
cally N = h and S = {j}h−1

j=0 . The schedule must satisfy
0 = i0 < in < im < h for all valid 0 < n < m ≤ N − 1.

Given the structural resemblance between the forecaster
and a denoising network in diffusion models, we refer to Fθ

as the diffusion backbone. Unlike standard diffusion models
that use step index n , we condition Fθ on the interpolation
index in , allowing flexible scheduling during training and in-
ference—even supporting timesteps unseen during training.

Because the interpolator Iϕ is fixed during this phase, im-
perfect predictions ĉt+h = Fθ (Iϕ (ct, ct+h, in) , in) can ac-
cumulate errors in sequential forecasting. To mitigate this,
we introduce a one-step look-ahead loss:

∥Fθ (Iϕ (ct, ĉt+h, in+1) , in+1)− ct+h∥2 , (13)

This term, combined with the standard prediction loss, en-
sures temporal consistency across steps. Moreover, we op-
tionally provide the forecaster with clean or noised versions
of the initial input ct as auxiliary conditioning signals.

The two-stage training algorithm is summarized in Algo-
rithm 1.
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Sampling Process
The generation of cascades proceeds through a time-aligned
reverse denoising process, governed by the recursive formu-
lation:

pθ =

{
Fθ(s

(n), in) if n = N − 1,

Iϕ(ct, Fθ(s
(n), in), in+1) otherwise,

(14)

with the initialization s(0) := ct, and intermediate states
s(n) ≈ ct+in representing progressively refined predictions.
To synchronize the generative procedure with the temporal
evolution of the underlying cascade, the diffusion steps are
indexed in reverse chronological order. Specifically, n = 0
corresponds to the initial observation ct , while n = N de-
notes the final target prediction ct+h .

At a high level,let i be the time variable, ours diffusion
model models the cascade dynamics as

dc(i)

di
=

dIϕ (ct, Fθ(c, i), i)

di
. (15)

then this forward progression enable the generation module to
operate with fewer diffusion steps and reduced data require-
ments.

3.3 Prediction Module
Based on the cascade representation obtained after h
timesteps, denoted as cit+h, we pass it through a Multi-Layer
Perceptron (MLP) to predict the incremental popularity:

∆̂Pci = f(ct+ hi), (16)

where f(·) represents the MLP functions.
To optimize the model, we employ the Mean Squared Log-

arithmic Error (MSLE) as the loss function, which is defined
as:

J (θ) = 1

n

∑
c

(
log(∆Pci)− log(∆̂Pci)

)2

, (17)

where n denotes the number of training cascades.

4 Experiment
In this section, we perform experiments on three datasets to
assess the efficacy of our approach.

4.1 Experimental Setup
This section describes the dataset, evaluation metrics, base-
lines, and implementation details of our experiments.

Datasets.
We use three datasets, frequently employed in information
propagation studies, derive from social media platforms and
academic citation networks:

• Twitter [Weng et al., 2013]dataset captures information
cascades spanning from March 24 to April 25, 2012,
where each cascade illustrates the dissemination of a
hashtag via retweets.

• Weibo [Cao et al., 2017]dataset includes information
cascades collected on 1 July 2016, each cascade repre-
senting the spread of a post through retweets.

• APS dataset comprises information cascades up to the
year 2017, each cascade reflecting the citation trajectory
of a research paper.

Following the approach of CTCP[Lu et al., 2023], we ran-
domly select 70%, 15%, and 15% of the cascades for training,
validation, and testing, respectively. For data preprocessing,
we set the observation window of a cascade to 1 day on Twit-
ter, 30 minutes on Weibo, and 2 years on APS. Notably, for
Weibo and Twitter, this observation period is half of what was
used in prior studies. We then predict the increment in cas-
cade popularity from the observation time to the last recorded
cascade instance. This setup for prediction timepoints also
adheres to methodologies established in previous work.

Evaluation Metrics
We employ four extensively recognized metrics to assess the
performance of the comparative methods: Mean Squared
Logarithmic Error (MSLE), Mean Absolute Logarithmic Er-
ror (MALE), Mean Absolute Percentage Error (MAPE), and
Pearson Correlation Coefficient (PCC). These metrics serve
distinct evaluative purposes: MSLE, MAPE, and MALE
quantify the prediction error relative to the ground truth from
various perspectives, while PCC gauges the correlation be-
tween the predicted values and the ground truth.

Baselines
We evaluate the performance of our approach against the fol-
lowing advanced baselines:

• DeepHawkes [Cao et al., 2017] models each cascade
as a set of diffusion pathways across users, employing
a Gated Recurrent Unit (GRU) to capture the sequential
progression of cascades.

• MS-HGAT [Sun et al., 2022] constructs a sequence of
temporally-sampled hypergraphs that encapsulate multi-
ple cascades and users, leveraging hypergraph learning
to compute cascade representations.

• CasCN [Chen et al., 2019] frames each cascade as a
temporal graph sequence, utilizing a combination of
Graph Neural Networks (GNN) and Long Short-Term
Memory (LSTM) networks to learn robust cascade rep-
resentations.

• TempCas [Tang et al., 2021b] integrates a specialized
sequence modeling technique designed to capture over-
arching temporal patterns, complementing its learning
on the cascade graph.

• CasFlow [Xu et al., 2021] first derives user represen-
tations from both the social network and the cascade
graph, and then employs a GRU in conjunction with a
Variational AutoEncoder (VAE) to encode cascade rep-
resentations.

• CTCP [Lu et al., 2023], the state-of-the-art method for
cascade prediction, groups multiple cascades by their
shared propagation users, enabling a unified temporal
and structural learning process across the cascades.
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Model Twitter Weibo APS

MSLE MALE MAPE PCC MSLE MALE MAPE PCC MSLE MALE MAPE PCC

DeepHawkes 9.1023 2.3551 0.4358 0.6630 3.1234 1.3482 0.3205 0.7102 2.5017 1.2894 0.3120 0.5945

CasCN 8.2649 2.2509 0.4102 0.6904 2.9951 1.2730 0.3107 0.7254 2.4208 1.2419 0.3059 0.6090
MS-HGAT 8.2812 2.1904 0.3989 0.7025 OOM OOM OOM OOM OOM OOM OOM OOM
TempCas 8.2043 2.1750 0.3994 0.6958 2.8542 1.2408 0.3019 0.7323 2.3641 1.2274 0.2980 0.6164
CasFlow 8.1045 2.1603 0.3950 0.7038 2.7984 1.2395 0.2987 0.74351 2.3315 1.2155 0.2963 0.6220

CTCP 8.5126 2.2802 0.4074 0.6962 2.9182 1.2356 0.2972 0.7319 2.3364 1.2173 0.2974 0.6126

DGPA(ours) 8.0916 2.0668 0.3562 0.8136 2.8329 1.2014 0.2975 0.7337 2.3147 1.1906 0.2711 0.7048

Table 1: Performance of all methods in three datasets, where the methods can be divided into two categories: feature-based, deep-learning-
based methods from top to bottom in the table. The best results appear in bold and OOM indicates the out-of-memory error.

4.2 Overall Performance
Table 1 details the comparative performance of various mod-
els across three datasets: Twitter, Weibo, and APS. Several
important conclusions can be drawn from these results.

Firstly, it is evident that feature-based models such as
DeepHawkes consistently lag behind other approaches across
all evaluated metrics. This underperformance can be at-
tributed to the inherent limitations of feature-based models
in capturing the complex, nonlinear evolution patterns of cas-
cade size, particularly during the early stages of information
propagation.

We discover graph-based models generally outperform
their sequence-based counterparts, emphasizing the critical
role of incorporating both structural and temporal informa-
tion within cascade graphs. For instance, CasFlow and CTCP
demonstrates good performance, particularly on the Weibo
dataset, suggesting its effectiveness in modeling both the tem-
poral and structural dynamics of information spread.But their
performance is not excellent over shorter observation periods.

The superior performance of DGPA across metrics, espe-
cially on datasets like Twitter and Weibo where the observa-
tion windows are inherently shorter, underscores its capabil-
ity to generate accurate predictions with minimal initial data.

4.3 Sensitivity to Observation Time
In the experiments conducted on the Twitter and APS
datasets, we selected observation periods corresponding to
the 0th to 20th, 20th to 40th, 40th to 60th, 60th to 80th, and
80th to 100th percentiles. We then plotted the performance
of the top three models during these intervals. As shown in
Figure 3. Across both datasets (Twitter and APS), all mod-
els show an improvement in PCC as the observation window
extends. This is expected because which allows models to
better capture the underlying dynamics of information prop-
agation. The CTCP model exhibits a particularly pronounced
improvement in PCC as the observation window increases.
This suggests that CTCP benefits significantly from addi-
tional data, likely because its prediction mechanism heavily
relies on the volume of observed data to identify and exploit
correlations between different cascades. However, at shorter
observation windows, CTCP’s performance lags behind. The
CasFlow model shows a more modest improvement as the ob-
servation window increases, particularly on the APS dataset

20 40 60 80 100
0.55

0.60

0.65

0.70

0.75

0.80

PC
C

CasFlow
CTCP
DGPA

(a) Twitter

20 40 60 80 100
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0.55

0.60

0.65

0.70
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CasFlow
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(b) APS

Figure 3: Observation time sensitivity analysis.

where its performance plateaus earlier compared to the other
models. This could imply that CasFlow’s ability to capture
cascade dynamics is somewhat limited, especially in scenar-
ios where early prediction is crucial. The model’s reliance
on early-stage data might not be as strong as DGPA’s. The
DGPA model maintains higher PCC values across all obser-
vation periods. This indicates that DGPA is particularly ro-
bust to varying lengths of observation windows. Notably,
DGPA significantly outperforms the other models during the
early stages of information cascades (i.e., shorter observation
windows). This early-stage advantage suggests that DGPA is
adept at capturing the initial dynamics of information spread,
possibly due to its generative nature, which allows it to model
cascade dynamics more effectively even with sparse data.

4.4 Ablation Study
We compare DGPA with the following variations on Twitter
and APS to investigate the contribution of submodules to the
prediction performance.

• w/o TL removes the temporal learning module.
• w/o SL removes the structural representation of users.
• w/o GM removes the cascade generation module.
From Figure 4, we can observe the following: Firstly, The

removal of the temporal learning (TL) module leads to a sig-
nificant drop in both MSLE and PCC, particularly on the
Twitter dataset. This suggests that temporal dynamics play
a crucial role in the early stages of information dissemina-
tion, where the timing and pace of retweets or citations are
key indicators of future cascade popularity. The temporal
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Figure 4: Ablation study on Twitter and APS.
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Figure 5: Hyperparameter sensitivity analysis.

features captured by this module are especially vital in sce-
narios where observation periods are short, such as in social
media environments. Secondly, the structural representation
module (SL), while still contributing to the model’s overall
performance, has a less pronounced impact compared to the
TL module, especially on the APS dataset. In networks like
APS, where structural changes occur more slowly, temporal
evolution may play a more significant role in predicting future
cascade growth. The cascade generation module stands out
as the most critical component of the DGPA model. The cas-
cade generation module’s ability to simulate future cascade
propagation based on limited initial data is vital for long-
term predictions. Its significant contribution to both MSLE
and PCC metrics highlights the importance of generating syn-
thetic data.

4.5 Hyperparameter Sensitivity Analysis
Here, we conduct a hyper-parameter sensitivity analysis on
two parameters: the length of the Timestep, representing
the interval of the cascade, and the number of iterations dur-
ing the sampling process, denoted as Horizon. In Figure 5a,
considering the rapid short-term propagation and the evident
cascade changes on Weibo, we observe that as Timestep in-
creases, the model performance initially improves but then
gradually declines.A larger number of diffusion steps require
more frequent sampling, yet if Timestep is too large, the
generated embeddings may not align with the real cascade
evolution distribution. Figure 5b illustrates that as the number
of iterations required for sampling increases, model perfor-
mance gradually improves and then declines. This indicates
that an excessive number of iterations may introduce noise,

thereby diminishing the model’s effectiveness.

5 Related Work

Cascade Popularity Prediction. Cascade popularity pre-
diction aims to forecast the future size of information cas-
cades. Early approaches relied on manually engineered fea-
tures, such as content attributes and user profiles [Cheng et
al., 2014],[Szabo and Huberman, 2010; Li et al., 2017], but
these methods required significant human input and lacked
generalizability. Sequence-based models later conceptual-
ized cascades as diffusion sequences, capturing their tempo-
ral dynamics. For example, Cao et al. [Cao et al., 2017;
Zhao et al., 2021] employed Gated Recurrent Units (GRUs)
to derive path-level representations, which were aggregated
into a unified cascade representation. However, these meth-
ods often overlooked the structural intricacies inherent in
cascades. Recent advancements introduced graph-based ap-
proaches that frame cascades as dynamic graphs, leveraging
graph representation learning to encode both temporal and
structural features [C et al., 2017], [X et al., 2019], [X et
al., 2021]. Despite their effectiveness, these models typi-
cally treat cascades in isolation, ignoring interdependencies
between them.
Diffusion Models. Denoising diffusion probabilistic mod-
els (DDPMs) have gained significant attention for their abil-
ity to model complex distributions and generate high-fidelity
data [Ho et al., 2020; Zhang et al., 2023]. DDPMs operate
via a forward process, where Gaussian noise is progressively
added to the data, and a reverse process, where the model
iteratively denoises the data to reconstruct it. This process
enables DDPMs to capture intricate data structures and has
proven effective in high-dimensional generative tasks.

In the context of information diffusion, DDPMs offer
a novel approach for simulating the spread of information
within social networks. By interpreting user interactions as
sequences of noisy observations, the reverse diffusion process
generates plausible propagation pathways, capturing both
temporal sequences and structural characteristics of network
interactions. This methodology provides deeper insights into
the mechanics of information dissemination and social net-
work dynamics.

6 Conclusion

In this work, we introduced DGPA (Diffusion Guided Prop-
agation Augmentation), a novel generative framework for
early-stage information popularity prediction. By integrating
a time-conditioned interpolation mechanism in the forward
diffusion process, DGPA generates continuous and tempo-
rally coherent cascade representations from sparse data. In
the reverse process, DGPA aligns generated representations
with specific timestamps, addressing challenges such as ir-
regular sampling and the difficulty of simulating real-world
propagation dynamics. Experiments on real-world datasets
demonstrate that DGPA significantly outperforms state-of-
the-art methods in early-stage popularity prediction tasks.
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