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Abstract

Answer Set Programming (ASP) and Large Lan-
guage Models (LLMs) have emerged as powerful
tools in Artificial Intelligence, each offering unique
capabilities in knowledge representation and natu-
ral language processing, respectively. In this pa-
per, we combine the strengths of the two paradigms
with the aim of improving the structured represen-
tation of complex knowledge encoded in natural
language. In a nutshell, the structured representa-
tion is obtained by combining syntactic structures
extracted by LLMs and semantic aspects encoded
in the knowledge base. The interaction between
ASP and LLMs is driven by a YAML file speci-
fying prompt templates and domain-specific back-
ground knowledge. The proposed approach is eval-
uated using a set of benchmarks based on a dataset
obtained from problems of ASP Competitions. The
results of our experiment show that ASP can sen-
sibly improve the F1-score, especially when rela-
tively small models are used.

1 Introduction
Large Language Models (LLMs) and Answer Set Pro-
gramming (ASP) represent two distinct but complementary
paradigms in Artificial Intelligence (AI). LLMs, such as GPT
[Brown and et al., 2020], PaLM [Chowdhery and et al., 2023],
and Llama [Touvron and et al., 2023], have transformed nat-
ural language processing (NLP) by achieving unprecedented
levels of fluency and capability in textual data. LLMs excel
at various NLP tasks [Jin et al., 2024; Zhang et al., 2023],
such as language generation, summarization, and sentiment
analysis. In contrast, ASP [Marek and Truszczynski, 1999;
Niemelä, 1999], a declarative programming paradigm ex-
tending Datalog under answer set semantics [Gelfond and
Lifschitz, 1990], excels in knowledge representation and
logical reasoning, making it fundamental for AI systems
that require robust inference capabilities, including planning
and scheduling [Cappanera et al., 2023; Cardellini et al.,
2024], as well as diagnosis and configuration [Wotawa, 2020;
Taupe et al., 2021]. Capabilities that LLMs do not possess
[Li et al., 2024].

Example 1. Let us consider a prompt asking to LLMs to ad-
dress a nontrivial reasoning task such as the following:
You are organizing a networking event with several attendees,
and you want to form the largest possible group where ev-
ery person in the group knows every other person.
The attendees have provided the following information about
who they know:

Alice knows Bob, and Evan.
Bob knows Charlie, Diana, Evan, and Fiona.
Charlie knows Diana, Evan, Fiona, and George.
Diana knows Evan, Fiona, and George.
Evan knows George.
Fiona knows George, and Henry.
George knows Evan, and Henry.
Henry knows George.

Question: What is the largest group of attendees where ev-
eryone knows every other person in the group?

An answer provided by chatgpt.com (using GPT-4o from
the web interface or gpt-4o-mini-2024-07-18 via API) is the
following:
The largest group where everyone knows everyone else is the
group consisting of Bob, Charlie, Diana, Evan, and Fiona.
The answer is wrong, as Evan does not know Fiona. (We
obtained wrong answers also with Meta Llama 3.1:70b.) ■

Recognizing the complementary strengths of LLMs’ lin-
guistic abilities and ASP’s reasoning capabilities, this paper
proposes an approach that leverages the synergies between
these two paradigms, inspired by recent works in the litera-
ture [Basu et al., 2021; Zeng et al., 2024]. Our objective is
to develop a unified system that seamlessly integrates natu-
ral language processing with logical inference, allowing AI
applications to adeptly handle the complex interplay between
textual data and logical structures. In particular, we outline
a method for encoding specific domain knowledge into input
prompts using a YAML-based format, which allows LLMs to
produce relational facts that are used by ASP for reasoning.
An overview of the main pipeline addressed by our system is
shown in Figure 1. The system receives input consisting of
two YAML files: the behavior file provides general system
configuration, and the application file details domain knowl-
edge. Additionally, the input includes a database (i.e., rela-
tional facts) and a user request expressed in natural language.
Behavior and application files are combined to obtain prompt
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User Input
I want three apples. Also add milk.

LLM
Query extraction as facts

request("apple"). request("milk").
quantity("apple", 3).

Behavior File

Database File

Application FileLLM Setup

ASP SOLVER
Problem Encoding

quantity(Product, 1) :- request(Product),
#count {Q: quantity(Product, Q), Q!=1} == 0.

Solution
request("apple"). request("milk").

quantity("apple", 3). quantity("milk",1).

Figure 1: Graphical representation of the LLMASP pipeline. The
pipeline begins with a user query formulated in natural language.
The system also receives two YAML files: one specifying the sys-
tem’s behavior and another detailing the context of the specific ap-
plication under development. The behavior YAML file provides ini-
tial prompts for the LLM, which are enriched with contextual details
derived from the application YAML file and the user’s query. These
enriched prompts guide the LLM in extracting relevant information
from the user input, transforming it into structured factual represen-
tations. These facts are subsequently integrated into an ASP frame-
work, where they are combined with the existing knowledge base
and database, and processed by the solver to compute an answer set.

templates for the LLM, which are completed by the user in-
put. The complete prompts ask to extract data from the user
input and represent them in the form of facts. Facts are then
combined with a knowledge base (an ASP program) and pro-
cessed by an ASP solver to obtain an answer set. (Optionally,
and not discussed here, the answer set is then combined with
the prompts obtained by the two YAML files to express the
answer set in natural language.) One possible use case for
our tool is implementing a chatbot for an e-commerce site.
In this scenario, users could interact with the chatbot to place
items in their shopping cart. The requests by the users are
mapped to facts and combined with an ASP program. Ac-
tions are performed based on the computed answer set.

Example 2 (Continuing Example 1). Our system uses
prompts that instruct LLMs on extracting data rather than
addressing reasoning tasks.
You are a Natural Language to Datalog translator.
I will provide text in the format [INPUT]input[/INPUT],
and instructions on how to map the INPUT to
facts. The expected OUTPUT format will be given by
[OUTPUT]predicate(terms).[/OUTPUT].
Here is some context that you MUST analyze and remember.
If there is a graph, represent it with the predicates node/1

and edge/2. For example, if A and B are connected, use
node(“A”). node(“B”). edge(“A”,“B”).
[INPUT]You are organizing...[/INPUT] Process the INPUT
according to the following instructions:
List all the edges from source (double quoted string)
to target (double quoted string). The output format is
[OUTPUT]edge(source, target)[/OUTPUT]
List all the nodes. Associate to every node its
ID (double quoted string). The output format is
[OUTPUT]node(id)[/OUTPUT]

Our system first obtains a relational representation of the
graph in input:

node("Alice"). node("Bob"). ...
edge("Alice","Bob"). edge("Alice","Evan").
...

The above facts are then coupled with an ASP program to
compute a maximal clique:

{in(X)} :- node(X).
:- in(X), in(Y), X < Y, not edge(X,Y).
:∼ node(X), not in(X). [1@1, X]

Finally, our system represents the answer set in natural lan-
guage:
The maximal clique consists of Charlie, Diana, Evan, and
George.
(For this example, we coupled our system with Meta Llama
3.1:70b and the behavior file EIN; see Section 4.) ■

This paper also reports on the definition of a dataset fo-
cused on data extraction that we obtained from the domains
used in several ASP Competitions, and which we used to
evaluate some behavior and application files, as well as the
use of ASP to improve the generation of facts. In particu-
lar, our dataset comprises test cases obtained from 15 dif-
ferent domains, which we approached with 10 behavior files
characterized by combinations of specific features, including
generic extraction examples, predicate and term format de-
scriptions, repeated task instructions, and guidance for han-
dling missing answers. Additionally, we analyzed two ap-
plication file sets, providing either atom formats, or problem
descriptions alongside atom formats, as defined by the ASP
Competitions websites. Our analysis supports our conjecture
that approaching the data extraction task in multiple stages
and with the help of ASP is more effective than within a single
request to LLMs. Specifically, the F1-score improves from
73.7% to 80.9% when Meta Llama 3.1:8b is used, and from
90.4% to 98.1% using Meta Llama 3.1:70b. Further improve-
ments are obtained by instructing LLMs to extract explicit
knowledge in the input, and then using ASP to generate im-
plicit knowledge based on the specific domain of interest.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces background notions regarding LLMs, ASP
and YAML. Section 3 defines the format of behavior and ap-
plication files that are used in the extraction pipeline, which
is also discussed in this section. Section 4 presents the LL-
MASP prototype, the definition of a dataset from domains of
ASP Competitions, and the associated empirical evaluation.
Related work is discussed in Section 5 and conclusions are
given in Section 6.
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2 Background
2.1 Large Language Models
Large Language Models (LLMs) are sophisticated AI sys-
tems designed to process and generate human-like text. These
models are based on deep learning architectures, typically
transformers, and are trained on vast amounts of text data to
learn complex patterns and structures of language. In this ar-
ticle, LLMs are used as black box operators on text (functions
that take text in input and produce text in output). At each in-
teraction with an LLM, the generated text is influenced by all
previously processed text (the history of the interaction), and
the inherent stochastic nature of the model. The text in input
is called prompt, and the text in output is called generated text
or response.

Example 3. Let us consider the following prompt:

Encode as Datalog facts the following sentences:
I want three apples. Also add milk.

A response produced by Meta Llama 3.1:70b comprises

want(I, "three_apples"). add("milk").

or

want(I, Apples). quantity(Apples, three).
add(Milk).

as a proposed alternative. Although it is a good starting
point, the LLM should explicitly be instructed on the specific
format required for encoding facts. Which predicates should
be used? Should the quantity be represented as an integer?
Should objects be represented as double quoted strings? In
this article, we aim at gaining more control on the output pro-
duced by the LLM. ■

2.2 Answer Set Programming
We formally introduce the notion of fact and refer to the ASP-
Core-2 format [Calimeri et al., 2020] for other constructs. Let
P be a fixed nonempty set of predicate names. Predicates are
associated with an arity, a non-negative integer. Let C be the
set of constants, that is, integers and (double-quoted) strings.
A fact is of the form p(c), where p ∈ P, and c is a possibly
empty sequence of constants. A database is a possibly empty
set of facts. A program (or ASP Knowledge Base) is a set
of rules defining conditions to derive new facts from an input
database. For the purposes of this paper, it is sufficient to see
a program as a black-box associating one input database to
zero or more output databases (according to the stable model
semantics [Gelfond and Lifschitz, 1990]).

Example 4. Let us consider the following program:

request("apple"). request("milk").
quantity("apple", 3).
quantity(Product, 1) :- request(Product),

#count{Q: quantity(Product,Q), Q!=1} == 0.

The first two lines above comprise three facts (e.g., the input
database). After that, there is a rule defining 1 as the default
quantity. In this case, there is one output database extending
the facts with quantity("milk", 1). ■

2.3 YAML
YAML (YAML Ain’t Markup Language; https://yaml.org/
spec/1.2.2/) is a human-readable data serialization format
commonly used for configuration files, data exchange, and
representation of structured data. In this article, we focus on
the following restricted fragment: A scalar is any number
or string (possibly quoted). A block sequence is a sequence
of entries, each one starting by a dash followed by a space.
A mapping is a sequence of key-value pairs, each pair using
a colon and space as separator, where keys and values are
scalars. A scalar can be written in block notation using the
prefix | (if not a key).
Example 5. Below is a YAML document:

name: LLMASP
combined technologies:
- Answer Set Programming
- Large Language Models
description: |

LLMASP combines ASP and LLMs...
LLMs are used to extract data...

It encodes a mapping with keys name, combined
technologies and description. Key name is associated
with the scalar LLMASP. Key combined technologies
is associated with the list [Answer Set Programming,
Large Language Models]. Key description is associ-
ated with a scalar in block notation. ■

3 LLMASP Configuration and Pipeline
The architecture of LLMASP is shown in Figure 1 [Alviano
and Grillo, 2024; Alviano et al., 2024]. LLMASP takes in
input two YAML files, namely the behavior file B and the
application file A, together with a database file D (comprising
facts) and a request text T (expressed by the user in natural
language). A set F of facts is populated and a database is
given in output. This section defines B and A, as well as the
LLMASP pipeline.

Behavior File. The behavior file specifies global behav-
ior settings for LLMASP, as tone, style and general in-
structions for the LLM. It comprises two keys, namely
preprocessing and postprocessing. The preprocessing
section contains the following properties: (i) init, whose
value is used to provide general instructions to the LLM; (ii)
context, whose value must include the string {context},
to be combined with contextual information regarding an ap-
plication of interest; (iii) mapping, whose value must in-
clude the strings {input}, {instructions} and {atom},
to be combined with the instructions on how to extract spe-
cific atoms from the user input. The postprocessing section is
similar.

Application File. The second YAML file contains domain-
specific guidelines, as a description of the context and
mappings between facts and their corresponding natu-
ral language translation. In details, it contains three
sections, namely preprocessing, knowledge base,
and postprocessing. The values associated with
preprocessing and postprocessing are mappings
where keys are either facts or the special value _ (used for
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providing a context), and values are scalars. The value asso-
ciated with knowledge base is a program.

Pipeline. The pipeline implemented by LLMASP to map
natural langauge to ASP facts comprises four steps, namely
P1–P4, reported below. We use the following notation to de-
fine such steps: For a, b, c being strings, let a[b 7→ c] denote
the string obtained from a by replacing all occurrences of b
with c. Given a behavior file B, let preB(α) be the value as-
sociated with α in the preprocessing mapping of B, where
α is among init, context and mapping. For an applica-
tion file A, let preA(α) be the value associated with α in the
preprocessing mapping, where α is either an atom or _.
Finally, let kbA be the program in background knowledge.
P1. The history of the LLM is set to the prompt preB(init).
P2. If preA( ) is defined, the history of the LLM is extended
with the prompt preB(context)[{context} 7→ preA( )].
P3. For each defined preA(α), the LLM is invoked with
the prompt preB(mapping)[{input} 7→ T ][{atom} 7→ α]
[{instructions} 7→ preA(α)]. Facts in the response are
collected in F . Everything else is ignored.
P4. An answer set of kbA ∪ {α. | α ∈ D ∪ F} is searched.

Example 6. Let us consider a behavior file B with the fol-
lowing preprocessing section:
init: |

You are a Natural Language to Datalog translator.
I will provide text in the format [INPUT]input[/INPUT],
and instructions on how to map the INPUT to facts.
The expected OUTPUT format will be given by
[OUTPUT]predicate(terms).[/OUTPUT].

context: Here is some context that you MUST analyze
and remember: {context}

mapping: |
[INPUT]{input}[/INPUT] Process the INPUT according
to the following instructions: {instructions}
The output format is [OUTPUT]{atom}[/OUTPUT]
If the answer is not in the INPUT, reply NONE.

As for the application file A, let us consider the following
preprocessing section:
_: You have to extract data about the requested products.

Ignore plural, always write product names in singular.
Double quote names.

request("product"): List all the products in the request.
quantity("product", value): value is the quantity

associated with “product” if explicitly given in the request.
Files A and B are combined to extract the facts in Exam-
ple 4 (plus the ignored atom quantity("milk", NONE)).
In particular, the execution of step P2 uses
Here is some context that you MUST analyze and remember:
You have to extract data about the requested products. Ignore
plural, always write product names in singular. Double quote
names.
As for P3, it is executed twice:
[INPUT]I want three apples. Also add milk.[/INPUT]
Process the INPUT according to the following instructions:
List all the products in the request. The output format is

ID Problem Name Facts 1-ary 2-ary 3-ary
CMSL Connected Max.-density Still Life 1 1 0 0
CM Crossing Minimization 53 1 52 0
GG Graceful Graphs 8 0 8 0
GC Graph Colouring 109 54 55 0
IS Incremental Scheduling 77 24 53 0
KT Knight Tour 3 1 0 0
KTH Knight Tour with Holes 9 1 8 0
L Labyrinth 290 1 257 32
MCP Maximal Clique Problem 19 11 8 0
NM No Mystery 31 8 15 8
PU Partner Units 24 9 15 0
PPM Permutation Pattern Matching 17 1 16 0
RR Ricochet Robots 22 9 0 13
S Sokoban 44 32 4 8
SM Stable Marriage 16 0 0 16
VLP Valves Location Problem 28 12 8 8

Table 1: Average number of facts in the instances of each tested
domain (overall, and per arity).

[OUTPUT]request("product")[/OUTPUT]
If the answer is not in the INPUT, reply NONE.
[INPUT]I want three apples. Also add milk.[/INPUT]
Process the INPUT according to the following instructions:
value is the quantity associated with “product” if ex-
plicitly given in the request. The output format is
[OUTPUT]quantity("product", value)[/OUTPUT]
If the answer is not in the INPUT, reply NONE.

The extracted facts are combined with the knowledge base
(e.g., the rule in Example 4) to obtain an output database. ■

4 Implementation and Experiment
Our LLMASP implementation is powered by Ollama, Ope-
nAI API and CLINGO [Gebser et al., 2011]. Here, we focus
on two models, Llama 3.1 with 8 and 70 billions parameters.
In order to assess LLMASP empirically, we defined a dataset
using domains from ASP Competitions [Gebser et al., 2020].
Specifically, we use the description of the domain and format
of the facts available online, and systematically generate text
representations (of portions) of the instances. We therefore
aim at extracting the facts from the generated text, and adopt
F1-score as a measure of quality (precision and recall are ad-
ditionally reported in the supplementary material).

The dataset consists of 32 test cases for each domain listed
in Table 1. The table provides the average number of facts to
be extracted for each problem instance, offering some insight
into the complexity of each domain (which however also de-
pends on other aspects such as its textual descriptions and
the generated instances). In particular, the generation of text
is obtained by randomly applying templates (among several
alternatives) to randomly selected facts. The templates are
structured to ensure variability in the generated natural lan-
guage descriptions. For example, the application of some
templates of Incremental Scheduling (IS) to the facts

job(1). job(3). job(10). job(17). job(19).
deadline(3,14). deadline(18,36).
job_len(1,14). importance(1,2).
precedes(13,14). precedes(10,11).
precedes(17,18). precedes(19,20).
device(1). job_device(1,1).
offline_instance(1,1).

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

llama3.1:70b ChatGPT 4o-minillama3.1:8b
Description and format info
Description info
Encoding info
Format info
No info

CMCMSL
GC

GG

IS

KT

KTH
L MCP NM

PPM

PU

RR

S

SM
VLP

0

0.5

1
CMCMSL

GC

GG

IS

KT

KTH
L MCP NM

PPM

PU

RR

S

SM
VLP

0

0.5

1
CMCMSL

GC

GG

IS

KT

KTH
L MCP NM

PPM

PU

RR

S

SM
VLP

0

0.5

1

Figure 2: F1-score obtained by generating facts with Llama 3.1 models (8b and 70b) and ChatGPT (4o–mini), and prompts possibly providing
the description of the domain, the format of atoms and the ASP program (as given in the ASP Competitions websites).

may result to the following text:
The job 3 has a deadline 14. The completion time
of job 13 must occur before the start time of 14.
The job 1 has an importance of 2, must be executed
by device 1, needs 14 timesteps to be performed.
Job 19 should end before 20 starts. Device 1 has
instance one offline. Job 17 must finish before the
start time of 18. Job 10 must finish before the start
time of 11. The job 18 has a deadline 36.

First of all, we try the prompt suggested by Open AI
to parse unstructured data (https://platform.openai.com/docs/
examples/default-parse-data), adapted to our format:

You will be provided with unstructured data, and
your task is to parse it into Datalog facts format.

As shown in Figure 2, with no information about the format
of the facts to extract, both models exhibit a low F1-score
(20.1% for 8b and 12.8% for 70b). A small improvement is
obtained by providing the description of the domain (23.8%
and 27.3%), and a more sensible improvement is obtained
by providing the format of the facts to extract (69.4% and
84.1%). Including both descriptions and formats slightly im-
prove the extraction process on average (73.7% and 90.4%).
Alternatively, including in the prompt the official ASP pro-
gram from the ASP Competitions results into relatively good
F1-scores (49.1% and 80.6%), which however do not reach
the previously obtained values. The figure also reports data
regarding the ChatGPT 4o–mini, which are similar to those
obtained for 70b: 12.3% when no information is provided;
36.5% when the domain is described; 82.9% when the format
is detailed; 87.6% when both the domain and the format are
given; 76.0% when the ASP program is included. Analyzing
these first results, we conclude that a good description of the
format of the facts to extract is paramount, while the descrip-
tion of the domain itself and the ASP program may help but
are not fundamental. In the following, we employ LLMASP
to test several prompts, by combining behavior and applica-
tion files with different features.

We consider 10 behavior files having (some of) the follow-
ing features: a generic extraction example in the context (E);
a description of predicate and terms format in the context (F);
repeated instructions on the extraction task in the mapping
(I); indication in the context to reply NONE if the answer is

missing (N); repeated indication on NONE in the mapping
(R). We denote behavior files by the concatenation of their
features, e.g., EF for a behavior file having examples, and the
format of predicates and terms in the context. We consider
sets of application files whose context provide the follow-
ing information (as given in the ASP Competitions websites):
(A1) format of atoms; (A2) description of the problem and
format of atoms. Results are shown in Figure 3. Regarding
A1, we observe that LLMASP improves the average F1-score
of the 8b model up to 80.9% when the EINR behavior file is
used; the other behavior files perform similarly. For the 70b
model, F1-score reaches a pick of 96.8% with the EIN be-
havior file, with the other behavior files performing anyhow
better than the LLM without LLMASP (94.0% for F is the
worst result in this set). Moving on A2, we observe no sig-
nificant difference when the 8b model is used, and a minimal
improvement for the 70b model (registering the best average
F1-score, i.e., 98.1% for EIN). All in all, we conclude that
F is not necessary and may even confuse the 8b model; N
helps the LLMs to handle missing answers, while R does not;
I is also beneficial, likely because it simplifies the attention
mechanism of the LLMs; E tends to improve the F1-score.
Therefore, we select EIN as the best behavior file in this ex-
periment. We also acknowledge a small improvement in us-
ing A2 instead of A1, possibly thanks to some contextualized
examples.

Our last benchmark involves domains for which part of
the generation process can be addressed in ASP after some
facts are extracted. We therefore encode such parts in the
knowledge base section of the application files. In more
details, in L we replace field/2 by size/1 and the ASP rule

field(X,Y) :- size(N), X = 1..N, Y = 1..N.

Similarly, in NM and S we replace step/1 by steps/1 and
step(I) :- steps(N), I = 1..N.

Finally, in RR we modify the extraction of dim/1, replace bar-
rier/3 by barrier/5, and employ the following ASP rules:

dim(I-1) :- dim(I), I > 1.
barrier(X,Y,A,B,D) :- barrier(A,B,X,Y,D).
barrier(X,Y,D) :- barrier(X,Y,X-1,Y,D),

D == west.
barrier(X,Y,D) :- barrier(X,Y,X+1,Y,D),
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Figure 3: F1-score obtained by generating facts with LLMASP using Llama 3.1 models (8b and 70b), and application files providing the
format of atoms and possibly the description of the domain.

D == east.
barrier(X,Y,D) :- barrier(X,Y,X,Y-1,D),

D == north.
barrier(X,Y,D) :- barrier(X,Y,X,Y+1,D),

D == south.

In the program above, the definition of barrier/3 is of par-
ticular interest. In fact, we observed that often the tested
LLMs have difficulties to associate a barrier between (x −
1, y) and (x, y) toward direction west with location (x −
1, y). We therefore expect better results by first extracting
a more syntactic fact such as barrier(x-1,y,x,y,west)
and then employing ASP to generate the correct fact
barrier(x-1,y,west). Results are shown in Table 2. We
observe a sensible improvement for RR, especially for the 8b
model. With a few exceptions, the use of ASP is beneficial
for the generation process.

5 Related Work
LLMs (e.g., ChatGPT [Brown and et al., 2020], PaLM
[Chowdhery and et al., 2023], and Llama [Touvron and et
al., 2023]) excel in sequence-to-sequence (seq2seq) tasks,
where a text input triggers a text output generated by the

Beha.
File

(A1) format (A2) description+format
L NM RR S L NM RR S

8b

F 97+2 86 54+37 79−1 91+7 83+5 61+32 86−2

EF 94+6 91+1 52+43 83+9 89+10 91+2 58+38 86+5

FN 98+1 86 53+38 81−2 95+3 89+1 57+36 84−1

EFN 96+3 91 49+46 83+7 88+11 90+2 59+38 83+9

I 92+7 91−2 56+36 86 88+11 92+2 57+37 88

EI 87+13 94 55+41 87+3 71+29 94 60+38 85+5

IN 96+3 93−2 57+36 83 91+8 91+4 61+33 85+2

EIN 92+8 94 56+39 89−1 78+22 95 59+39 87−2

INR 95+4 87+3 54+40 86+3 90+9 90 60+35 82+3

EINR 96+4 92+1 56+40 82+7 69+31 92 63+33 78+12

70
b

F 99+1 99 88+10 96 97+3 98+1 92+7 96

EF 98+2 99 88+12 96 100 99 93+6 96

FN 93+7 99 89+8 96 97+3 98+1 91+7 96

EFN 92+8 99 84+16 96 100 99 93+6 96

I 100 99−1 91+8 96 100 98 93+5 96

EI 100 99 91+9 96 100 99 91+8 96

IN 100 99 92+7 96 100 99 94+3 96

EIN 100 99 93+6 96 100 99 92+7 96

INR 90+10 99 89+10 96 97+3 99 94+5 96

EINR 76+24 98.5+1 90+9 96 77+23 99 94+5 96

Table 2: F1-score difference due to the use of ASP in the generation
of facts. Positive offsets are improvements (values in percentage).
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model; seq2seq has several applications, among them ma-
chine translation [Dabre et al., 2020], answering factual ques-
tions [Petroni et al., 2019], executing basic arithmetic opera-
tions [Hoffmann et al., 2022], text summarization [Zhang et
al., 2019], and chatbot functionalities [Liu et al., 2022].

In this work, we employ LLMs in information extraction
tasks, and in particular we focus on the extraction of relational
facts from text with the aim of addressing subsequent reason-
ing tasks with formal logic systems. Our idea is motivated
by the use of LLMs for similar natural language processing
tasks, for example relation categories extraction [Cabot and
Navigli, 2021], entity linking [Cao et al., 2021] and semantic
role labeling [Blloshmi et al., 2021]. The closest work to our
is [Yang et al., 2023], whose focus is question answering:
an LLM is used to transform a context and a question into
atomic facts, which are processed by an ASP solver equipped
with background knowledge encoded as ASP rules to derive
an answer. The approach of [Yang et al., 2023] uses few-
shot examples rather than training datasets, which we also
explored (in the behavior files whose name contains E). Our
work differs from [Yang et al., 2023] mainly in its more struc-
tured approach for the prompt engineering phase, distinguish-
ing between portions of the prompts that are of general appli-
cability (behavior file) and portions that are applicable to a
specific domain of interest (application file).

Another argument supporting the use of LLMs for data ex-
traction only rather than for reasoning is given by [Nye et
al., 2021], suggesting that LLMs are suitable for System-1
thinking: LLMs are designed to predict the next word in a
sequence without deep comprehension of crucial reasoning
concepts like causality, logic, and probability. As a matter
of fact, merging LLMs with logical reasoning into a neu-
rosymbolic framework is an active research field, to which
LLMASP can contribute by easing the interface of LLMs
and ASP. LLMASP makes no assumption on the origin of
the knowledge base in application files. Indeed, we encoded
simple knowledge regarding the generation of facts associ-
ated with instances in ASP Competitions, which simplified
the extraction task for the tested LLMs. In general, we expect
knowledge bases to be curated by domain experts, possibly
with the help of automated tools.

Regarding the definition of knowledge bases, an interest-
ing approach is given by the NL2ASP tool [Santana et al.,
2024], which uses a dual phase architecture to produce ASP
programs from natural language descriptions. NL2ASP uses
neural machine translation to convert natural language into
Controlled Natural Language (CNL) statements, which are
then translated into ASP code via the CNL2ASP tool [Caruso
et al., 2024]. It is important to highlight that our task is
less complex than the one tackled by [Santana et al., 2024]
(and for this reason more likely to succeed in the short time).
On the other hand, both approaches can benefit from each
other: LLMASP can take advantage of NL2ASP to help do-
main experts in defining background knowledge bases, while
NL2ASP can ignore the generation of facts and focus on more
complex rules. Yet another possibility is to equip a tool like
NL2ASP with rule templates, and instantiate them based on
facts extracted with LLMASP, which we will explore in our
future work.

Another work aiming at generating ASP programs is pre-
sented by [Ishay et al., 2023a]. The main element in their
work is a prompt engineering strategy to transform natural
language descriptions into ASP incrementally. The proposed
pipeline initially identifies the relevant objects and their cate-
gories. Subsequently, it forms a predicate that delineates the
relationships between objects from various categories. Us-
ing these derived data, the pipeline proceeds to build an ASP
program following the Generate-Define-Test paradigm.

Finally, we acknowledge an increasing interest in the in-
tegration of LLMs and ASP to create powerful AI systems
capable of both processing complex natural language in-
puts and performing sophisticated logical inference [Ishay et
al., 2023b; Rajasekharan et al., 2023a; Wang et al., 2024;
Yang et al., 2024; Kaur et al., 2025]. Among the applications
of such a powerful combination there is the generation of ex-
planations for reasoning tasks [Rajasekharan et al., 2023b;
Kalyanpur et al., 2024; Lin et al., 2024]. Within this respect,
the idea is to generate justification trees and produce their nat-
ural language representations. LLMASP can be used for this
second phase with its postprocessing pipeline, which is not
discussed in this work.

6 Conclusion
In this paper, we have introduced an approach for combining
LLMs and ASP to harness their complementary strengths in
natural language processing and logical reasoning. Our pro-
totype system (https://github.com/lewashby/llmasp) is writ-
ten in Python, and is powered by Ollama, OpenAI API and
CLINGO. By providing predefined prompts and enriching
specifications with domain-specific knowledge, our approach
enables users to tailor the system to diverse problem domains
and applications, enhancing its adaptability and versatility.
The predefined prompts can be easily modified as they are
stored in a separate YAML file (the behavior file). We tested
several behavior and application files on a dataset obtained
from domains of the ASP Competitions, identifying some
key features to drive the generation of facts. Moreover, we
showed that ASP can be employed to improve the genera-
tion process by representing semantic aspects in the knowl-
edge base, and leaving more syntactic facts to be extracted by
LLMs. Future lines of research include exploring different
strategies to improve the preprocessing phase of LLMASP
(e.g., by introducing calls to LLMs to drive subsequent calls),
the evaluation of the postprocessing phase of LLMASP (i.e.,
the generation of natural language from facts), the use of LL-
MASP in the context of Fashion Retail, and the integration of
LLMASP in LangChain.

Ethical Statement
The use of LLMs inherently exposes to risks related to trans-
parency and accountability. Users of LLMASP must be
clearly informed about such risks.
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