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Abstract
In this paper, we explore the issue of inconsistency
handling in DatalogMTL, an extension of Datalog
with metric temporal operators. Since facts are
associated with time intervals, there are different
manners to restore consistency when they contra-
dict the rules, such as removing facts or modifying
their time intervals. Our first contribution is the def-
inition of relevant notions of conflicts (minimal ex-
planations for inconsistency) and repairs (possible
ways of restoring consistency) for this setting and
the study of the properties of these notions and the
associated inconsistency-tolerant semantics. Our
second contribution is a data complexity analysis
of the tasks of generating a single conflict / repair
and query entailment under repair-based semantics.

1 Introduction
There has been significant recent interest in formalisms for
reasoning over temporal data [Artale et al., 2017]. Since its
introduction by Brandt et al. [2017; 2018], the DatalogMTL
language, which extends Datalog [Abiteboul et al., 1995]
with operators from metric temporal logic (MTL) [Koymans,
1990], has risen to prominence. In DatalogMTL, facts are
annotated by time intervals on which they are valid (e.g.,
R(a, b)@[1, 5]), and rules express dependencies between such
facts (e.g., ⊞[0,2] Q ←−⋄{3} P states that if P holds at time
t− 3, Q holds from t to t+ 2). The complexity of reasoning
in DatalogMTL has been extensively investigated for various
fragments and extensions and for different semantics (con-
tinuous vs pointwise, rational vs integer timeline) [Brandt et
al., 2018; Walega et al., 2019; Ryzhikov et al., 2019; Walega
et al., 2020b; Walega et al., 2023a; Walega et al., 2024].
Moreover, there are also several implemented reasoning sys-
tems for (fragments of) DatalogMTL [Kalayci et al., 2019;
Wang et al., 2022; Wang et al., 2024; Bellomarini et al., 2022;
Walega et al., 2023b; Ivliev et al., 2024].

One important issue that has yet to be addressed is how
to handle the case where the temporal dataset is inconsistent
with the DatalogMTL program. Indeed, it is widely acknowl-
edged that real-world data typically contains many erroneous
or inaccurate facts, and this is true in particular for tempo-
ral sensor data, due to faulty sensors. In such cases, classical

logical semantics is rendered useless, as every query is en-
tailed from a contradiction. A prominent approach to obtain
meaningful information from an atemporal dataset that is in-
consistent w.r.t. a logical theory (e.g., an ontology or a set of
database integrity constraints) is to use inconsistency-tolerant
semantics based on subset repairs, which are maximal sub-
sets of the dataset consistent with the theory [Bertossi, 2019;
Bienvenu, 2020]. The consistent query answering (CQA) ap-
proach considers that a (Boolean) query is true if it holds
w.r.t. every repair [Arenas et al., 1999; Lembo et al., 2010].
Other natural semantics have also been proposed, such as
the brave semantics, under which a query is true if it holds
w.r.t. at least one repair [Bienvenu and Rosati, 2013], and the
intersection semantics which evaluates queries w.r.t. the in-
tersection of all repairs [Lembo et al., 2010]. It is also useful
to consider the minimal subsets of the dataset that are incon-
sistent with the theory, called conflicts, to explain the incon-
sistency to a user or help with debugging.

It is natural to extend these notions to the temporal setting.
First work in this direction was undertaken by Bourgaux et
al. [2019], who considered queries with linear temporal logic
(LTL) operators, an atemporal DL-Lite ontology, and a se-
quence of datasets stating what holds at different timepoints.
In that work, however, it was clear how to transfer definitions
from the atemporal setting, and the main concerns were com-
plexity and algorithms. By contrast, in DatalogMTL, facts
are annotated with time intervals, which may contain expo-
nentially or even infinitely many timepoints (if the timeline
is dense or ∞/−∞ can be used as interval endpoints). One
can therefore imagine multiple different ways of minimally
repairing an inconsistent dataset. For example, if a dataset
states that P is true from 0 to 4 and Q from 2 to 6 (P@[0, 4],
Q@[2, 6]), and a rule states that P and Q cannot hold at the
same time (⊥ ← P ∧ Q), one can regain consistency by re-
moving one of the two facts, adjusting their intervals, or treat-
ing intervals as their sets of points and conserving as much
information as possible.

In this paper, we initiate the study of inconsistency han-
dling in DatalogMTL. After some preliminaries, we formally
introduce our framework in Section 3. We define three dif-
ferent notions of repair based upon deleting whole facts (s-
repairs), punctual facts (p-repairs), or minimally shrinking
the time intervals of facts (i-repairs), which give rise to the x-
brave, x-CQA, and x-intersection semantics (x ∈ {s, p, i}).
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Likewise, we define notions of s-, p-, and i-conflict, which
capture different ways to characterize minimal reasons for in-
consistency. In Section 4, we study the properties of these
notions. In particular, we show that p- and i-conflicts and re-
pairs are not guaranteed to exist or be finite. In Section 5,
we explore the computational properties of our framework.
We provide a fairly comprehensive account of the data com-
plexity of recognizing s-conflicts and s-repairs, generating a
single s-conflict or s-repair, and testing query entailment un-
der the s-brave, s-CQA, and s-intersection semantics. We
obtain tight complexity results for several DatalogMTL frag-
ments and identify tractable cases. We further provide some
first complexity results for the i-and p-based notions.

Proofs of all claims are given in [Bienvenu et al., 2025].

2 Preliminaries: DatalogMTL
Intervals We consider a timeline (T,≤), (we will consider
(Q,≤), which is dense, and (Z,≤), which is not), and call the
elements of T timepoints. An interval takes the form ⟨t1, t2⟩,
with t1, t2 ∈ T∪{−∞,∞}, bracket ⟨ being [ or (, and bracket
⟩ either ] or ), and denotes the set of timepoints
{t | t ∈ T, t1 < t < t2} ∪ {t1 | if ⟨= [} ∪ {t2 | if ⟩ =]}.

A punctual interval has the form [t, t] and will also be writ-
ten {t}. A range ϱ is an interval with non-negative endpoints.
Syntax Let P, C and V be three mutually disjoint count-
able sets of predicates, constants, and variables respectively.
An atom is of the form P (τ⃗) where P ∈ P and τ⃗ is a tu-
ple of terms from C ∪ V of matching arity. A literal A is an
expression built according to the following grammar:
A ::= P (τ⃗) | ⊤ |⊞ϱ A |⊟ϱ A |+⋄ϱ A |−⋄ϱ A | A UϱA | A SϱA
where P (τ⃗) is an atom and ϱ is a range. Intuitively, S stands
for ‘since’, U for ‘until’, ⋄ for ‘eventually’, and ✷ for ‘al-
ways’, with + indicating the future and − the past. A Data-
logMTL program Π is a finite set of rules of the form
B ← A1 ∧ ... ∧Ak or ⊥ ← A1 ∧ ... ∧Ak with k ≥ 1

where each Ai is a literal and B is a literal not mentioning
any ‘non-deterministic’ operators +⋄ϱ, −⋄ϱ, Uϱ, and Sϱ. We
call A1 ∧ ... ∧ Ak the body of the rule, and B or ⊥ its head.
We assume that each rule is safe: each variable in its head
occurs in its body, and this occurrence is not in a left operand
of S or U . A (temporal) dataset D is a finite set of (temporal)
facts of the form α@ι, with α a ground atom (i.e., α does not
contain any variable) and ι a non-empty interval.
Fragments A program is propositional if all its predicates
are nullary. It is core if each of its rules is either of the form
⊥ ← A1 ∧ A2 or of the form B ← A. It is linear if each of
its rules is either of the form ⊥ ← A1 ∧ A2 or of the form
B ← A1∧...∧Ak where at most one Ai mentions some pred-
icate that occurs in the head of some rule (intensional predi-
cate). We denote by DatalogMTL−⋄core (resp. DatalogMTL−⋄lin )
the fragment where programs are core (resp. linear) and −⋄ is
the only temporal operator allowed in literals. The relation
⋖ of dependence between predicates is defined by P ⋖ Q
iff there is a rule with P in the head and Q in the body. A
program is non-recursive if there is no predicate P such that
P ⋖+ P , where ⋖+ is the transitive closure of ⋖. We denote
by DatalognrMTL the fragment of non-recursive programs.

Semantics An interpretation M specifies for each ground
atom α and timepoint t ∈ T whether α is true at t. If α is true
at t in M, we write M, t |= α and say that M satisfies α at t.
The satisfaction of a ground literal by M at t is then defined
inductively as follows.

M, t |= ⊤ for every t ∈ T
M, t ̸|= ⊥ for every t ∈ T
M, t |=⊞ϱ A if M, s |= A for all s with s− t ∈ ϱ

M, t |=⊟ϱ A if M, s |= A for all s with t− s ∈ ϱ

M, t |=+⋄ϱ A if M, s |= A for some s with s− t ∈ ϱ

M, t |=−⋄ϱ A if M, s |= A for some s with t− s ∈ ϱ

M, t |= A UϱA′ if M, t′ |= A′ for some t′ with t′ − t ∈ ϱ

and M, s |= A for all s ∈ (t, t′)

M, t |= A SϱA′ if M, t′ |= A′ for some t′ with t− t′ ∈ ϱ

and M, s |= A for all s ∈ (t′, t)

An interpretation M is a model of a rule H ← A1∧ ...∧Ak if
for every grounding assignment ν : V 7→ C, for every t ∈ T,
M, t |= ν(H) whenever M, t |= ν(Ai) for 1 ≤ i ≤ k, where
ν(B) denotes the ground literal obtained by replacing each
x ∈ V by ν(x) in B. M is a model of a program Π if it
is a model of all rules in Π. It is a model of a fact α@ι if
M, t |= α for every t ∈ ι, and it is a model of a (possibly
infinite) set of facts B if it is a model of all facts in B. A
program Π is consistent if it has a model. A set of facts B
is Π-consistent if there exists a model M of both Π and B,
written M |= (B,Π). A program Π and set of facts B entail
a fact α@ι, written (B,Π) |= α@ι, if every model of both Π
and B is also a model of α@ι. Finally, we write B |= α@ι if
(B, ∅) |= α@ι and Π |= α@ι if (∅,Π) |= α@ι.
Queries A DatalogMTL query is a pair (Π, q(v⃗, r)) of a
program Π and an expression q(v⃗, r) of the form Q(τ⃗)@r,
where Q ∈ P, v⃗ = (v1, . . . , vn) is a tuple of variables, τ⃗
is a tuple of terms from C ∪ v⃗, and r is an interval vari-
able. We may simply use q(v⃗, r) as a query when the pro-
gram has been specified. A certain answer to (Π, q(v⃗, r))
over a (possibly infinite) set of facts B is a pair (c⃗, ι) such
that c⃗ = (c1, . . . , cn) is a tuple of constants, ι is an interval
and, for every t ∈ ι and every model M of Π and B, we have
M, t |= Q(τ⃗)[v⃗←c⃗], where Q(τ⃗)[v⃗←c⃗] is obtained from Q(τ⃗)
by replacing each vi ∈ v⃗ by the corresponding ci ∈ c⃗.

We will illustrate the notions we introduce on a running
example about a blood transfusion scenario.
Example 1. In our scenario, we wish to query the medical
records of blood transfusion recipients to detect patients who
exhibited symptoms or risk factors of transfusion-related ad-
verse reactions. For example, if a patient presents a fever
during the transfusion or in the next four hours, while having
a normal temperature for the past 24 hours, one can suspect a
febrile non-haemolytic transfusion reaction (potential fnhtr).
This is represented by the following rule, where, intuitively, x
represents a patient and y a blood pouch:

PotFnhtr(x)←Fever(x)∧ ⊟(0,24] NoFever(x)

∧ −⋄[0,4] GetBlood(x, y)
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Another rule detects more generally relevant fever episodes:

FevEp(x)←Fever(x)∧
−⋄[0,24] (NoFever(x) U{5}GetBlood(x, y))

A patient cannot have a fever and no fever at the same time:

⊥ ←Fever(x) ∧ NoFever(x)

We may also wish to identify patients who once produced anti-
D antibodies, as they are at risk for adverse reactions to some
blood types. This is represented as follows.

⊞[0,∞) AntiDRisk(x)←PositiveAntiD(x)

The following dataset provides information about a patient
a who received transfusion from a blood pouch b, assuming
that time 0 is the time they entered the hospital.

D = {PositiveAntiD(a)@{−90},GetBlood(a, b)@[24, 26],

NoFever(a)@[0, 29),Fever(a)@[29, 34]}
Let Π consist of the DatalogMTL rules above. One can check
that D is Π-consistent, (a, {29}) is a certain answer to the
query PotFnhtr(v)@r, (a, [29, 34]) is a certain answer to
FevEp(v)@r, and (a, [−90,∞)) to AntiDRisk(v)@r.

3 Repairs and Conflicts on Time Intervals
In this section, we first define three kinds of repair and con-
flict for temporal datasets, then extend inconsistency-tolerant
semantics to this context. Before delving into the formal defi-
nitions, we illustrate the impact of dealing with time intervals.
Example 2. Let Π be the program from Example 1 and

D = {PositiveAntiD(a)@{−90},GetBlood(a, b)@[24, 26],

NoFever(a)@[0, 32],Fever(a)@[14, 18],Fever(a)@[29, 34]}.
D is Π-inconsistent because inD, the patient a has both fever
and no fever at t ∈ [14, 18] ∪ [29, 32]. To repair the data
by removing facts from D, there are only two minimal pos-
sibilities: either remove NoFever(a)@[0, 32], or remove both
Fever(a)@[14, 18] and Fever(a)@[29, 34]. This may be con-
sidered too drastic, since, e.g., the Fever facts do not contra-
dict that the patient had no fever during [0, 14) or (18, 29).

Hence, it may seem preferable to consider each time-
point independently, so that a repair may contain, e.g., the
two Fever facts as well as NoFever(a)@[0, 14) and
NoFever(a)@(18, 29). However, with this approach, if T =
Q, there are infinitely many possibilities to repair the dataset,
and the number of facts in a repair may be infinite. For exam-
ple, an option to repair the Fever and NoFever facts is:

{NoFever(a)@[0, 29),Fever(a)@[30, 34],

NoFever(a)@[29 +
1

22k+1
, 29 +

1

22k
),

Fever(a)@[29 +
1

22k+2
, 29 +

1

22k+1
) | k ∈ N}.

An intermediate approach consists in only modifying the end-
points of intervals, in order to keep more information than
with fact deletion without splitting one fact into many. Again
we may obtain infinitely many possibilities, e.g., the Fever
and NoFever facts can be repaired by NoFever(a)@[0, t) and
Fever(a)@[t, 34] for t ∈ [29, 32].

Manipulating sets of temporal facts To formalize con-
flicts and repairs of temporal datasets, we consider three ways
of comparing (possibly infinite) sets of facts w.r.t. inclusion:
Definition 1 (Pointwise inclusion, subset comparison). We
say that a fact α@ι is pointwise included in a set of facts B
if for every t ∈ ι, there is α@ι′ ∈ B with t ∈ ι′, i.e., if
B |= α@ι. Given sets of facts B and B′, we say that B′ is

• a pointwise subset ofB, denotedB′ ⊑p B, if every α@ι ∈ B′
is pointwise included in B;

• an interval-based subset of B, denoted B′ ⊑i B, if B′ ⊑p B
and for every α@ι ∈ B, there is at most one α@ι′ ∈ B′
such that ι′ ⊆ ι;

• a strong subset ofB, writtenB′ ⊑s B, ifB′ ⊑i B andB′ ⊆ B.

We write B′ ⊏p B to indicate that B′ ⊑p B and B ̸⊑p B′. For
x ∈ {i, s}, we write B′ ⊏x B if B′ ⊑x B and B′ ⊏p B.

We also need to intersect (possibly infinite) sets of facts:
Definition 2 (Pointwise intersection). The pointwise inter-
section of a family (Bi)i∈I of sets of facts is

d
i∈I Bi =

{α@{t} | Bi |= α@{t} for each i ∈ I}. The pointwise inter-
section of a fact α@ι and a set of facts B is {α@ι} ⊓ B.

Normal form A (possibly infinite) set of facts B is in nor-
mal form if for every pair of facts α@ι and α@ι′ over the
same ground atom, if α@ι and α@ι′ are in B, then ι ∪ ι′ is
not an interval.
Lemma 1. If B is in normal form, then (1) B′ ⊑s B iff B′ ⊆ B,
and (2) B′ ⊑i B implies that the cardinality of B′ is bounded
by that of B.

To see why normal form is necessary, consider (1) B =
{P@[0, 4], P@[1, 2]}, which is such that B ̸⊑i B, so that
B ̸⊑s B, and (2) B = {P@[0, 4], P@[3, 7]}, which is such
that {P@[0, 1], P@[2, 5], P@[6, 7]}⊑i B.

For every dataset D, there exists a dataset D′ in normal
form such that for every t ∈ T, for every ground atom α,
D |= α@{t} iff D′ |= α@{t}. Moreover, such D′ can be
computed in polynomial time w.r.t. the size of D by merging
every α@ι1 and α@ι2 such that ι1∪ ι2 is an interval into α@ι
with ι = ι1 ∪ ι2. In the rest of this paper, we assume that all
datasets are in normal form and all programs are consistent.
Conflicts, repairs, and inconsistency-tolerant semantics
We are now ready to formally state the definitions of conflicts
and repairs of a temporal dataset w.r.t. a DatalogMTL pro-
gram. We start with the notion of conflict, which is crucial to
explain inconsistency.
Definition 3 (Conflicts). Let Π be a DatalogMTL program
and D be a dataset. Given x ∈ {p, i, s}, a set of facts C is
an x-conflict of D w.r.t. Π if C is in normal form, C ⊑xD, C
is Π-inconsistent, and there is no Π-inconsistent C′ ⊏x C. We
denote by xConf (D,Π) the set of all x-conflicts ofD w.r.t. Π.

Example 3. Consider Π and D from Example 2.
The s-conflicts are {NoFever(a)@[0, 32],Fever(a)@[14, 18]}
and {NoFever(a)@[0, 32],Fever(a)@[29, 34]}, while the p-
conflicts and i-conflicts are of the form {NoFever(a)@{t},
Fever(a)@{t}} with t ∈ [14, 18] ∪ [29, 32].

We define repairs in a similar manner.
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Definition 4 (Repairs). Let Π be a DatalogMTL program and
D be a dataset. Given x ∈ {p, i, s}, a set of facts R is an
x-repair of D w.r.t. Π if R is in normal form, R⊑xD, R
is Π-consistent, and there is no Π-consistent R′ such that
R⊏xR′ ⊑xD. We denote by xRep(D,Π) the set of all x-
repairs of D w.r.t. Π.

The requirement that x-repairs are in normal form ensures
that when D is Π-consistent, xRep(D,Π) = {D}.
Example 4. Π and D from Example 2 have two s-repairs:

R1 =I ∪ {NoFever(a)@[0, 32]} and
R2 =I ∪ {Fever(a)@[14, 18],Fever(a)@[29, 34]} with
I ={PositiveAntiD(a)@{−90},GetBlood(a, b)@[24, 26]}.

Every p-repairR is such that J ⊑pR with

J = I ∪ {NoFever(a)@[0, 14),NoFever(a)@(18, 29),

Fever(a)@(32, 34]}

and for every t ∈ [14, 18] ∪ [29, 32], either Fever(a)@{t} or
NoFever(a)@{t} is pointwise included inR.
Finally, every i-repairR is such that I ⊆ R and contains:
• either two facts NoFever(a)@[0, t⟩, Fever(a)@⟨t, 34],

where ⟩, ⟨ are either ], ( or ), [ and t ∈ [29, 32];
• or three facts NoFever(a)@[0, t⟩, Fever(a)@⟨t, 18], and
Fever(a)@[29, 34], where t ∈ [14, 18],
– ⟩, ⟨ are either ], ( or ), [ and
– if t = 18, then ⟩, ⟨ are ), [;

• or three facts Fever(a)@[14, t1⟩, NoFever(a)@⟨t1, t2⟩′,
Fever(a)@⟨′t2, 34], where t1 ∈ [14, 18], t2 ∈ [29, 32],
– ⟩, ⟨ and ⟩′, ⟨′ are either ], ( or ), [,
– if t1 = 14, then ⟩, ⟨ are ], (.
We can now extend the definitions of the brave, CQA and

intersection semantics to use different kinds of repairs.
Definition 5. Consider a DatalogMTL query (Π, q(v⃗, r)),
dataset D, tuple c⃗ of constants from D with |⃗c| = |v⃗|, and
interval ι. Given x ∈ {p, i, s} such that xRep(D,Π) ̸= ∅, we
say that c⃗ is an answer to (Π, q(v⃗, r)) under
• x-brave semantics, written (D,Π) |=x

brave q(c⃗, ι), if
(R,Π) |= q(c⃗, ι) for someR ∈ xRep(D,Π);

• x-CQA semantics, written (D,Π) |=x
CQA q(c⃗, ι), if

(R,Π) |= q(c⃗, ι) for everyR ∈ xRep(D,Π);
• x-intersection semantics, written (D,Π) |=x

∩ q(c⃗, ι), if
(I,Π) |= q(c⃗, ι) where I =

d
R∈xRep(D,Π)R.

Proposition 1. For every query (Π, q(v⃗, r)), dataset D, tu-
ple of constants c⃗, and interval ι, (D,Π) |=x

∩ q(c⃗, ι) implies
(D,Π) |=x

CQA q(c⃗, ι), which implies (D,Π) |=x
brave q(c⃗, ι).

None of the converse implications holds.
Example 5. Consider Π and D from Example 2. By examin-
ing the s-repairs given in Example 4, we can check that:
• (D,Π) |=s

∩ AntiDRisk(a)@[−90,∞),
• (D,Π) ̸|=s

brave FevEp(a)@{t} for every t ∈ T,
• (D,Π) ̸|=s

brave PotFnhtr(a)@{t} for every t ∈ T.

With the p-repairs (Example 4), we obtain that:
• (D,Π) |=p

∩ AntiDRisk(a)@[−90,∞),

• (D,Π) |=p
∩ FevEp(a)@(32, 34],

• (D,Π) |=p
brave PotFnhtr(a)@{t} for all t ∈ [29, 30],

• (D,Π) ̸|=p
CQA PotFnhtr(a)@{t} for every t ∈ T.

From the form of the i-repairs (Example 4), we obtain that:
• (D,Π) |=i

∩ AntiDRisk(a)@[−90,∞),

• (D,Π) |=i
brave FevEp(a)@[29, 34],

• (D,Π) ̸|=i
CQA FevEp(a)@{t} for each t ∈ T,

• (D,Π) |=i
brave PotFnhtr(a)@{t} for all t ∈ [29, 30],

• (D,Π) ̸|=i
CQA PotFnhtr(a)@{t} for each t ∈ T.

4 Properties of the Framework
We study properties of x-conflicts, x-repairs, and semantics
based upon them. The results hold for T = Q and T = Z.

4.1 Properties of Repairs and Conflicts
We will consider in particular the following properties, which
are well known in the case of atemporal knowledge bases.
Definition 6. We say that Pi holds if it holds for every dataset
D (in normal form) and (consistent) program Π.
P1: xRep(D,Π) ̸= ∅.
P2: D is Π-inconsistent iff xConf (D,Π) ̸= ∅.
P3: xRep(D,Π) and xConf (D,Π) are finite.

P4: Every B ∈ xRep(D,Π) ∪ xConf (D,Π) is finite.

P5: For every fact α@ι pointwise included in D, α@ι is
pointwise included in every x-repair of D w.r.t. Π iff α@ι has
an empty pointwise intersection with every x-conflict of D
w.r.t. Π.

The notions based on ⊑s have all these properties, while
those based on ⊑p do not have any, and those based on ⊑i
only one (i-repairs and i-conflicts are finite by Lemma 1).
Proposition 2. Properties P1-P5 hold for x = s.

Corollary 1.
⋂
R∈sRep(D,Π)R = D \

⋃
C∈sConf (D,Π) C.

Proposition 3. None of the properties P1-P5 hold for x = p.
For x = i, P4 holds but properties P1-P3 and P5 do not.

In what follows, we will provide the counterexamples used
to prove Proposition 3, as well as additional examples that
illustrate the properties of x-repairs and x-conflicts.

Existence of p- and i-Repairs and Conflicts
A major difference between repairs and conflicts based on ⊑s
and those based on ⊑p or ⊑i is that the latter need not exist.
Example 6. Consider the following dataset and program.

D = {P@(0,∞)} Π = {⊥ ←⊞(0,∞) P}

There is no p- or i-repair and no p- or i-conflict of D w.r.t. Π.
For x ∈ {p, i}, every Π-inconsistent C ⊑xD in normal

form is of the form {P@⟨t,∞)}. Since C′ = {P@(t+1,∞)}
is Π-inconsistent and C′ ⊏x C, then C is not an x-conflict.
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Every R⊑iD is either empty (hence not an i-repair since,
e.g., {P@{1}} is Π-consistent) or of the form {P@⟨t1, t2⟩}
with ⟨t1, t2⟩ ̸= ∅. If t2 =∞,R is Π-inconsistent. Otherwise,
R′ = {P@⟨t1, t2+1⟩} is Π-consistent andR⊏iR′ ⊑iD. In
both cases,R is not an i-repair.

For every R⊑pD in normal form, if there is only one t ∈
(0,∞) such thatR ̸|= P@{t}, thenR contains P@(t,∞) so
R is Π-inconsistent. Hence, for every Π-consistent R⊑pD,
there exist t1, t2 ∈ (0,∞) such that t1 < t2 and R ̸|=
P@{t1}, R ̸|= P@{t2}. However, R′ = R ∪ {P@{t1}} is
then Π-consistent andR⊏pR′ ⊑pD soR is not a p-repair.

Example 7 shows that there is no relationship between the
existence of x-conflicts and the existence of x-repairs.
Example 7. Let Dc = D ∪ {R@{0}} and Πc = Π ∪ {⊥ ←
R} with D and Π from Example 6. We can show as in Exam-
ple 6 that for x ∈ {p, i}, there is no x-repair of Dc w.r.t. Πc.
However, {R@{0}} is an x-conflict of Dc w.r.t. Πc. Now, let

Dr = {P@[0,∞), Q@{0}}
Πr = {⊥ ← Q∧ +⋄(0,∞)⊞(0,∞) P}.

For x ∈ {p, i}, there is no x-conflict of Dr w.r.t. Πr. In-
deed, every Πr-inconsistent C ⊑pD has to be such that C |=
P@(t,∞) for some t > 0 and none of such C is minimal
w.r.t. ⊑x . Yet, {P@[0,∞)} is an x-repair of Dr w.r.t. Πr.

The next examples show there is no relationship between
the existence of p-repairs and the existence of i-repairs, nor
between existence of p-conflicts and existence of i-conflicts.
Example 8. The following Di and Πi have no p-repair
(cf. Example 6) but {P@(−2, 0), Q@{0}} is an i-repair.

Di = {P@(−2,∞), Q@{0}}
Πi = {⊥ ←⊞(0,∞) P, ⊥ ← Q ∧ P}

In the other direction, letDp = {P@(−∞,∞), Q@{0}} and
Πp = {⊥ ←⊞[0,∞) P, ⊥ ←⊟[0,∞) P, ⊥ ← P ∧Q,

⊥ ← Q∧ ⊟(0,10) P∧ +⋄[10,∞) P,

⊥ ← Q∧ ⊞(0,10) P∧ −⋄[10,∞) P}.
One can check that {Q@{0}, P@(−10, 0), P@(0, 10)} is a
p-repair, but one can show that there is no i-repair.

Example 9. Di = {P@[0,∞), Q@{0}} is an i-conflict
of itself w.r.t. Πi = {⊥ ← P ∧Q∧ +⋄(0,∞)⊞(0,∞) P}. How-
ever, there is no p-conflict of Di w.r.t. Πi. In-
deed, every Πi-inconsistent dataset C ⊑pDi in normal
form has the form {Q@{0}, P@{0}, P@⟨t,∞)}, and
{Q@{0}, P@{0}, P@⟨t+ 1,∞)} is also Πi-inconsistent.

In the other direction, let Dp = {P@[0,∞), Q@{0}} and
Πp = {⊥ ←⊞(0,∞) P, ⊥ ← Q∧ ⊞[0,∞)+⋄[0,1) P}.

One can easily check that {Q@{0}, P@{k} | k ∈ N} is a
p-conflict, but one can show that there is no i-conflict.

Size and Number of p- and i-Repairs and Conflicts
It follows from Lemma 1 that the i-repairs and i-conflicts of
a dataset D w.r.t. a program Π contain at most as many facts
asD, hence are finite. In contrast, we have seen in Example 2
that a p-repair may be infinite. Example 10 shows that some
datasets have only infinite p-repairs w.r.t. some programs, and
Example 11 shows a similar result for p-conflicts.

Example 10. Consider the following dataset and program.

D = {P@(0,∞)} Π = {⊥ ←⊞[0,2] P}
There exist p-repairs ofD w.r.t. Π, such as {P@(2k, 2k+2) |
k ∈ N}, but one can show that they are all infinite.

Example 11. Consider the following dataset and program.

D = {P@[0,∞), Q@{0}}
Π = {⊥ ← Q∧ ⊞[0,∞)+⋄[0,2) P}

There are p-conflicts ofD w.r.t. Π, such as {Q@{0}, P@{2k}
| k ∈ N}, but one can show that they are all infinite.

Moreover, for both x = i and x = p, there can be infinitely
many x-repairs / x-conflicts:
Example 12. The following D and Π have infinitely many p-
and i- repairs and conflicts even if the timeline is (Z,≤):
D = {P@[0,∞), Q@[0,∞)} Π = {⊥ ← P ∧Q}.

Indeed, for every t ∈ [0,∞), {P@{t}, Q@{t}} is a p- and an
i-conflict, and {P@[0, t), Q@[t,∞)} is a p- and an i-repair.

Absence of Link Between p/i- Repairs and Conflicts
Example 13 shows that a fact may be pointwise included in
all p-, or i-, repairs while it is also pointwise included in a
p-, or i-, conflict, respectively, and, symmetrically, that a fact
may have an empty pointwise intersection with all p-, or i-,
conflicts but also with some p-, or i-, repair.
Example 13. Consider Di and Πi defined in Example 8.
There is only one i-repair, {P@(−2, 0), Q@{0}}, but
Q@{0} belongs to the i-conflict {P@{0}, Q@{0}}. Sym-
metrically, P@(0,∞) has an empty intersection with every
i-conflict but also with every i-repair. Indeed, {P@(0,∞)}
is Πi-inconsistent but is not minimal w.r.t. ⊑i .

For the p- case, we first consider again Di but extend Πi

with ⊥ ← Q∧ +⋄[0,∞) P . Now {P@(−2, 0), Q@{0}} is the
only p-repair but {P@{0}, Q@{0}} is a p-conflict so Q@{0}
is in all p-repairs and in some p-conflict. For the other direc-
tion, consider D = {P@[0,∞), Q@{0}, R@{0}} and

Π = {⊥ ← P ∧Q∧ +⋄(0,∞)⊞(0,∞) P, ⊥ ← R}.
The only p-conflict of D w.r.t. Π is {R@{0}} (cf. Example 9)
so Q@{0} has an empty intersection with every p-conflict.
Yet, {P@[0,∞)} is a p-repair that does not contain Q@{0}.
Case of Bounded-Interval Datasets over Z
We have seen that p- and i-repairs and conflicts need not exist,
and even when they do, they may be infinite in size and/or
number. Moreover, this holds not only for the dense timeline
(Q,≤), but also for (Z,≤). We observe, however, that the
negative results for Z crucially rely upon using ∞ or −∞
as endpoints. This leads us to explore what happens when
we adopt T = Z but restrict datasets to only use bounded
intervals (i.e., finite integers as endpoints).

The following result summarizes the properties of repairs
and conflicts in this setting, showing in particular that restrict-
ing to bounded-interval datasets suffices to ensure existence
and finiteness of p- and i-repairs and conflicts:
Proposition 4. When T = Z and datasets D are restricted
to only use bounded intervals, P1-P5 hold for x = p, P1-P4

hold for x = i, and P5 does not hold for x = i.
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4.2 Comparing the Different Semantics
The remaining examples show the following proposition.
Proposition 5. For every Sem ∈ {brave,CQA,∩} and x ̸=
y ∈ {p, i, s}, there exist D and Π such that D has x- and y-
repairs w.r.t. Π, (D,Π) |=y

Sem q(c⃗, ι) and (D,Π) ̸|=x
Sem q(c⃗, ι).

Example 14 shows the case y = p and x ∈ {i, s}.
Example 14. Consider our running example and re-
call from Example 5 that (D,Π) |=p

∩ FevEp(a)@{34}
(hence (D,Π) |=p

CQA FevEp(a)@{34}) while (D,Π) ̸|=x
CQA

FevEp(a)@{34} (hence (D,Π) ̸|=x
∩ FevEp(a)@{34}) for

x ∈ {i, s}. Moreover, if we consider Π′ that extends Π with

Q(x)← Fever(x) U(0,4)(NoFever(x) U(0,4)Fever(x)),

(D,Π′) |=p
brave Q(a)@{14} but (D,Π′) ̸|=x

brave Q(a)@{14}
for x ∈ {i, s}.

The case y = s and x ∈ {p, i} is shown by Example 15 for
Sem ∈ {∩,CQA} and Example 16 for Sem = brave.
Example 15. Consider D = {P@[0, 10], Q@{5}} and

Π = {⊥ ← P ∧Q, ⊥ ←⊞[0,10] P}.

It is easy to check that {Q@{5}} is the only s-repair so that
(D,Π) |=s

∩ Q@{5}. However, {P@(0, 10]} is a p- and i-
repair so for x ∈ {p, i}, (D,Π) ̸|=x

CQA Q@{5}.

Example 16. Consider Dr and Πr from Example 7.

Dr = {P@[0,∞), Q@{0}}
Πr = {⊥ ← Q∧ +⋄(0,∞)⊞(0,∞) P}

Since {Q@{0}} is an s-repair, (Dr,Πr) |=s
brave Q@{0}.

However, for x ∈ {p, i}, one can show that the only x-repair
is {P@[0,∞)}. Hence (Dr,Πr) ̸|=x

brave Q@{0}.
Example 17 illustrates the case y = i and x = s for Sem ∈
{∩,CQA} and Example 18 shows this case for Sem = brave.
Example 17. In Example 16, the only i-repair is
{P@[0,∞)} so (Dr,Πr) |=i

∩ P@[0,∞). However,
{Q@{0}} is an s-repair so (Dr,Πr) ̸|=s

CQA P@[0,∞).
Example 18. Consider our running example and recall
from Example 5 that (D,Π) |=i

brave FevEp(a)@{29} while
(D,Π) ̸|=s

brave FevEp(a)@{29}.
Example 19 illustrates the case y = i and x = p for Sem ∈
{∩,CQA} and Example 20 shows this case for Sem = brave.
Example 19. Let D = {T@{0}, P@[0, 4], Q@[0, 4]} and

Π = {⊥ ← P ∧Q, R← P U(0,4)Q U(0,4)P, ⊥ ← R ∧ T}.

The i-repairs are of the form {T@{0}, P@[0, t⟩, Q@⟨t, 4]} or
{T@{0}, Q@[0, t⟩, P@⟨t, 4]} so (D,Π) |=i

∩ T@{0}. How-
ever,R = {P@[0, 1], Q@(1, 3), P@[3, 4]} is a p-repair (note
that (R,Π) |= R@{0}, so R ∪ {T@{0}} is Π-inconsistent).
Hence (D,Π) ̸|=p

CQA T@{0}.

Example 20. Consider D = {P@[0,∞), Q@{5}} and

Π = {⊥ ← P ∧Q, ⊥ ← Q∧ +⋄[0,∞)⊞[0,∞) P}.

Since {P@[0, 5), Q@{5}} is an i-repair, (D,Π) |=i
brave

Q@{5}. However, one can show that the only p-repair is
{P@[0,∞)}. Hence (D,Π) ̸|=p

brave Q@{5}.

5 Data Complexity Analysis
We explore the computational properties of our inconsistency
handling framework. Specifically, we analyze the data com-
plexity of recognizing x-conflicts and x-repairs, generating a
single x-conflict or x-repair, and testing query entailment un-
der the x-brave, x-CQA, and x-intersection semantics. For
this initial study, we focus on cases where x-repairs are guar-
anteed to exist: (i) x = s, and (ii) bounded datasets over Z.

We recall that in DatalogMTL, consistency checking and
query entailment are PSPACE-complete w.r.t. data complex-
ity [Walega et al., 2019], and PSPACE-completeness holds
for many fragments (such as core and linear) [Walega et al.,
2020b] as well as for DatalogMTL over Z [Walega et al.,
2020a]. We also consider some tractable fragments for which
these tasks can be performed in PTIME w.r.t. data complexity:
DatalognrMTL, DatalogMTL−⋄core, and DatalogMTL−⋄lin (over
Q or Z) and propositional DatalogMTL over Z [Brandt et al.,
2018; Walega et al., 2020b; Walega et al., 2020a].

All results stated in this section are w.r.t. data complexity,
i.e. the input size is the size of D. We assume a binary encod-
ing of numbers, with rationals given as pairs of integers.

5.1 Results for s-Repairs and s-Conflicts
We can obtain PSPACE upper bounds for all tasks by adapting
known procedures for reasoning with subset repairs and con-
flicts in the atemporal setting, cf. [Bienvenu and Bourgaux,
2016]. Specifically, an s-repair or s-conflict can be generated
by a greedy approach (add / delete facts one by one while
preserving (in)consistency), and query entailment under the
three semantics can be done via a ‘guess and check’ approach.

Proposition 6. For arbitrary DatalogMTL programs Π, (i)
the size of B ∈ sConf (D,Π) ∪ sRep(D,Π) is polynomially
bounded in the size of D, (ii) it can be decided in PSPACE
whether B ∈ sConf (D,Π) or B ∈ sRep(D,Π), and (iii) a
single s-conflict (resp. s-repair) can be generated in PSPACE.
Moreover, for Sem ∈ {brave,CQA,∩}, query entailment un-
der s-Sem is PSPACE-complete.

If we consider tractable DatalogMTL fragments, we obtain
better bounds for the recognition and generation tasks:

Proposition 7. For tractable DatalogMTL fragments, the
tasks of testing whether B ∈ sConf (D,Π) (resp. B ∈
sRep(D,Π)) and generating a single s-conflict (resp. s-
repair) can be done in PTIME.

We can use the PTIME upper bounds on recognizing s-
repairs to obtain (co)NP upper bounds for query entailment
in tractable DatalogMTL fragments. Moreover, for specific
fragments, we can show these bounds are tight.

Proposition 8. For tractable DatalogMTL fragments: query
entailment1under s-brave (resp. s-CQA, s-intersection)
semantics is in NP (resp. coNP). Matching lower
bounds hold in DatalognrMTL and DatalogMTL−⋄lin (and
in DatalogMTL−⋄core in the case of s-CQA). The lower bounds
hold even for bounded datasets and T = Z.

Proof sketch. To illustrate, we provide the reduction from
SAT used to show NP-hardness of s-brave semantics in
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DatalognrMTL. Given a CNF φ = c1∧ ...∧ cm over variables
v1, ..., vn, consider the DatalognrMTL program and dataset:

Π′ = {N ′(v)←−⋄[0,∞) N(v), N ′(v)←+⋄[0,∞) N(v),

⊥ ← P (v) ∧N ′(v), Q′ ← S U(0,∞)M,

S ←−⋄[0,2) P (v), S ←−⋄[0,2) N(v)}
D′ = {P (vj)@{2k} | vj ∈ ck} ∪ {N(vj)@{2k} | ¬vj ∈ ck}

∪ {M@{2m+ 2}}

Then φ is satisfiable iff (D′,Π′) |=s
brave Q

′@{2}.

The hardness results for DatalognrMTL are somewhat
surprising in view of the AC0 data complexity and FO<-
rewritability of query entailment in DatalognrMTL [Brandt
et al., 2018], as a result from [Bienvenu and Rosati, 2013]
shows how to transfer FO-rewritability results from classi-
cal to brave and intersection semantics. However, the latter
result relies upon the fact that in the considered setting of
atemporal ontologies, the existence of a rewriting guarantees
a data-independent bound on the size of minimal inconsistent
subsets and minimal consistent query-entailing subsets. As
the preceding reduction shows, such a property fails to hold
in DatalognrMTL (observe that the minimal consistent query-
entailing subsets in D′ have size m+ 1).

In DatalogMTL−⋄core, by contrast, Walega et al. [2020b;
2020a] have shown that every minimal Π-inconsistent sub-
set contains at most two facts, and query entailment can be
traced back to a single fact. This is the key to our next result:

Proposition 9. DatalogMTL−⋄core query entailment1 under s-
brave and s-intersection semantics is in PTIME.

For propositional DatalogMTL, we even get tractability
for s-CQA semantics – notable in view of the notorious in-
tractability of CQA semantics even in restricted atemporal
settings. The proof relies upon rather intricate automata con-
structions, which build upon and significantly extend those
given in [Walega et al., 2020a] for consistency checking.
Proposition 10. When T = Z, propositional DatalogMTL
query entailment under s-brave, s-CQA, and s-intersection
semantics is in PTIME (more precisely, NC1-complete).

5.2 Results for Bounded-Interval Datasets over Z
We start by considering interval-based notions and observe
that even if the binary encoding of endpoint integers leads to
exponentially many choices for which sub-interval to retain
for a given input fact, i-conflicts and i-repairs are of poly-
nomial size and can be effectively recognized and generated.
This allows us to establish the same general upper bounds for
x = i as we obtained for x = s.
Proposition 11. When T = Z and only bounded-interval
datasets are considered, the results stated in Proposition 6
for the case x = s hold in the case x = i.

1Restricted to queries with punctual intervals for DatalogMTL−⋄lin
and DatalogMTL−⋄core: Walega et al. [2020b] give results for con-
sistency checking, and reductions from query entailment to consis-
tency checking for non-punctual queries use constructs not available
in these two fragments, cf. discussion in [Walega et al., 2020b].

We further show that when we consider tractable frag-
ments, one can tractably recognize or generate an i-conflict,
using binary search to identify optimal endpoints.
Proposition 12. For tractable DatalogMTL fragments: when
T = Z and only bounded-interval datasets are considered, it
can be decided in PTIME whether B ∈ iConf (D,Π) and a
single i-conflict can be generated in PTIME.

The argument does not apply to i-repairs, and we leave
open the precise complexity of i-repair recognition in this
case (we only get a coNP upper bound). However, we can
still obtain a tight complexity result for i-brave semantics
since we do not need to get a complete i-repair in this case.
Proposition 13. For tractable DatalogMTL fragments: when
T = Z and only bounded-interval datasets are consid-
ered, query entailment1 under i-brave (resp. i-CQA, i-
intersection) is in NP (resp. in Πp

2). Lower NP (resp. coNP)
bounds hold for DatalognrMTL and DatalogMTL−⋄lin (and for
DatalogMTL−⋄core in the case of i-CQA semantics).

The situation for pointwise notions is starkly different:
Proposition 14. When T = Z and only bounded-interval
datasets are considered, there exist D and Π such that every
B ∈ pConf (D,Π) (resp. B ∈ pRep(D,Π)) is exponentially
large w.r.t. the size of D.

We thus only obtain EXPSPACE complexity upper bounds.
Proposition 15. When T = Z and only bounded-interval
datasets are considered, all tasks considered in Proposition 6
for x = s can be done in EXPSPACE in the case x = p.

6 Conclusion and Future Work
This paper provides a first study of inconsistency handling in
DatalogMTL, a prominent formalism for reasoning on tem-
poral data. Due to facts having associated time intervals, there
are different natural ways to define conflicts and repairs. Our
results show that these alternative notions can differ signifi-
cantly with regards to basic properties (existence, finiteness,
or size). For s-conflicts and s-repairs, we provided a detailed
picture of the data complexity landscape, with tight complex-
ity results for several DatalogMTL fragments. Notably, we
proved that query entailment in propositional DatalogMTL
over Z is tractable for all three s-repair-based semantics.

We see many relevant avenues for future work. First, there
remain several open questions regarding the complexity of
reasoning with i- and p-repairs and conflicts in the bounded-
interval Z setting. We are most interested in trying to ex-
tend our tractability results for s-repair-based semantics to i-
repairs and are reasonably optimistic that this can be done
(with significantly more involved constructions). It would
also be interesting to consider DatalogMTL with negation
or spatio-temporal predicates. A nice theoretical question is
to consider the decidability of i- and p-repair / conflict exis-
tence in unrestricted settings. A more practical direction is to
try to devise practical SAT- or SMT-based algorithms for the
identified (co)NP cases, as has been done in some atemporal
settings, cf. [Bienvenu and Bourgaux, 2022]. There are also
further variants of our notions that are worth exploring, such
as quantitative notions of x-repairs, e.g. to take into account
how much the endpoints have been adjusted in an i-repair.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work was supported by the ANR AI Chair INTENDED
(ANR-19-CHIA-0014) and the ANR PRAIRIE 3IA Institute
(ANR-19-P3IA-0001).

References
[Abiteboul et al., 1995] Serge Abiteboul, Richard Hull, and

Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[Arenas et al., 1999] Marcelo Arenas, Leopoldo E. Bertossi,
and Jan Chomicki. Consistent query answers in inconsis-
tent databases. In Proceedings of PODS, 1999.

[Artale et al., 2017] Alessandro Artale, Roman Kontchakov,
Alisa Kovtunova, Vladislav Ryzhikov, Frank Wolter, and
Michael Zakharyaschev. Ontology-mediated query an-
swering over temporal data: A survey (invited talk). In
Proceedings of TIME, 2017.

[Bellomarini et al., 2022] Luigi Bellomarini, Livia Blasi,
Markus Nissl, and Emanuel Sallinger. The temporal Vada-
log system. In Proceedings of RuleML+RR, 2022.

[Bertossi, 2019] Leopoldo E. Bertossi. Database repairs and
consistent query answering: Origins and further develop-
ments. In Proceedings of PODS, 2019.

[Bienvenu and Bourgaux, 2016] Meghyn Bienvenu and
Camille Bourgaux. Inconsistency-tolerant querying of
description logic knowledge bases. In Lecture Notes of
2016 Reasoning Web Summer School, 2016.

[Bienvenu and Bourgaux, 2022] Meghyn Bienvenu and
Camille Bourgaux. Querying inconsistent prioritized
data with ORBITS: algorithms, implementation, and
experiments. In Proceedings of KR, 2022.

[Bienvenu and Rosati, 2013] Meghyn Bienvenu and Ric-
cardo Rosati. Tractable approximations of consistent
query answering for robust ontology-based data access. In
Proceedings of IJCAI, 2013.

[Bienvenu et al., 2025] Meghyn Bienvenu, Camille Bour-
gaux, and Atefe Khodadaditaghanaki. Inconsistency han-
dling in DatalogMTL, 2025. arxiv.org/abs/2505.10394
[cs.LO].

[Bienvenu, 2020] Meghyn Bienvenu. A short survey on in-
consistency handling in ontology-mediated query answer-
ing. Künstliche Intelligenz, 34(4):443–451, 2020.

[Bourgaux et al., 2019] Camille Bourgaux, Patrick Koop-
mann, and Anni-Yasmin Turhan. Ontology-mediated
query answering over temporal and inconsistent data. Se-
mantic Web, 10(3):475–521, 2019.

[Brandt et al., 2017] Sebastian Brandt, Elem Güzel Kalayci,
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