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Abstract
Anchor-based incomplete multi-view clustering
methods utilize anchors to uncover clustering struc-
tures. However, relying on anchor graphs for pro-
ducing final indicators is indirect, which can lead
to information loss and suboptimal outcomes. Be-
sides, most methods neglect the potential of an-
chors for imputing missing views. To address
these limitations, we propose a Joint View Im-
putation and Label Generation (JVILG) method.
JVILG comprises the Anchor-based tensorized La-
bel Generation (ALG) module for generating clus-
tering labels and the Anchor-based sparse regular-
ized Subspace Correlation (ASC) module for re-
covering missing views. The ALG module explic-
itly connects data observations, the fine-grained an-
chor matrix, and soft label matrices within a re-
construction framework through a membership ma-
trix, while imposing tensor Schatten p-norm regu-
larization on the constructed label tensor to capture
spatial correlations among views. Meanwhile, the
ASC module directly uses fine-grained anchors to
impute missing data in respective views. By in-
tegrating the ALG and ASC modules, JVILG en-
hances synergy between different tasks and miti-
gates the impact of missing information on cluster-
ing. Experimental results on six datasets demon-
strate the effectiveness of JVILG compared to
both shallow and deep state-of-the art methods.
The code is available at https://github.com/W-
Xinxin/JVILG.

1 Introduction
Multi-view data has attracted significant attention in many
real-world applications such as medical diagnosis [Bai et al.,
2024] and multimedia recommendation [Yu et al., 2023]. It
captures diverse and complementary information about the
same object from different sources. However, equipment
malfunctions or selective information collection can result in
missing partial views, leading to incomplete multi-view data.
For example, in imaging examinations like X-ray, CT, and

∗Corresponding author.

MRI, patients often undergo partial tests based on specific
symptoms, resulting in incomplete medical histories. As one
of the most effective tools to analyze incomplete multi-view
data, incomplete multi-view clustering groups unlabeled sam-
ples into semantic clusters by exploring the correlations be-
tween samples and views [Wen et al., 2023a].

In recent years, numerous incomplete multi-view cluster-
ing methods have been proposed [Wu et al., 2024; Wan et al.,
2024b; Lu et al., 2024; Wen et al., 2023b; Hu and Chen, 2018;
Wang et al., 2021a]. Among these, anchor-based incom-
plete multi-view clustering explores and exploits the repre-
sentational capacity of anchors to reveal underlying cluster-
ing structures, achieving great success. For instance, [Wang
et al., 2022] utilized view-shared anchors to capture the con-
sistent data distributions among views. [Liu et al., 2022] in-
troduced view-specific anchors to integrate the complemen-
tary information among views. [Li et al., 2023a] employed
the distribution of observed data to improve anchor learning.
[Li et al., 2024] removed hyperparameters to enhance model
applicability. However, these approaches still experience sev-
eral limitations.

On one hand, most anchor-based incomplete multi-view
clustering methods rely on constructing additional anchor
graphs to capture relationships among samples. Spectral
analysis and factorization techniques are then applied to
these graphs to generate final clustering indicators [Wang et
al., 2020b]. However, the introduction of additional vari-
ables or separate processes can lead to information loss and
suboptimal performance [Liu et al., 2021b]. On the other
hand, how missing views are handled significantly affects
model performance. Some methods utilize only observed
views [Wen et al., 2021a; Wang et al., 2021b; Wan et al.,
2024b], ignoring the semantic information of the missing
views. Some approaches fill in missing views using all avail-
able observed views [Wen et al., 2019; Wen et al., 2021b;
Liu et al., 2021a], which can introduce redundant informa-
tion and diminish the quality of the imputed views.

To address these issues, we propose a Joint View Impu-
tation and Label Generation (JVILG) method that facilitates
high-quality missing view imputation and direct label gener-
ation. First, we project the multi-view data from the original
feature space into a latent embedding space, where data re-
construction is learned with the help of fine-grained anchors
in respective views. These anchor representations in each

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

view are explored with orthogonality constraints. For label
generation, we construct a view-specific membership matrix
that correlates the anchor matrix with cluster centroids, es-
tablishing explicit connections among fine-grained anchors,
cluster centroids, and soft clustering labels. To further capture
the diversity and complementary information among cluster
indicators, we impose tensor Schatten p-norm regularization
on the constructed label tensor. For missing view imputation,
we assume that the missing views share latent subspace struc-
tures with fine-grained anchors. Therefore, missing views
can be recovered using the linear combinations of anchors
from the same subspace. The L1-norm is applied to coef-
ficient matrices to preserve only the necessary intrinsic re-
lationships. Additionally, we introduce adaptive weights to
balance the contributions from each view. We devise an al-
ternating optimization algorithm to solve the unified objec-
tive function. Our method directly outputs soft labels without
post-processing. The main contributions are summarized as
follows:

• We propose a novel mutli-task framework for missing
view imputation and incomplete multi-view clustering.
To our knowledge, this is the first approach that di-
rectly generates clustering labels from anchors and re-
cover missing views.

• To facilitate direct label generation, we utilize a mem-
bership matrix to establish explicit connections among
data observations, fine-grained anchors, and cluster par-
titioning within a reconstruction framework.

• To effectively impute missing views, we use fine-grained
anchors to linearly reconstruct the missing views, apply-
ing a sparse constraint on the coefficient matrix to avoid
spurious connections.

• Comprehensive experimental results on six datasets
demonstrate the advantages of our JVILG over both
shallow and deep methods for incomplete multi-view
clustering.

2 Related Work
2.1 Anchor-based Incomplete Multi-view

Clustering
Anchors have emerged as powerful tools in effectively reveal-
ing data distribution in multi-view clustering. Typically, the
K-means method and random sampling are used to generate
these anchors with clustering potential [Kang et al., 2020].
Recently, [Guo and Ye, 2019] selected common instances
as anchors to bridge non-overlapping partial views, though
this method only addresses two-view cases. To mitigate the
occasionality and randomness associated with heuristic an-
chors, [Chen et al., 2023] proposed dynamic anchor learn-
ing to enhance clustering performance. To address the cross-
view anchor misalignment problem, [Li et al., 2023b] intro-
duced a predefined anchor-level graph, transforming this is-
sue into a cross-view cluster-level alignment problem. Addi-
tionally, [Zhao et al., 2023] integrated single-view local an-
chors with concatenated-view global anchors to explore di-
verse and consistent information among views. Other devel-
opments include view-independent anchors [Liu et al., 2022],

view-shared anchors [Wang et al., 2022], and deep anchors
[Cui et al., 2023], all aimed at improving performance. These
methods have demonstrated significant success, highlighting
the substantial potential of anchors. However, they depend on
additional anchor graphs to generate final labels and fail to di-
rectly produce labels from anchors. Moreover, these methods
utilize anchors solely to construct anchor graphs, ignoring the
potential of anchors for imputing missing views.

2.2 Label Generation for Multi-view Clustering
To obtain labels for multi-view data, two primary approaches
are commonly used. The first involves applying K-means
on sample representations to derive final labels, though this
method is sensitive to initialization. Some studies utilize ma-
trix factorization to implement K-means. For example, [Cai
et al., 2013] proposed parallelized multi-viewK-means to di-
rectly output final labels, while [Hu and Chen, 2019] adapted
this approach for incomplete multi-view data using an indi-
cate matrix strategy. However, the fixed-dimensional cen-
troid matrix may limit model performance due to its restricted
representational capacity [Wan et al., 2023]. The second ap-
proach relies on spectral analysis, which constructs graphs
to capture correlations among samples. [Tang et al., 2022]
expanded multi-view spectral clustering to generate discrete
labels, while [Wen et al., 2023a] learned a consensus graph
for direct label acquisition using k-connected components.
However, tuning parameter settings to ensure appropriate k-
connected components remains challenging. Notably, none
of these methods can directly learn labels from incomplete
multi-view data using anchors, limiting their ability to reduce
information loss.

3 Proposed Method
This section elaborates our Joint View Imputation and Label
Generation (JVILG) approach. We model the JVILG as a re-
construction problem that leverages subspace correlation to
strengthen the relationships between missing views and an-
chors. We present our approach in two aspects and formulate
a unified objective function for JVILG.

3.1 Anchor-based Tensorized Label Generation
(ALG) for Incomplete Multi-view Data

Much redundancy in original data hinders the ability to depict
the underlying data structure using all data samples [Chen
et al., 2024]. Anchor-based incomplete multi-view cluster-
ing methods rely on anchor representations to enhance the
model’s discriminative ability [Guo and Ye, 2019]. However,
existing methods fail to establish explicit connections among
the input observations and underlying data structure. The in-
troduction of mediating variables, such as anchor graphs, can
lead to information loss and suboptimal outcomes [Chen et
al., 2023; Wan et al., 2024a].

To address this issue, we develop a label generation module
based on anchor representations. Given an incomplete multi-
view dataset

{︁
X(v) ∈ Rdv×n

}︁m

v=1
, where dv denotes the di-

mensionality of the v-th view, n is the total sample size, and
m is the number of views, with missing views zero-imputed,
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the objective function can be formulated as follows:

min
Pv,Av,Wv,Fv

m∑︂
v=1

⃦⃦
PvXv −AvWvF

T
v

⃦⃦2
F
+ ψ ∥Fv∥2F ,

s.t. PT
v Pv = I,AT

v Av = I,WT
v 1 = 1,Wv ≥ 0,Fv ≥ 0,

(1)
where Pv ∈ Rl×dv represents projection matrix, and the
uncorrelated constraint enhances the separability of the pro-
jected data points. Av ∈ Rl×b is anchor matrix of the v-
th view, on which an orthogonality constraint is imposed to
achieve mutual independence among different anchor rep-
resentations, enhancing their discriminative power. Wv ∈
Rb×k is a membership matrix that indicates the degree to
which fine-grained anchors are related to the cluster cen-
troids, with AvWv representing the centroids. Fv ∈ Rn×k is
cluster indicator matrix. ψ is a nonnegative hyper-parameter
that controls the trade-off.

However, Eq. (1) reconstructs different views indepen-
dently, without considering their inter-view correlations. In-
spired by the excellent performance of the tensor Schatten
p-norm [Gao et al., 2020] in capturing inter-view comple-
mentary information and spatial structure, we apply it to a
third-order tensor, where Fv as lateral slices. Thus Eq. (1) is
rewritten as follows:

min
Pv,Av,Wv,Fv

m∑︂
v=1

⃦⃦
PvXv −AvWvF

T
v

⃦⃦2
F
+ ψ ∥F∥psp⃝ ,

s.t. PT
v Pv = I,AT

v Av = I,WT
v 1 = 1,Wv ≥ 0,Fv ≥ 0.

(2)
Each frontal slice of F represents the relationships between
sample and cluster centroids across different views, Shatten
p-norm in Eq. (2) ensures that indicators of different views
exhibit across-view similarity.

3.2 Anchor-based Sparse Regularized Subspace
Correlation (ASC) for View Imputation

To reduce the impact of missing views, JVILG employs dy-
namic data imputation. High-quality anchors not only dis-
close the underlying data structure but also aid in recovering
missing views. Thus, we can infer the missing views using
anchors by solving the following subspace correlation learn-
ing module.

min
Ev,Zv

β ∥Ev −AvZv∥2F + ∥Zv∥1 , (3)

where Ev ∈ Rl×nv represents missing view matrix, and Zv

is coefficient matrix that captures subspace correlations. L1-
norm regularization term ensures that Zv is sparse, maintain-
ing only the essential connections. The missing view can be
recovered using a linear combination of a small number of
anchor points from the same subspace. β is a nonnegative
hyper-parameter that controls the trade-off. Unlike existing
models that uses the whole observed data to recover missing
views, Eq. (3) alleviates the impact of potential noisy obser-
vations.

3.3 Unified Objective Function
Considering the objectives of label generation and missing
view imputation simultaneously, we minimize the following

objective function:

J (Ψ) =
m∑︂

v=1

a2v(
⃦⃦
PvXv +EvGv −AvWvF

T
v

⃦⃦2
F

+ β ∥Ev −AvZv∥2F + ∥Zv∥1) + ψ ∥F∥psp⃝ ,

s.t. PT
v Pv = I,AT

v Av = I,WT
v 1 = 1,Wv ≥ 0,

Fv ≥ 0,a1 = 1, av ≥ 0.
(4)

where Ψ = {av,Pv,Av,Wv,Fv,Ev,Zv}. β is a trade-off
hyper-parameter. a2v is an adaptive weight for the v-th view.
Gv ∈ {0, 1}nv×n is a prior matrix defined as follows, which
indicates the missing information of the v-th view:

Gv(i, j) =

{︄
1, if h(v)i = j,

0, otherwise
(5)

where h(v) ∈ Rnv contains the indices of the nv missing
instances of the v-th view, corresponding to their original po-
sitions. Based on this, PvXv +EvGv represents a complete
view, with all views aligned.

3.4 Optimization
Eq. (4) is a non-convex optimization problem, and it is dif-
ficult to directly solve these variables. Inspired by Alter-
nating Direction Method of Multipliers (ADMM) [Boyd et
al., 2011], we devise an alternating optimization algorithm to
address this objective function. By introducing an auxiliary
variable J and setting F = J , the objective function in Eq.
(4) can be expressed in the following separable form:

J (Ψ) =
m∑︂

v=1

a2v(
⃦⃦
PvXv +EvGv −AvWvF

T
v

⃦⃦2
F

+ β ∥Ev −AvZv∥2F + ∥Zv∥1) + ψ ∥J ∥psp⃝ ,

+
ρ

2
∥F −J ∥2F + ⟨Y ,F −J ⟩

s.t. PT
v Pv = I,AT

v Av = I,WT
v 1 = 1,Wv ≥ 0,

Fv ≥ 0,a1 = 1, av ≥ 0.
(6)

where Y represents the Lagrange multiplier and ρ denotes
the penalty factor. The solution to Eq. (6) can be obtained by
solving the following eight sub-optimization problems.
Update Av: With {Pv,Ev,Wv,Fv ,Zv} fixed, for each Av ,
we need to minimize the following objective function:⃦⃦

PvXv +EvGv −AvWvF
T
v

⃦⃦2
F
+ β ∥Ev −AvZv∥2F

s.t. AT
v Av = I.

(7)
The optimal solution of Eq. (7) is U[I,0]VT , where
U and V are the left and right singular vectors obtained
from the Singular Value Decomposition (SVD) of (PvXv +
EvGv)FvW

T
v + βEvZ

T
v .

Update Wv: With {Pv,Ev,Av,Fv ,Zv} fixed, for each Wv ,
we need to minimize the following objective function:⃦⃦

PvXv +EvGv −AvWvF
T
v

⃦⃦2
F

s.t. WT
v 1 = 1,Wv ≥ 0.

(8)
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By removing the normalization constraint, the partial deriva-
tion of Eq. (8) with respect to Wv is

W̄v = AT
v (PvXv +EvGv)Fv(F

T
v Fv)

−1. (9)

Then Wv can be obtained by

min
Wv≥0,Wv=1

∥Wv − W̄v∥2F (10)

Eq. (10) is an euclidean projection problem on the simplex
space [Wang et al., 2020a].
Update Fv: With {Pv,Ev,Av,Wv ,Zv,J } fixed, for each
Fv , we need to minimize the following objective function:

a2v
⃦⃦
PvXv +EvGv −AvWvF

T
v

⃦⃦2
F

+
ρ

2

⃦⃦⃦⃦
Fv − Jv +

Yv

ρ

⃦⃦⃦⃦2
F

s.t. Fv ≥ 0,

(11)

The optimal solution of Eq. (11) is

((a2v(PvXv +EvGv)
TAvWv +

ρ

2
(Jv −

Yv

ρ
))B−1

v , 0)+

(12)
where Bv = a2vW

T
v Wv +

ρ
2I.

Update J : With {Pv,Ev,Av,Wv ,Zv,Fv} fixed, for J ,
we need to minimize the following objective function:

ψ ∥J ∥psp⃝ +
ρ

2

⃦⃦⃦⃦
J − (F +

Y
ρ
)

⃦⃦⃦⃦2
F

, (13)

which has a closed-form solution as Lemma 1 [Gao et al.,
2020].

LEMMA 1. Let T ∈ Rn1×n2×n3 has a tensor-Singular
Value Decomposition T = U ∗ Σ ∗ V⊤, then the optimal
solution for

min
J

1

2
∥H− T ∥2F + τ ∥H∥psp⃝ , (14)

is H = Γτ (T ) = U ∗ ifft
(︁
Pτ (Σ)

)︁
∗ V⊤, where Pτ (Σ)

is an f-diagonal third-order tensor in Fourier domain, whose
diagonal elements can be found by using the GST algorithm
introduced in [Gao et al., 2020]. ifft(·) is the inverse discrete
Fourier transform along the third dimension.
Update Ev: With {Pv,Av,Wv ,Zv,Fv} fixed, for each Ev ,
we need to minimize the following objective function:⃦⃦

PvXv +EvGv −AvWvF
T
v

⃦⃦2
F
+ β ∥Ev −AvZv∥2F

(15)
The partial derivation of Eq. (15) with respect to Ev is

Ev =
(AvWvF

T
v −PvXv)G

T
v + βAvZv

1 + β
, (16)

Update Zv: With {Ev,Av} fixed, for each Zv , we need to
minimize the following objective function:

1

2
∥Zv −AvEv∥2F +

1

2β
∥Zv∥1 , (17)

The optimal solution can be obtained using the well-known
soft-threshold operator [Yang and Zhang, 2011].

Algorithm 1 JVILG

Input: V -view incomplete dataset {Xv}mv=1, the number of
clusters k, and the number of anchors b.

Output: Clustering labels of data points.
1: Initialize: Ev = Av = Wv = Pv = 0, Fv = [I, 0],
2: Initialize Y = 0, av = 1

m , ρ = 10−5, µ = 2
3: while not converge do
4: Update Av by Eq. (7);
5: Update Wv by Eq. (10);
6: Update Fv by Eq. (12);
7: Update J by solving Eq. (13);
8: Update Ev by solving Eq. (16);
9: Update Zv by solving Eq. (17);

10: Update Pv by solving Eq. (18);
11: Update av by Eq. (20);
12: Update Y and ρ: Y = Y + ρ(F − J ), ρ =

min(µρ, 1012);
13: end while
14: Calculate the clustering results by using

F =
∑︁V

v=1 a
2
vFv/

∑︁V
v=1 a

2
v .

15: return Clustering results (The label for the correspond-
ing sample is given by the index of the largest element in
each column of F).

Update Pv: With {Ev,Av,Wv,Fv} fixed, for each Pv , we
need to minimize the following objective function:⃦⃦

PvXv +EvGv −AvWvF
T
v

⃦⃦2
F

s.t. PT
v Pv = I. (18)

The optimal solution of Eq. (18) is Up[I,0]V
T
p , where

Up and Vp are the left and right singular vectors obtained
from the Singular Value Decomposition of (AvWvF

T
v −

EvGv)X
T
v .

Update av: With {Pv,Ev,Av,Wv,Fv} fixed, for each av ,
we need to minimize the following objective function:

m∑︂
v=1

a2vr
2
v, s.t. a1 = 1, av ≥ 0. (19)

where r2v =
⃦⃦
PvXv +EvGv −AvWvF

T
v

⃦⃦2
F
+ ∥Zv∥1 +

β ∥Ev −AvZv∥2F . Based on Cauchy-Schwarz inequality,
Eq. (19) has a close-form solution as follows:

av =

1
r2v∑︁m

v=1
1
r2v

(20)

In summary, we outline the entire optimization procedure
for solving Eq. (6) in Algorithm 1.

3.5 Convergence and Complexity
Convergence Analysis: Our problem is bounded due to the
summation of norms with positive penalty parameters. Fur-
thermore, the optimization procedure in Algorithm 1 consists
of eight sub-problems, each of which can reach exact mini-
mum points. This implies that each sub-problem exhibits a
monotonic decrease. Therefore, our algorithm can at least
find a locally optimal solution according to the convergence
theorem in [Rudin and others, 1964].
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Complexity Analysis: Our algorithm mainly focuses on
solving Av , Wv , Fv , J , Ev , Zv , Pv , and av . The com-
putational complexity in updating these variables iteratively
are O(mlb2), O(mkb), O(nl

∑︁m
v=1 dv), O(2mnklog(mk)+

m2kn), O(nl
∑︁m

v=1 dv), O(bl
∑︁m

v=1 nv), O(nl
∑︁m

v=1 dv),
and O(1). Due to b ≪ n, dv ≪ n, and m, k, l are small
constants, the main computational complexity of solving Eq.
(6) is O(max(nl

∑︁m
v=1 dv,m

2kn)). This indicates that our
approach can scale well with data size.

4 Experiments
Datasets: We evaluate the performance of our method on
six extensively used multi-view datasets. ProteinFold [Wan
et al., 2024b], Caltech101-7 [Fei-Fei et al., 2006], BDGP
[Wang et al., 2022], CCV [Jiang et al., 2011], Animal [Lam-
pert et al., 2009], and NUSWIDEOBJ [Chua et al., 2009].
The sample sizes range from 694 to 30000, and the number
of views ranges from 3 to 12. The details of these datasets are
shown in Table 1. We follow previous works [Wang et al.,
2022; Liu et al., 2022] to construct incomplete multi-view
datasets. We set a missing rate r ∈ {10% : 10% : 90%}
and randomly select r samples as incomplete data by drop-
ping partial views. The remaining 1 − r samples are kept
complete.

Dataset Size Classes Views
ProteinFold 694 27 27 × 12views

Caltech101-7 1474 7 48/40/254/1984/512/928
BDGP 2500 5 1000/500/250
CCV 6773 20 20/20/20

Animal 11673 20 2689/2000/2001/2000
NUSWIDEOBJ 30000 31 65/226/145/74/129

Table 1: Incomplete multi-view datasets in experiments.

Compared Methods: We compare our approach against two
baseline methods and nine state-of-the-art methods: BSV
(k-means on the best view), Concate (k-means on con-
cated views), DAIMC [Hu and Chen, 2018], sFSR-IMVC
[Long et al., 2023], FIMVC-VIA [Liu et al., 2022], IMVC-
CBG [Wang et al., 2022], SMVC-SA [Wen et al., 2023b],
PSIMVC-PG [Li et al., 2024], FCMVC-IV [Wan et al.,
2024b], DIVIDE [Lu et al., 2024], CPSPAN [Jin et al., 2023].
For the baseline methods BSV and Concate, we use the aver-
age feature values of the existing instances in current view to
impute the missing instances. For the other compared meth-
ods, the hyper-parameters are set to the recommended values
in their original papers. Shallow models are performed on
a computer with a 3.5GHz AMD Ryzen 9 3950X CPU and
64GB RAM, MATLAB2022b (64-bit).

To evaluate the performance, three commonly used cluster-
ing metrics: accuracy (ACC), normalized mutual information
(NMI), and Purity are used. The higher the values of these
metrics, the better the clustering performance.

4.1 Performance Comparison
The clustering results (Each experiment is repeated 10 times.)
on four datasets with 10%, 50%, and 90% missing ratios are
reported in Table 2. We can draw the following observations:
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Figure 1: The clustering results for the ACC, NMI, and Purity met-
rics on two datasets with varying missing ratios. The left column
is the Caltech101-7 dataset and the right column is the ProteinFold
dataset.

1. Our JVILG achieves the best performance across the
three metrics in most cases, demonstrating its superior-
ity in incomplete multi-view clustering tasks. e.g., on
the CCV dataset with a 10% missing ratio, our approach
outperforms the second-best method, DIVIDE (a deep
model) by about 13.73% on the ACC metric.

2. In most cases, an intuitive observation is that the model
performance gradually decreases as the view missing ra-
tios increase. The missing view imputation capability
of our JVILG model can alleviate the effects of infor-
mation loss, and help the model maintain the excellent
performance. For example, On the BDGP, CCV, and
Animal datasets, the ACC values increase by 11.48%,
7.68%, and 4.81%, respectively, as the missing ratio in-
creases from 10% to 50%. Moreover, as the missing ra-
tio reaches 90%, the model performance is still encour-
aging.

3. Compared to deep models like DIVIDE and CPSPAN,
JVILG demonstrates better performance, highlighting
the potential of anchors in capturing data distribution.

To further verify the effectiveness of our model, we vary
the missing ratios from 10% to 90% with an interval 10% on
the ProteinFold and Caltech101-7 datasets. The result curves
are shown in Figure 1. We can observe that our method sig-
nificantly outperforms other compared methods, and its per-
formance remains stable even as the missing ratio increases.

We employed the t-SNE technique [Van der Maaten and
Hinton, 2008] to plot the learned cluster representations of
our model and the suboptimal sFSR-IMVC model on the
BDGP dataset, as shown in Figure 2. Our model demon-
strates more clearer cluster discriminability.
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p Datasets BDGP CCV Animal NUSWIDEOBJ
Method\Metrics ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity

10%

BSV 42.56 27.08 44.67 18.24 16.65 21.75 15.30 11.99 14.12 12.22 10.86 23.81
Concate 43.92 21.33 43.92 16.75 13.48 20.80 16.84 14.74 15.54 15.15 15.07 26.50
IMVC-CBG 44.74 25.18 45.25 19.29 16.20 22.82 16.74 12.71 17.89 15.38 12.79 23.75
SMVC-SA 52.63 28.68 52.95 21.65 18.17 25.00 18.11 13.51 17.66 15.58 13.71 25.05
DAIMC 45.55 19.21 46.17 17.04 13.21 19.55 15.04 11.94 16.71 14.61 12.91 24.26
sFSR-IMVC 67.41 64.89 67.4 15.99 11.83 19.84 49.38 53.15 34.62 14.06 2.44 14.93
PSIMVC-PG 49.21 25.55 50.23 17.93 13.35 20.90 16.01 12.33 17.18 12.07 10.58 22.07
FIMVC-VIA 47.83 23.48 47.83 21.91 17.43 25.36 17.40 12.52 17.98 13.50 11.72 22.75
FCMVC-IV 31.96 10.53 33.60 16.65 11.70 20.49 15.55 11.03 15.70 11.57 9.30 22.02
DIVIDE 35.01 13.58 36.82 22.04 18.57 25.09 16.10 12.14 17.00 12.26 11.58 21.80
CPSPAN 46.12 22.08 46.68 17.91 15.02 21.69 13.04 8.46 15.33 10.15 9.65 21.11
JVILG 75.64 77.43 76.88 35.77 49.30 35.77 53.45 73.36 56.63 20.28 15.53 24.65

50%

BSV 37.62 22.00 38.34 16.59 13.97 19.42 14.44 9.72 16.76 11.55 9.14 21.05
Concate 35.82 12.99 36.33 13.60 10.63 18.09 15.61 11.51 18.17 12.63 11.93 23.57
IMVC-CBG 34.44 11.14 34.52 16.34 13.30 19.61 15.05 11.04 18.36 14.69 9.82 21.72
SMVC-SA 51.44 22.76 51.44 19.67 15.04 22.53 15.91 11.76 18.99 15.37 11.33 23.40
DAIMC 28.59 5.95 29.21 13.93 8.36 17.21 15.05 11.18 18.49 13.84 10.14 21.76
sFSR-IMVC 65.86 65.71 65.92 15.43 8.77 17.54 44.42 45.83 46.97 14.91 3.11 15.48
PSIMVC-PG 42.24 19.82 44.19 15.73 10.96 19.37 14.45 10.19 18.42 10.83 9.63 21.52
FIMVC-VIA 38.39 13.57 39.33 19.18 14.82 22.72 16.21 11.22 19.42 12.73 10.51 22.04
FCMVC-IV 34.00 10.42 35.16 16.33 11.17 19.92 14.14 8.46 17.01 10.03 6.69 19.53
DIVIDE 34.40 11.97 36.28 19.31 16.01 22.86 16.33 11.87 19.69 11.87 11.29 21.91
CPSPAN 43.64 18.26 45.00 18.04 14.95 21.33 13.70 9.19 15.95 10.41 8.97 20.67
JVILG 87.12 85.84 87.12 43.45 51.87 43.45 58.26 70.97 60.08 20.01 14.00 23.80

90%

BSV 32.86 19.04 34.41 15.30 11.46 17.48 12.86 7.12 14.12 11.74 7.22 17.56
Concate 32.14 10.40 32.61 12.05 9.18 16.54 13.11 9.54 15.54 10.59 9.08 21.02
IMVC-CBG 32.22 10.85 33.82 14.69 10.56 18.39 14.51 9.87 17.89 14.54 0.87 20.52
SMVC-SA 43.05 16.76 44.14 17.76 12.56 20.96 14.56 9.96 17.66 14.80 8.93 21.10
DAIMC 32.13 8.48 33.08 12.85 6.42 16.05 13.85 9.21 16.71 11.84 7.14 18.95
sFSR-IMVC 63.13 59.92 63.38 13.80 9.17 17.37 34.14 32.24 34.62 14.41 5.51 16.84
PSIMVC-PG 35.64 13.68 38.80 14.25 8.93 17.51 13.99 9.19 17.18 11.10 8.56 20.56
FIMVC-VIA 38.77 15.62 39.28 17.85 12.45 20.71 15.12 10.24 17.98 12.40 9.45 21.61
FCMVC-IV 38.00 12.94 39.12 16.76 11.59 20.51 12.79 6.85 15.70 8.64 5.01 18.00
DIVIDE 31.79 6.73 33.84 16.27 11.50 19.66 13.81 9.55 17.00 11.57 10.29 20.90
CPSPAN 29.12 3.68 30.36 16.86 13.34 20.58 12.59 8.58 15.33 10.60 9.06 20.85
JVILG 73.48 75.47 74.44 35.86 44.70 37.12 49.15 67.74 56.63 18.22 12.32 21.10

Table 2: Results on four datasets with 10%, 50%, and 90% missing ratios. The 1st/2nd best results are marked in bold and underline.

BDGP

(a) sFSR-IMVC

BDGP

1
2
3
4
5

(b) Ours

Figure 2: t-SNE visualization of the learned cluster representa-
tions obtained by our JVILG model and sFSR-IMVC method on the
BDGP dataset with 10 % missing ratio. Note that 9 clusters appear
in (a), while our method identifies exactly 5 clusters in (b).

4.2 View Imputation Validation

To validate the missing view imputation capability of our
JVILG model, we presented the incomplete data, filled data,
projected filled data, and learned soft labels on View #1 of the
BDGP dataset with a 50% missing ratio, as shown in Figure
3. Solid circles represent the observed data, while pentagrams
denote the filled data. Comparing Figure 3 (a) and (b), the
zero imputation results are clustered together, while the im-
putation values learned by our model are distinctly separated
into their respective clusters. Figure 3 (b) and (c) show that
the imputation values are effectively integrated into the corre-
sponding clusters through projection learning. This indicates
the improved cluster structures in the learned latent represen-
tations. Finally, Figure 3 (d) illustrates that the soft labels
for the filled data accurately recover the underlying data dis-
tribution. These recovered data reside on the same subspace
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(a) Incomplete data X1 (b) Filled data X1

Existed 1
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Existed 3
Existed 4
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(c) projected filled data P1X1 (d) soft labels F1

Figure 3: t-SNE visualization of incomplete View #1 data, filled
View #1 data, projected filled View #1 data, and learned soft labels
on View #1 of the BDGP dataset (r = 50%). Solid circles represent
the observed data, while pentagrams denote the filled missing data.
Note that the learned soft labels of the imputed views effectively
align to the observed views on subspace manifold structures in (d).

manifold structures as the observed data, demonstrating the
effectiveness of our JVILG model.

4.3 Parameter Study

Our method involves four parameters to be set appropriately,
i.e., parameter β, ψ, tensor low rank coefficient p, and the
number of anchors b. As shown in Figure 4, we tune β in the
range of 10[−5:1:4], and vary ψ within {0.1, 1, 10, 50, 100}.
Our JVILG achieves satisfactory performance in a wide scope
of β and ψ. Fine tuning is still necessary for different datasets
due to their diverse properties. Figure 5 demonstrates the ef-
fects of parameters p and b, which are varied as p ∈ {0.1 :
0.1 : 1} and b ∈ {k : k : 6k}. Notably, parameter p does im-
pact the model performance, and a small number of anchors
can achieve effective and stable results.
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Figure 4: ACC metrics with respect to β and ψ on the BDGP and
Caltech101-7 datasets (r = 10%).
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Figure 5: ACC metrics with respect to tensor low rank coefficient p
and anchor number b on the BDGP and Caltech101-7 datasets.
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Figure 6: Convergence curves of our method on the BDGP and
Caltech101-7 datasets (r = 10%).

4.4 Convergence Study
We optimize the objective function iteratively by introduc-
ing an auxiliary variable J . Convergence of our algorithm
is determined by checking the difference between F and J .
As shown in Figure 6, the difference decreases significantly
as the iterations approach 20, ultimately nearing zero. Ad-
ditionally, clustering metrics such as ACC, NMI, and Purity
improve gradually and stabilize as the algorithm converges.
This indicates the strong clustering performance of our ap-
proach.

5 Conclusion
This paper concerned missing view imputation and direct la-
bel generation for incomplete multi-view data. Our JVILG
model learned versatile anchors to achieve these tasks simul-
taneously. These anchors can relax the correlations between
missing views and semantic clusters, allowing for the impu-
tation of missing view representations and label generation in
different feature spaces. For label generation, we introduced
membership matrices to learn semantic cluster centroids from
fine-grained anchors, from which soft labels are generated to
effectively partition the data. Moreover, the tensor Schatten
p-norm was imposed on the constructed label tensor to cap-
ture complementary information among views. For missing
view imputation, we applied subspace correlation to recover
missing data from anchors, leveraging their diverse represen-
tations. An alternating optimization algorithm was proposed
to solve the unified objective function. Extensive experiments
demonstrated the effectiveness of our method.
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