
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

A Logic-based Framework for Decoding Enthymemes in Argument Maps
involving Implicitness in Premises and Claims

Victor David1 and Anthony Hunter2
1Université Côte d’Azur, Inria, CNRS, I3S, France

2University College London, UK
victor.david@inria.fr, anthony.hunter@ucl.ac.uk

Abstract
Argument mining is a natural language process-
ing technology aimed at identifying the explicit
premises and claims of arguments in text, and the
support and attack relationships between them. To
better understand, and automatically analyse, the
argument maps that are output from argument min-
ing, it would be desirable to instantiate the ar-
guments in the argument map with logical argu-
ments. However, most real-world arguments are
enthymemes (i.e. some of the premises and/or
claims are implicit), which need to be decoded (i.e.
the implicit aspects need to be identified). A key
challenge is to decode enthymemes so as to re-
spect the support and attack relationships in the ar-
gument map. To address this, we present a novel
framework, based on default logic, for represent-
ing arguments including enthymemes. We show
how decoding an enthymeme means identifying the
default rules that are implicit in the premises and
claims. We then show how choosing a decoding of
the enthymemes in an argument map can be formal-
ized as an optimization problem, and that a solution
can be obtained using MaxSAT solvers.

1 Introduction
There are a number of frameworks for modelling argumenta-
tion in logic [Besnard et al., 2014]. They incorporate a formal
representation of individual arguments, where the premises
imply the claims, and techniques for comparing conflicting
arguments. However, real arguments presented by humans
usually have insufficient explicit premises to logically infer
the claims and/or insufficient explicit claims to logically sup-
port or attack the arguments that they are meant to. This is be-
cause the proponent of an argument assumes that the propo-
nent and the intended recipient have some shared knowledge
(common or commonsense), and this shared knowledge is of-
ten not presented explicitly in the argument. An argument
with some implicit premises and/or claims is an enthymeme
[Walton, 2001; Walton, 2019].

In this paper, we focus on enthymemes arising in argument
maps. We assume an argument map is obtained as output
from argument mining of a text, e.g. a discussion document,

Cars should be
banned from cities.

Cars are polluting, and
so bad for the health.

Cars are vital for people
to move around cities.

Internal combustion
engines pollute.

Because of new environ-
mental legislation, soon all
new cars will be electric.

+

−

+

−

Figure 1: Example of an argument map (blue denotes premises, and
red denotes claim) that might be obtained from the following text:
Should we ban cars from our cities? There is no doubt that the
internal combustion engine is polluting. Hence, cars are polluting
and so bad for the health. On the other hand, cars are vital for
people to move around our cities, and because of new environmental
legislation, soon all new cars will be electric.

(see [Lawrence and Reed, 2019] for a review of argument
mining). Each node in an argument map denotes an argument
(often with some/all of the premises and/or claims being im-
plicit) as illustrated in Figure 1.
Definition 1. Let T be a set of text strings (where each
string is a phrase or sentence). An argument map is a tuple
(N,P,C, L) where N is a set of nodes; P : N → T ∪{Null}
(resp. C : N → T ∪ {Null}) is a text labelling function for
premises (resp. claims); And L : N × N → {+,−, ∗} is
an arc labelling function, where + (resp. −) represents a
support (resp. attack) relationship, and ∗ represents no rela-
tionship holds.

Human agents constantly need to understand enthymemes,
whether in everyday or professional life, and so we need to
replicate this process in computational models of argument.
There are proposals for modelling decoding of enthymemes
as abduction [Hunter, 2007; Black and Hunter, 2012; Hos-
seini et al., 2014], and for how this can be undertaken within
a dialogue [Black and Hunter, 2008; de Saint-Cyr, 2011b;
de Saint-Cyr, 2011a; Xydis et al., 2020; Panisson et al., 2022;
Leiva et al., 2023; Xydis et al., 2024]. However, most of
these proposals only consider implicitness in premises, and
none consider optimization of decoding.

To address these shortcomings, we propose a novel frame-
work that has the following features: (1) A representation

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

of explicit premises (respectively claims) for each node of
the argument map as a set of classical logic formulae for the
premises (respectively claims) (2) A representation of im-
plicit premises (respectively claims) for each node of the
argument map as a set of default rules for the premises (re-
spectively claims); (3) And a mechanism for decoding en-
thymemes (i.e. identifying the implicit premises and claims)
based on maximizing the number of arcs between the logical
arguments that agree with the corresponding label in the argu-
ment map. In other words, if the argument map has a support
(respectively attack) relationship from node n to node m, then
the logical argument assigned to n supports (respectively at-
tacks) the logical argument assigned to m. Ideally, there is
a (unique) decoding for each enthymeme that satisfies the la-
belling of arcs in the argument map. If not, we want to make
the best compromise for the decoding of the enthymemes.

2 Background
We use L to denote the language of classical logic,
α, β, γ, δ, . . . ∈ L for arbitrary formulae of classical logic
and ∆,Γ, . . . ⊆ L for arbitrary sets of classical formu-
lae. Let ⊤ (respectively ⊥) denote tautology (respectively
contradiction), let ⊢ denote the classical consequence rela-
tion, and let Cn be the consequence closure function (i.e.
Cn(∆) = {α | ∆ ⊢ α}). For α, β ∈ L, α ≡ β denotes
that α and β are equivalent (i.e. {α} ⊢ β and {β} ⊢ α). For
∆,Γ ⊆ L, ∆ ≡ Γ denotes that ∆ and Γ are equivalent (i.e.
Cn(∆) = Cn(Γ)).

Our approach is based on default logic [Reiter, 1980]. It
is one of the best known and most widely studied formalisa-
tions of default reasoning. It offers a very expressive and lu-
cid language, and it captures various kinds of commonsense
knowledge [Brewka, 1991; Davis, 2017] that are potentially
important in representing implicit knowledge in enthymemes.

In default logic, knowledge is represented as a set of propo-
sitional or first-order formulae and a set of default rules for
representing default information. A default rule is of the
following form (which generalizes natural deduction rules),
where α, β and γ are classical formulae.

α : β

γ

For this, α is the pre-condition, β is the justification, and γ
is the consequent, of the default rule. For convenience, we
may represent a default rule inline as α : β/γ. Let D be the
set of default rules.

A default theory is a pair (W,D) where W is a set of
classical formulae and D is a set of default rules. Default
logic extends classical logic. Hence, all classical inferences
from the classical information in a default theory are deriv-
able (if there is an extension as defined below). The default
theory then augments these classical inferences by default in-
ferences derivable using the default rules: If α is inferred, and
¬β cannot be inferred, then infer γ. The following is a def-
inition for when a default theory has an extension (a set of
classical logic formulae that follows from the default theory).
Definition 2. Let (W,D) be a default theory. The opera-
tor Pe identifies the conclusions for a given a set of classical

⟨W p, Dp,W c, Dc⟩
explicit premises

implicit premises

explicit claims

implicit claims
(connects explicit premises
with claims)

(connects explicit claims
with other arguments)

Figure 2: Structure of a default argument where (W p, Dp) and
(W c, Dc) are singular default theories.

formulae E. For this, Pe(E) is the smallest set of classical
formulae s.t. the following three conditions are satisfied.

1. W ⊆ Pe(E)

2. Pe(E) = Cn(Pe(E))

3. For each default in α : β/γ ∈ D, the following holds: if
α ∈ Pe(E), and ¬β ̸∈ E, then γ ∈ Pe(E)

We refer to E as the satisfaction set, and Pe(E) as the po-
tential extension. Furthermore, E is an extension of (W,D)
iff E = Pe(E).

For our definition for default arguments (Definition 4), we
need the following subsidiary definition.
Definition 3. A default theory (W,D) is singular iff there is
a unique extension of (W,D). When a default theory (W,D)
is singular, let Ex(W,D) denote the extension.
Example 1. Let W = {a} and D = {(a : b/b), (b ∨ c :
d ∧ f/e)}. The default theory (W,D) is singular and its
unique extension is Ex(W,D) = Cn({a, b, e}). In contrast,
for D′ = ({(a : b/b), (a : ¬b/¬b)}, (D′,W) is not singular,
as there are two extensions Cn({a, b}) and Cn({a,¬b}).

Importantly for our purposes, any default theory with an
extension E can be turned into a singular default theory by
removing defaults without changing the extension E.
Proposition 1. For a default theory (W,D), if E is an ex-
tension of (W,D), and (W,D) is not singular, then there is a
default theory (W,D′) s.t. D′ ⊆ D and E is an extension of
(W,D′), and (W,D′) is singular 1.
Example 2. Let D = {a : b/b, a : ¬b/¬b} and W = {a}.
So there are two extensions from (W,D) which are E1 =
{a, b} and E2 = {a,¬b}. The subtheory (W,D1) where
D1 = {a : b/b} is singular with the extension being E1, and
the subtheory (W,D2) where D2 = {a : ¬b/¬b} is singular
with the extension being E2.

We use singular default theories in the definition of a
default argument (Definition 4) to ensure that the implicit
premises (respectively implicit claim) give a single perspec-
tive on the explicit premises (respectively explicit claim).

3 Default Arguments
The following definition of default argument is very general.
It allows us to represent enthymemes that may have insuffi-
cient premises to entail the explicit claim, and/or insufficient
claims to attack or support arguments that it is meant to. We
will consider constraints on the definition in order to give us
appropriate notions of logical argument. We summarize the
structure of a default argument in Figure 2.

1See appendix for proofs and code [David and Hunter, 2025]

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

⟨∅, {⊤:s1
s1 , s1:s0

s0 }, {s0}, ∅⟩

⟨{s3}, {⊤:s7
s7 , s3∧s7:s1

s1 }, {s1}, ∅⟩

⟨∅, {⊤:s2
s2 }, {s2}, {s2:¬s0

¬s0 }⟩

⟨∅, {⊤:s4
s4 }, {s4}, {s4:s3

s3 }⟩ ⟨{s5},{s5:s6
s6 },{s6},{s6:¬s3

¬s3 }⟩

+

−

+
−

Figure 3: An instantiated argument map for the argument map given
in Figure 1 where the atoms are s0 = cars should be banned from
cities, s1 = cars are bad for health, s2 = cars are vital for people to
move around cities, s3 = cars are polluting, s4 = internal combus-
tion engines pollute, s5 = new environmental legislation, s6 = soon
all cars will be electric, and s7 = pollution is bad for health.

⟨∅, ∅, {s0}, ∅⟩

⟨{s3}, ∅, {s1}, ∅⟩

⟨∅, ∅, {s2}, ∅⟩

⟨∅, ∅, {s4}, ∅⟩ ⟨{s5}, ∅, {s6}, ∅⟩

+

−

+
−

Figure 4: An instantiated argument map for the argument map given
in Figure 1 where each instantiated argument is a full enthymeme
(using the atoms specified in Figure 3).

Definition 4. A default argument is a tuple
⟨W p, Dp,W c, Dc⟩ where W p,W c ⊆ L, and Dp, Dc ⊆ D
such that (W p, Dp) is singular and (W c, Dc) is singular.

For a default argument A = ⟨W p, Dp,W c, Dc⟩, we refer
to W p as the explicit premises, Dp as the implicit premises,
W c as the explicit claims, and Dc as the implicit claims.
To extract these components, we use the following functions:
Ep(A) = W p; Ip(A) = Dp; Ec(A) = W c; and Ic(A) = Dc.
Example 3. The following are examples of default argu-
ments:

A = ⟨{a ∨ b}, {(a ∨ b ∨ c : d/d)}, {d}, {(d : ¬e/¬e)}⟩.
B = ⟨∅, ∅, {b ∨ ¬b}, ∅⟩.
C = ⟨∅, {(⊤ : e/e)}, {e}, {(e : f/f), (f : g ∧ h/h)}⟩.

Given a default argument A, the support of the argument is
the default extension obtained from the implicit and explicit
premises, and the consequence of the argument is the default
extension obtained from the implicit and explicit claims:

• The support of A is S(A) = Ex(Ep(A), Ip(A)).
• The consequence of A is C(A) = Ex(Ec(A), Ic(A)).
So the support is the set of inferences from the implicit and

explicit premises and the consequence is the set inferences
from the implicit and explicit claims.
Example 4. Continuing Example 3, for the default argument
A to C, we have the following support and consequence.

S(A) = Cn({a ∨ b, d}) C(A) = Cn({d,¬e})
S(B) = Cn(∅) C(B) = Cn(∅)
S(C) = Cn({e}) C(C) = Cn({e, f, h})

We explain the definition below as follows: A default ar-
gument is valid iff the explicit claims are in the support of the
argument (i.e. the extension of the premises); A default argu-
ment is implicit premise minimal iff there is no subset of the
implicit premises such that the argument is valid; And a de-
fault argument is support (respectively consequence) consis-
tent iff the support (respectively consequence) is consistent.

Definition 5. For default argument A: A is valid iff Ec(A) ⊆
S(A); A is implicit premise minimal iff A is valid and there
is no D′ ⊂ Ip(A) s.t. Ec(A) ⊆ Ex(Ep(A), D′); and A is
support consistent (respectively consequence consistent) iff
⊥ ̸∈ S(A) (respectively ⊥ ̸∈ C(A)).

Example 5. For Example 3, A. B, and C, are valid, implicit
premise minimal, and support and consequence consistent.

A property of default logic is that an extension of a default
theory (W,D) is inconsistent iff W is inconsistent. So for
a default argument, the support (respectively consequence)
is inconsistent iff the explicit premises (respectively explicit
consequence) are inconsistent. Hence, the implicit premises
(respectively implicit claims) cannot cause the support (re-
spectively consequence) to be inconsistent.

Example 6. For A = ⟨{a ∧ ¬a}, ∅, {d}, {d : e/e}⟩ is such
that ⊥ ∈ S(A) and ⊥ ̸∈ C(A), whereas B = ⟨{a}, {a :
b/b}, {d ∧ ¬d}, ∅⟩ is such that ⊥ ̸∈ S(B) and ⊥ ∈ C(B).

Given an argument map, and a set of default arguments,
we define a default argument assignment as follows, and il-
lustrate this in Figures 3 and 4.

Definition 6. Let M = (N,P,C, L) be an argument map
and let A be a set of default arguments. A default argument
assignment for M is a function I : N → A.

We refer to an argument map with a default argument as-
signed to each node as an instantiated argument map (as
illustrated in Figures 3 and 4). So each default argument as-
signment can be presented as an instantiated argument map.

We now consider some of the options for defining one ar-
gument supporting another.

Definition 7. For default arguments A and B, the following
are some definitions for A supporting B: A explicit premise
supports B iff C(A)∩Ep(B) ̸= ∅; A explicit claim supports
B iff C(A) ∩ Ec(B) ̸= ∅; A premise justification supports
B iff there exists β ∈ C(A) s.t. there exists α : β/γ ∈ Ip(B);
and A claim justification supports B iff there exists β ∈
C(A) s.t. there exists α : β/γ ∈ Ic(B).

Example 7. Consider the following supporting default argu-
ments (left) and supported default arguments (right): A1 ex-
plicit premise supports B1; A2 explicit claim supports B2; A3
premise justification supports B3; and A4 claim justification
supports B4.

A1=⟨∅,∅,{a},{a :b/b}⟩ B1=⟨{b},{b :c/c},{c},∅⟩
A2=⟨{d},{d :a/a},{a},∅⟩ B2=⟨{b},{b :c/a},{a},∅⟩
A3=⟨∅,∅,{a},∅⟩ B3=⟨{b},{b :a/c},{c},∅⟩
A4=⟨∅,∅,{a},{a :b/b}⟩ B4=⟨∅,∅,{c},{c :b/b}⟩

Next, we consider some options for defining one argument
attacking another and illustrate them in Figure 5.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

⟨∅, ∅, {p}, ∅⟩

⟨{b}, { b:¬p

f
}, {f}, ∅⟩

⟨{p}, { p:⊤
¬f

}, {¬f}, ∅⟩

⟨∅, ∅, {d}, { d:¬m
¬b

}⟩

⟨∅, ∅, {t}, { t:m
m
}⟩

undercutrebutrebut

undermine

overcut

Figure 5: An instantiated argument map where b = it is a bird, p =
it is a penguin, d = it is a decoy model that looks like a bird (i.e.
a realistic model of a game bird used by hunters to lure prey to the
hunter’s position), t = it is twitching, m = it is moving like a bird, and
f = it is capable of flying.

Definition 8. For default arguments A and B, the following
are some definitions for A attacking B: A undermines B
iff there exists ¬β ∈ C(A) s.t. β ∈ Ep(B); A rebuts B iff
there exists ¬β ∈ C(A) s.t. β ∈ Ec(B); A undercuts B iff
there exists ¬β ∈ C(A) s.t. there exists α : β/γ ∈ Ip(B);
and A overcuts B iff there exists ¬β ∈ C(A) s.t. there exists
α : β/γ ∈ Ic(B).

A default argument provides a richer representation of
an argument than available with other approaches to struc-
tured argumentation. As illustrated in Figure 2, this includes
the following features which together go beyond other for-
malisms: (1) Delineation of implicit information connecting
premises and claims (i.e. the set Dp is a set of defaults that
represents the implicit information in the premises); (2) Log-
ical mechanism for disabling connection between premises
and claims (i.e. the justification of each default rule can be
negated by the claims of another argument, thereby attacking
the connection between the premises and claims); (3) Delin-
eation of implicit information connecting one argument with
another (i.e. the set Dc is a set of defaults that represents the
implicit information in the claims); (4) Logical mechanism
for disabling connection between one argument and another
(i.e. the justification of each default rule can be negated by the
claims of another argument, thereby attacking the connection
between that argument and other arguments).

Definitions 7 and 8 are only some of the possible defini-
tions for support and attack. Whatever definition we use for
support and attack, if A is the set of logical arguments, then
R+ ⊆ (A × A) (respectively R− ⊆ (A × A)) denotes the
set of pairs of logical arguments (A,B) where A supports
(respectively attacks) B. Also, let R∗ be the set of pairs of
logical argument where A does not support nor attack B (i.e.,
R∗ = (A×A) \ (R+ ∪R−)).

The definition for a default argument is very general. As
discussed in the next section, it allows for the representation
and decoding of enthymemes. We leave to further work the
presentation of further interesting classes of default argument,
and of further types of attack and support relationship, that
can be captured in this framework.

4 Decoding Enthymemes
An enthymeme is an argument with missing premises and/or
claims. We start by considering types of enthymeme involv-
ing missing premises.
Definition 9. A default argument A is a premise enthymeme

iff A is not valid. Additionally, if A is a premise enthymeme
and Ip(A) = ∅, then A is an acute premise enthymeme, and
if A is a premise enthymeme and Ip(A) = ∅ and Ic(A) = ∅,
then A is a full enthymeme.

To illustrate, each default argument in the instantiated ar-
gument map in Figure 4 is a full enthymeme.

When we have an argument map M = (N,P,C, L), we
assume that for each node n ∈ N , we can use natural lan-
guage processing on the text P (n) and C(n) to obtain a full
enthymeme for that node. So each explicit premise and ex-
plicit claim is obtained by translating the text into formulae of
classical logic. This gives us a default argument assignment
Ie as an initial enthymeme assignment where every default
argument that is assigned is a full enthymeme (as illustrated
in the instantiated argument map in Figure 4).

Next, we consider types of enthymeme involving missing
claims. This is more complicated as we need to consider the
relationship of an argument with other arguments.
Definition 10. Let R+ (resp. R−) be a support (resp. attack)
relation. For A,B ∈ A, A is a support enthymeme (resp.
attack enthymeme) to B iff (A,B) ̸∈ R+ (resp. (A,B) ̸∈
R−). Additionally, if A is a support enthymeme (resp. attack
enthymeme) to B, and Ic(A) = ∅, then A is an acute support
enthymeme (resp. acute attack enthymeme) to B. If A is a
support enthymeme, or attack enthymeme, to B, then A is a
claim enthymeme to B.

To illustrate, each default argument in Figure 4 is an acute
support enthymeme, and an acute attack enthymeme, to ev-
ery other default argument in this figure. In this example, no
default argument supports or attacks any other.

Next, we consider decoding a premise enthymeme as an
abduction problem (drawing on [Eiter et al., 1997]). For this,
we assume a default knowledgebase, denoted K, which is a
set of default rules. For premise enthymeme A, we want to
find a subset of K to add to Ip(A) for it to be valid as follows.
Proposition 2. For default knowledgebase K, the problem
of identifying a default argument C for a premise enthymeme
A s.t. (1) Ip(C) \ Ip(A) ⊆ K, (2) Ep(A) = Ep(C), (3)
Ec(A) = Ec(C), and (4) C is valid, is in ΣP

2 .
The above result does not consider implicitness in the

claim: If we have a default argument A that is a support en-
thymeme, or attack enthymeme, for a default argument B,
then we need to take B into account in the decoding.
Proposition 3. Let R+ (resp. R−) be a support (resp. at-
tack) relation according to Definition 7 (resp. Definition 8).
Let A be a support enthymeme (resp. attack enthymeme) to
B. For default knowledgebase K, the problem of identify-
ing a default argument C s.t. (1) Ic(C) \ Ic(A) ⊆ K, (2)
Ep(A) = Ep(C), (3) Ec(A) = Ec(C), and (4) (C,B) ∈ R+

(respectively (C,B) ∈ R−), is in ΣP
2 .

We want to use the argument map to determine which ar-
guments are claim enthymemes that we need to decode ac-
cordingly: If according to the argument map, L(n,m) = +
(respectively L(n,m) = −) holds for a pair of nodes n and
m, and the default argument A assigned to n, and the de-
fault argument B assigned to m, are such that A is a sup-
port enthymeme (respectively attack enthymeme) to B, then

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

A1 B1

B2

C1

C2

n1 n2 n3

−
+

− +

Figure 6: Schematic representation of the choices for the default
argument assignment. The structure of an argument map is given
by the nodes n1, n2, and n3. Suppose for n1 (respectively n2 and
n3), we can assign A1 (respectively B1 or B2 and C1 or C2). If we
choose A1 and B1, we get the attack from n2 to n1, but then there is
no assignment for n3 to give an attack from n3 to n2. Alternatively,
if we choose B2 and C2, we get the support from n3 to n2, but then
there is no assignment for n1 to give an attack from n2 to n1.

A1

A2

B1

B2

C1

C2

n1 n2 n3

+ +

+ +

−

Figure 7: Schematic representation of the choices for default argu-
ment assignment for the argument map with nodes n1, n2, and n3.
Suppose we choose A1 and B1, then we satisfy the support from n2
to n1, but then for n3, we either choose C1 to satisfy support from n3
to n1 but with an undesired attack from n3 to n1, or we choose C2
and thereby fail to satisfy the support from n3 to n2. Alternatively,
we could choose A2, and so fails to satisfy the support from n2 to n1.

we want to decode A by adding default rules to the implicit
claims of A so that it then supports (respectively attacks) B
accordingly.

A further issue is that the choice of implicit premises for
each argument can affect what is possible for the choice of
implicit claims for the other arguments, as illustrated next.
Example 8. Consider the initial enthymeme assignment
where the left (resp. right) node is n1 (resp. n2). From de-
fault knowledgebase K = {(a1 ∧ a2 : a3/a4), (a1 ∨ a2 :
a4/a4), (⊤ : b1/b1), (b1 ∨ b2 : ¬a3/¬a3)}, suppose we
assign A1 = ⟨{a1, a2}, {(a1 ∨ a2 : a4/a4)}, {a4}, ∅⟩ to n1
and A2 = ⟨∅, {(⊤ : b1/b1)}, {b1}, {(b1∨ b2 : ¬a3/¬a3)}⟩
to n2, then A2 does not undercut A1. But, we can assign
A3 = ⟨{a1, a2}, {(a1 ∧ a2 : a3/a4)}, {a4}, ∅⟩ to n1, and
then A2 does undercut A3.

n1 ⟨{a1, a2}, ∅, {a4}, ∅⟩ n2 ⟨∅, ∅, {b1}, ∅⟩
−

To address the issues raised above, we treat decoding of
enthymemes as an optimization problem, in the next section.

5 Optimization of Decoding
Ideally, for an argument map M = (N,P,C, L), and an ini-
tial enthymeme assignment Ie, we want to find a default ar-
gument assignment I that respects the labelling of arcs (i.e.

L). This means that for each arc (n,m) in the argument
map, and for each label x ∈ {+,−, ∗}, the following holds
L(n,m) = x iff ((I(n), I(m)) ∈ Rx). So the assignment I
would ensure that there is only attack (respectively support)
between two default arguments when there is an attack (re-
spectively support) between the corresponding nodes in the
argument map, and there is no relation otherwise.

The ideal situation described above cannot be guaranteed
in practice. We may be unable to choose a default argument
assignment that respects all the arcs in the argument map (as
illustrated in Figure 6, where we fail to obtain either an attack
or support, and in Figure 7 where we get the required support
relations, but also an undesired attack).

We say B is a decoding candidate of full enthymeme A
iff B is valid and Ep(A) = Ep(A) and Ec(A) = Ec(B).
If there is a decoding candidate B of full enthymeme A, let
Cands(K,A) be the set of decoding candidates of A from
default knowledgebase K, otherwise let Cands(K,A) =
{A}. For an initial enthymeme assignment Ie, a decod-
ing assignment Id is such that, for each n ∈ N , Id(n) ∈
Cands(K, Ie(n)). For an argument map M and a default
knowledge base K, let Assigns(M,K) be the set of decod-
ings assignments for M given K.

We score each decoding assignment Id ∈ Assigns(M,K)
in terms of the proportion of pairs of nodes in the argument
map that are correctly identified as support, attack, or no re-
lationship. First, we define the following set of pairs of nodes
that are correctly assigned by Id according to the labelling
function L: Correct(R+, R−, Id, L) = {(ni, nj) | for all x ∈
{+,−, ∗}, if (Id(ni), Id(nj)) ∈ Rx, then L(ni, nj) = x}.
So 0 ≤ |Correct(R+, R−, Id, L)| ≤ |N × N |. Then, the
accuracy of each assignment Id, is defined as follows: If
Correct(R+, R−, Id, L) = ∅, then Acc(R+, R−, Id, N, L) =
0, otherwise, Acc(R+, R−, Id, N, L) =

|Correct(R+, R−, Id, L)|
|N ×N |

(1)

The decoding optimization problem is choosing the decod-
ing assignment Id that maximizes the number of arcs correct
w.r.t. to the labelling. For example, for Figure 6, an opti-
mal decoding assignment is I(n1) = A1, I(n2) = B1, and
I(n3) = C1, which has one of two arcs correct w.r.t. the la-
belling in the argument map. So the decoding optimization
problem is defined as follows where an optimal solution is a
decoding assignment Id with maximum accuracy.

arg max
Id∈Assigns(M,K)

Acc(R+, R−, Id, N, L) (2)

Unfortunately, using the above formula to the optimal de-
coding assignments is impractical in general since it would
involve generating all the decoding assignments. For an ar-
gument map M , default knowledgebase K, and initial en-
thymeme assignment Ie, the cardinality of Assigns(M,K) is∏

n∈N |Cands(K, Ie(n))|, and so if there are many decod-
ing candidates per node, the number of decoding assignments
would soon be unmanageable.

To address this problem, we show how we can reduce this
optimization problem to a partial MaxSAT problem. Our ap-
proach is to translate the possible decoding assignments of

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

the argument map into a set of hard constraints, and then let
the choice of arcs be managed by soft constraints. The aim is
to maximize the number of arcs that are consistent with the
constraints of the possible decoding assignments. For this, we
need a set of atoms from which to construct the constraints.
Given a default knowledge base K and enthymeme A, each
element of Cands(K,A) is treated as an atom, which we refer
to as a candidate atom. To illustrate, for Figure 6, the set of
candidate atoms is {A1, B1, B2, C1, C2}.

We also need atoms to represent information about the re-
lationships between decoding candidates for each enthymeme
A. For default arguments B and C, we require atoms of the
form UB

C which represents B ∈ Cands(K, Ie(n)), and C ∈
Cands(K, Ie(m)), and x ∈ {+,−, ∗}, and (B,C) ∈ Rx,
then L(n,m) ̸= x. In other words, UB

C denotes that for the
candidate B (respectively C) for a node n (respectively m),
the logical relationship from B to C disagrees with the label
on the arc from n to m. We refer to each UB

C atom as an un-
desired atom. To illustrate, for Figure 6, the set of undesired
atoms is {UB2A1, UC1B1, UC1B2, and UC2B1}.

For support relation R+, attack relation R−, default knowl-
edgebase K, initial enthymeme assignment Ie, and labelling
function L, let Undes(R+, R−,K, Ie, L) denote the set of
undesired atoms (i.e. {UB

C | for all x ∈ {+,−, ∗}, if there
are n,m ∈ N such that B ∈ Cands(K, Ie(n)), and C ∈
Cands(K, Ie(m)), and (B,C) ∈ Rx, then L(n,m) ̸= x}).

For simplifying the presentation in this paper, we assume
the sets R+, R−, and R∗, are disjoint. In other words, we as-
sume that there are no decoding candidates B and C such that
B is both an attacker and a supporter of C. However, in real-
world argumentation, this is a possibility, and the methods in
this paper can easily be generalized to deal with this.

Given a set of candidate atoms and a set of undesired
atoms, we define the constraints as follows.
Definition 11. For Cands(K, Ie(n)) = {B1, . . . , Bk}, where
n ∈ N , and for each UB

C ∈ Undes(R+, R−,K, Ie, L),
Hard1 to Hard3 are hard constraints, and Soft1 is a soft con-
straint:

• Hard1. B1 ∨ . . . ∨Bk

• Hard2. ¬Bi ∨ ¬Bj for i, j ∈ {1, . . . , k} s.t. i ̸= j

• Hard3. ¬C ∨ ¬B ∨ UB
C

• Soft1. ¬UB
C

We explain these constraints as follows: (Hard1) For every
node in the argument map, one of the candidate atoms has to
be true (i.e. there is an assignment of a decoding candidate
for each node); (Hard2) For every node, at most one of the
candidates atoms for that node can be true (i.e. there cannot
be multiple decoding candidates assigned to the same node);
and (Hard3) For every undesired atom, either the undesired
atom is true, or one of the candidate atoms associated with
that undesired atom is false (i.e. either there is an arc in argu-
ment map that has a label that does not agree with the corre-
sponding relationship between the two decoding candidates,
or one of those decoding candidates is false); (Soft1) Each
soft constraint is the negation of an undesired atom, and so
satisfying a soft constraint means making the undesired atom
false. Ideally, we want a model that satisfies all four types of

constraint. If this is not possible, we seek a model of the hard
constraints, and as many of the soft constraints as possible.
Hence, we are seeking to maximize the number of undesired
atoms that are false.

Given an argument map, and a set of decoding candidates
for each node, we obtain the constraints as specified above.
These are then given to a partial MaxSAT solver which then
finds the models that satisfy the hard constraints, and maxi-
mizes the number of soft constraints satisfied. Each of these
models specifies a decoding assignment. For a model, each
candidate atom true in the model denotes the decoding can-
didate that is assigned to a node in the argument map by the
decoding assignment.
Example 9. Consider Figure 6 where the decoding can-
didates for n1 (respectively n2 and n3) are {A1}, (respec-
tively {B1, B2}, and {C1, C2}), where R+ = {(B2, A2)} and
R− = {(C1, B1)}. The hard constraints are as follows:

A1 B1 ∨ B2 C1 ∨ C2
¬B1 ∨ ¬B2 ¬C1 ∨ ¬C2 ¬A1 ∨ ¬B2 ∨ UB2A1

¬B1 ∨ ¬C1 ∨ UC1B1 ¬B2 ∨ ¬C1 ∨ UC1B2 ¬B1 ∨ ¬C2 ∨ UC2B1

The soft constraints are {¬UB2A1,¬UC1B1,¬UC1B2,¬UC2B1}. The
three optimal MaxSAT models are {A1, B2, C2, UB2A1},
{A1, B1, C1, UC1B1}, and {A1, B1, C2, UC2B1}, giving three optimal
decoding assignments I1, I2, and I3 as follows: I1(n1) = A1,
I1(n2) = B2, I1(n3) = C2, I2(n1) = A1, I2(n2) = B1,
I2(n3) = C1, I3(n1) = A1, I3(n2) = B1, and I3(n3) = C2.
Example 10. Consider Figure 7 where the decoding can-
didates for n1 (respectively n2 and n3) are {A1, A2}, (re-
spectively {B1, B2}, and {C1, C2}), and where R+ =
{(B1, A1), (C1, B1)} and R− = {(C1, A1)}. So we have the
following formulae as hard constraints,

A1 ∨ A2 B1 ∨ B2 C1 ∨ C2
¬A1 ∨ ¬A2 ¬B1 ∨ ¬B2 ¬C1 ∨ ¬C2

¬A2 ∨ ¬B1 ∨ UB1A2 ¬A1 ∨ ¬B2 ∨ UB2A1 ¬A2 ∨ ¬B2 ∨ UB2A2
¬B2 ∨ ¬C1 ∨ UC1B2 ¬B1 ∨ ¬C2 ∨ UC2B1 ¬B2 ∨ ¬C2 ∨ UC2B2

¬A1 ∨ ¬C1 ∨ UC1A1

and {¬UB1A2,¬UB2A1,¬UB2A2,¬UC1B2,¬UC2B1,¬UC2B2,¬UC1A1} as soft con-
straints. The optimal MaxSAT models are {A1, B1, C1, UC1A1},
{A1, B1, C2, UC2B1}, and {A2, B1, C1, UB1A2}, giving optimal de-
coding assignments I1, I2, and I3: I1(n1) = A1, I1(n2) =
B1, I1(n3) = C1, I2(n1) = A1, I2(n2) = B1 I2(n3) = C2,
I3(n1) = A2, I3(n2) = B1, and I3(n3) = C1.

In the next proposition, we show that the partial MaxSAT
approach finds the same optimal decoding assignments as the
Acc function. For this, we require some subsidiary notation.
Let Const(M,K) be a tuple C = (H,S) where H is a set of
hard constraints and S is a set of soft constraints for argument
map M and knowledgebase K as defined in Definition 11,
and for a tuple of hard and soft constraints C = (H,S), let
Enum(C) be the set of pairs (X,V) where X is a model, rep-
resented by a set of literals true in the model, that satisfies the
hard constraints H and V is the number of weak constraints
in S not satisfied by X . Also, let Trans(X) denote the de-
coding assignment Id where for each n ∈ N , Id(n) = A
and X ∩ Cands(K, Ie(n)) = {A}. So Trans(X) selects the
decoding candidate for the node that appears in the model.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Number of nodes 5 10 15 20

c = 2 0.0013 0.143 7.261 timeout
c = 3 0.0102 11.85 timeout timeout

Table 1: Results for average time (sec) for finding an optimal decod-
ing assignment for a randomly generated argument map (average of
20 randomly generated argument maps) with c ∈ {2, 3} candidate
decodings per node and a timeout of 20 seconds. For c = 3 with 10
nodes, there is one timeout and so average is of 19 maps.

Proposition 4. For argument map M = (N,P,C, L), sup-
port relation R+ (resp. attack relation R−), and default
knowledgebase K, there is (X,V) ∈ Enum(Const(M,K))
s.t. for all (X ′, V ′) ∈ Enum(Const(M,K)), X ≤ X ′ iff
there is Id ∈ argmaxId∈Assigns(M,K) Acc(R

+, R−, Id, N, L)

s.t. Trans(X) = Id and Acc(R+, R−, Id, N, L) = (1 −
V)/|N |2.

In order to investigate the viability of our approach, we
implemented a system (see supplementary material for code)
that takes an argument map, and the attack and support rela-
tions between a set of decodings, and determines an optimal
decoding assignment using the PySAT MaxSAT library [Ig-
natiev et al., 2018] running on a Windows 11 laptop with an
AMD Ryzen 7 5700U processer and 8GB RAM. For evalua-
tion, we randomly generated argument maps with probability
of 0.1 of a support or attack between each pair of nodes, and
for each pair of nodes, we randomly generated the relation-
ships between candidate decodings with a probability of 0.9
of the decodings agreeing with a support or attack label be-
tween the nodes. The results in Figure 8 show the time taken
increases exponentially with the number of nodes in the argu-
ment map, and the number of decodings per node.

Even for a larger argument map with 100 nodes, and 50
candidates per node, the time is below 3 seconds. Handling
100 nodes is practically useful as human-generated argumen-
tation often involves fewer than 100 arguments (e.g. [Lynch
et al., 2012]). Handling 50 decodings per node also seems
useful as it would support a large default knowledgebase for
decoding. We will investigate this in future work.

Our partial MaxSAT method is significantly better than a
naive approach based on constructing and evaluating all the
logical assignment functions using Equation 2. We imple-
mented the naive approach in python on the same machine.
The results in Table 1 show that the naive approach only
works for a much smaller number of candidates and nodes.

6 Discussion
In this paper, we have provided a logic-based framework for
representing the explicit and implicit aspects of each argu-
ment in an argument map. We assume that the text in an
argument map can be used to give the initial enthymeme as-
signment. With the advent of deep learning and large lan-
guage models, it appears feasible to develop robust, and scal-
able, methods for translating the natural language text into
logic (e.g. [Singh et al., 2020; Levkovskyi and Li, 2021;
Lu et al., 2022; Pan et al., 2023; Olausson et al., 2023;
Lalwani et al., 2024; Lee et al., 2025]. Therefore, it ap-

5 10 15 20 25 30 35 40 45 50 55 60 65

0

0.1

0.2

0.3

0

Number of nodes in argument map

A
ve

ra
ge

tim
e

(s
ec

)

c = 10
c = 15
c = 20
c = 25

Figure 8: Experimental results for average time taken for finding
an optimal decoding assignment for a randomly generated argument
map (average of 100 randomly generated argument maps). Each line
is for c ∈ {10, 15, 20, 25} candidate decodings per node.

pears feasible to translate the text that appears in the premises
and claims of the nodes in the argument map into formulae
of classical logic and therefore assign a full enthymeme to
each node. Our proposal allows for the full enthymemes in
an initial enthymeme assignment to be formalized, and then
systematically decoded using a default knowledgebase. Us-
ing default logic as the basis for representing implicit knowl-
edge provides a rich and clear formalism. Optimal decod-
ing assignments can be generated and compared, and differ-
ences between a decoding, and the original argument map,
can be investigated. So our methods offer automated analysis
of the output of argument mining by clarifying the implicit-
ness. This is a first step towards investigating the ambiguity
and uncertainty arising with enthymemes in real-world argu-
mentation. Whilst, we have only discussed the propositional
version of default logic in this paper, the first-order version of
default logic can be used directly with our proposal for richer
representation and reasoning with arguments.

Our approach subsumes deductive argumentation with
classical logic since classical formalae are a special case of
normal default rules where the precondition is tautology. As
a result it is straightforward to capture (and extend upon) a
wide range of attack relationships [Besnard and Hunter, 2001;
Gorogiannis and Hunter, 2011] and support relationships
[Hunter, 2023]. In contrast to ASPIC+ [Modgil and Prakken,
2014], assumption-based argumentation (ABA) [Toni, 2014],
and proposals for using default logic for modelling arguments
[Prakken, 1993; Santos and Martins, 2008], our proposal
clearly demarks the implicit premises and implicit claims in
a structured argument representation of an enthymeme, and
it goes beyond these proposals by offering a wide range of
definitions for support and attack between arguments. More
importantly, our proposal introduces the modelling of implicit
claims, and how decoding can be optimized in order to max-
imize the agreement with the labeling of an argument map.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgements
The work by Victor David was supported by the French gov-
ernment, managed by the Agence Nationale de la Recherche
under the Plan d’Investissement France 2030, as part of the
Initiative d’Excellence d’Université Côte d’Azur under the
reference ANR-15-IDEX-01.

References
[Besnard and Hunter, 2001] Philippe Besnard and Anthony

Hunter. A logic-based theory of deductive arguments. Ar-
tificial Intelligence, 128(1-2):203–235, 2001.

[Besnard et al., 2014] Philippe Besnard, Alejandro Javier
Garcı́a, Anthony Hunter, Sanjay Modgil, Henry Prakken,
Guillermo Ricardo Simari, and Francesca Toni. Introduc-
tion to structured argumentation. Argumentation and Com-
putation, 5(1):1–4, 2014.

[Black and Hunter, 2008] Elizabeth Black and Anthony
Hunter. Using enthymemes in an inquiry dialogue system.
In Proceedings of AAMAS’08, pages 437–444. IFAAMAS,
2008.

[Black and Hunter, 2012] Elizabeth Black and Anthony
Hunter. A relevance-theoretic framework for construct-
ing and deconstructing enthymemes. Journal of Logic and
Computation., 22(1):55–78, 2012.

[Brewka, 1991] Gerhard Brewka. Nonmonotonic Reason-
ing: Logical Foundations of Commonsense. Cambridge
University Press, 1991.

[David and Hunter, 2025] Victor David and Anthony Hunter.
Proof and code appendix, 2025. http://www0.cs.ucl.ac.uk/
staff/a.hunter/papers/ijcai25.zip.

[Davis, 2017] Ernest Davis. Logical formalizations of com-
monsense reasoning: A survey. Journal of Artificial Intel-
ligence Research, 59:651–723, 2017.

[de Saint-Cyr, 2011a] Florence Dupin de Saint-Cyr. A first
attempt to allow enthymemes in persuasion dialogs. In
Franck Morvan, A Min Tjoa, and Roland R. Wagner,
editors, Proceedings of DEXA’11, pages 332–336. IEEE
Computer Society, 2011.

[de Saint-Cyr, 2011b] Florence Dupin de Saint-Cyr. Han-
dling enthymemes in time-limited persuasion dialogs. In
Proceedings of SUM’11, volume 6929 of Lecture Notes in
Computer Science, pages 149–162. Springer, 2011.

[Eiter et al., 1997] Thomas Eiter, Georg Gottlob, and Nicola
Leone. Semantics and complexity of abduction from de-
fault theories. Artificial Intelligence, 90(1-2):177–223,
1997.

[Gorogiannis and Hunter, 2011] Nicos Gorogiannis and An-
thony Hunter. Instantiating abstract argumentation with
classical logic arguments: Postulates and properties. Arti-
ficial Intelligence, 175(9-10):1479–1497, 2011.

[Hosseini et al., 2014] Seyed Ali Hosseini, Sanjay Modgil,
and Odinaldo Rodrigues. Enthymeme construction in dia-
logues using shared knowledge. In Proc. of COMMA’14,
volume 266 of FAIA, pages 325–332. IOS Press, 2014.

[Hunter, 2007] Anthony Hunter. Real arguments are approx-
imate arguments. In Proceedings of AAAI’07, pages 66–
71. MIT Press, 2007.

[Hunter, 2023] Anthony Hunter. Some options for instantia-
tion of bipolar argument graphs with deductive arguments.
CoRR, abs/2308.04372, 2023.

[Ignatiev et al., 2018] Alexey Ignatiev, Antonio Morgado,
and Joao Marques-Silva. PySAT: A Python toolkit for pro-
totyping with SAT oracles. In SAT, pages 428–437, 2018.

[Lalwani et al., 2024] Abhinav Lalwani, Lovish Chopra,
Christopher Hahn, Caroline Trippel, Zhijing Jin, and
Mrinmaya Sachan. NL2FOL: translating natural language
to first-order logic for logical fallacy detection. CoRR,
abs/2405.02318, 2024.

[Lawrence and Reed, 2019] John Lawrence and Chris Reed.
Argument mining: A survey. Computational Linguistics,
45(4):765–818, December 2019.

[Lee et al., 2025] Jinu Lee, Qi Liu, Runzhi Ma, Vincent Han,
Ziqi Wang, Heng Ji, and Julia Hockenmaier. Entailment-
preserving first-order logic representations in natural lan-
guage entailment. CoRR, abs/2502.16757, 2025.

[Leiva et al., 2023] Diego S. Orbe Leiva, Sebastian Got-
tifredi, and Alejandro Javier Garcı́a. Automatic knowl-
edge generation for a persuasion dialogue system with en-
thymemes. International Journal of Approximate Reason-
ing, 160:108963, 2023.

[Levkovskyi and Li, 2021] Oleksii Levkovskyi and Wei Li.
Generating predicate logic expressions from natural lan-
guage. In SoutheastCon 2021, pages 1–8, 2021.

[Lu et al., 2022] Xuantao Lu, Jingping Liu, Zhouhong Gu,
Hanwen Tong, Chenhao Xie, Junyang Huang, Yanghua
Xiao, and Wenguang Wang. Parsing natural language into
propositional and first-order logic with dual reinforcement
learning. In Proceedings of COLING’22, pages 5419–
5431. International Committee on Computational Linguis-
tics, 2022.

[Lynch et al., 2012] Collin F. Lynch, Kevin D. Ashley, and
Mohammad Hassan Falakmasir. Comparing argument di-
agrams. In Proceedings of JURIX’12, volume 250 of Fron-
tiers in Artificial Intelligence and Applications, pages 81–
90. IOS Press, 2012.

[Modgil and Prakken, 2014] Sanjay Modgil and Henry
Prakken. The ASPIC+ framework for structured argumen-
tation: a tutorial. Argument and Computation, 5(1):31–62,
2014.

[Olausson et al., 2023] Theo Olausson, Alex Gu, Benjamin
Lipkin, Cedegao E. Zhang, Armando Solar-Lezama,
Joshua B. Tenenbaum, and Roger Levy. LINC: A neu-
rosymbolic approach for logical reasoning by combining
language models with first-order logic provers. In Pro-
ceedings of EMNLP’23, pages 5153–5176. Association for
Computational Linguistics, 2023.

[Pan et al., 2023] Liangming Pan, Alon Albalak, Xinyi
Wang, and William Wang. Logic-lm: Empowering large
language models with symbolic solvers for faithful logical

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

http://www0.cs.ucl.ac.uk/staff/a.hunter/papers/ijcai25.zip
http://www0.cs.ucl.ac.uk/staff/a.hunter/papers/ijcai25.zip

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

reasoning. In Findings of EMNLP’23, pages 3806–3824.
Association for Computational Linguistics, 2023.

[Panisson et al., 2022] Alison R. Panisson, Peter McBurney,
and Rafael H. Bordini. Towards an enthymeme-based
communication framework in multi-agent systems. In Pro-
ceedings of KR’22, 2022.

[Prakken, 1993] Henry Prakken. An argumentation frame-
work in default logic. Annals of Mathematics and Artificial
Intelligence, 9:93–132, 1993.

[Reiter, 1980] Raymond Reiter. A logic for default reason-
ing. Artificial Intelligence, 13:81–132, 1980.

[Santos and Martins, 2008] Emanuel Santos and João Paṽao
Martins. A default logic based framework for argumenta-
tion. In Proceedings of ECAI’08, pages 859–860, 2008.

[Singh et al., 2020] Hrituraj Singh, Milan Aggarwal, and
Balaji Krishnamurthy. Exploring neural models for
parsing natural language into first-order logic. CoRR,
abs/2002.06544, 2020.

[Toni, 2014] Francesca Toni. A tutorial on assumption-based
argumentation. Argument and Computation, 5(1):89–117,
2014.

[Walton, 2001] Douglas Walton. Enthymemes, common
knowledge and plausible inference. Philosophy and
Rhetoric, 34(2):93–112, 2001.

[Walton, 2019] Douglas Walton. Argumentation schemes
and their application to argument mining. Windsor Studies
in Argumentation, 8:177–211, 2019.

[Xydis et al., 2020] Andreas Xydis, Christopher Hampson,
Sanjay Modgil, and Elizabeth Black. Enthymemes in di-
alogues. In Proceedings of COMMA’20, volume 326 of
FAIA, pages 395–402. IOS Press, 2020.

[Xydis et al., 2024] Andreas Xydis, Ionut Moraru, and Eliz-
abeth Sklar. Strategising in dialogues handling forward
extension of enthymemes. In Proceedings of COMMA’24,
volume 388 of FAIA, pages 337–348. IOS Press, 2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

