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Abstract
Integrating multi-omics datasets through data-
driven analysis offers a comprehensive understand-
ing of the complex biological processes underlying
various diseases, particularly cancer. Graph Neural
Networks (GNNs) have recently demonstrated re-
markable ability to exploit relational structures in
biological data, enabling advances in multi-omics
integration for cancer subtype classification. Ex-
isting approaches often neglect the intricate cou-
pling between heterogeneous omics, limiting their
capacity to resolve subtle cancer subtype hetero-
geneity critical for precision oncology. To ad-
dress these limitations, we propose a framework
named Graph Transformer for Multi-omics Cancer
Subtype Classification (GTMancer). This frame-
work builds upon the GNN optimization problem
and extends its application to complex multi-omics
data. Specifically, our method leverages contrastive
learning to embed multi-omics data into a unified
semantic space. We unroll the multiplex graph op-
timization problem in that unified space and in-
troduce dual sets of attention coefficients to cap-
ture structural graph priors both within and among
multi-omics data. This approach enables global
omics information to guide the refining of the rep-
resentations of individual omics. Empirical experi-
ments on seven real-world cancer datasets demon-
strate that GTMancer outperforms existing state-of-
the-art algorithms.

1 Introduction
With the rapid development of biomedical technology, more
and more omics data can be obtained, such as genomics,
transcriptomics, proteomics, etc. Data-driven multi-omics
analyses in biomedicine enable researchers to comprehen-
sively understand the key biological processes underlying
diseases [Stephenson et al., 2021; Theodoris et al., 2023;
Wang et al., 2024; Lee et al., 2024]. Given the inherent com-
plexity and multilayered regulatory mechanisms of biologi-
cal systems, single-omics studies often struggle to elucidate

∗Corresponding author: Haishuai Wang

the relationships between molecular alterations and pheno-
typic traits comprehensively [Karczewski and Snyder, 2018].
Many diseases, including cancer, result from multi-stage pro-
cesses that integrate multi-scale information spanning from
the genome to the proteome [Valous et al., 2024]. Conse-
quently, multi-omics analysis enables a more comprehensive
exploration of interactions and synergistic effects. While cur-
rent multi-omics integration approaches have yielded certain
advancements, a notable drawback is their inability to com-
prehensively capture the intricate relationships within omics
data. Graph-based multi-omics learning approaches con-
struct graphs for individual modalities by treating the sam-
ples within each modality as graph nodes and representing
their relationships through edges [Lewis and Kemp, 2021;
Tsai et al., 2023; Zheng et al., 2024]. This approach facil-
itates the development of a well-defined structured represen-
tation within each modality, enabling graph-based model to
more effectively capture feature interactions and underlying
patterns specific to the modality [Schulte-Sasse et al., 2021;
Fang et al., 2021; Li et al., 2022b; Wu et al., 2024a].

Graph Neural Networks (GNNs) effectively leverage
graph-based prior knowledge, such as protein interaction net-
works, attracting significant interest from researchers [Kipf
and Welling, 2017; Li et al., 2021; Mastropietro et al., 2023;
Wu et al., 2024b; Fang et al., 2025b; Fang et al., 2025a].
Cancer multi-omics data lack explicitly provided structural
priors, requiring considerable effort and domain expertise to
create graphs that capture the underlying biological relation-
ships. A common approach in GNN-based cancer multi-
omics research involves representing each omics dataset as
an individual graph, which is subsequently fused into a uni-
fied homogeneous graph. This unified graph is then used as
input for GNNs to perform tasks such as subtype classifica-
tion or survival prediction [Li et al., 2022a; Wu et al., 2024a;
Gao et al., 2025]. Alternatively, the independent graphs can
be processed using multi-channel GNNs, with the final fused
representation obtained at the semantic layer to be utilized
for subsequent tasks. Specifically, these methods typically
process each omics modality independently during message
passing, resulting in fragmented representations that fail to
capture the rich interdependencies among omics. This siloed
treatment limits comprehensive cross-omics interactions and
hinders the real-time sharing of global biological information.
Consequently, updates to multi-omics embeddings may devi-
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ate from directions that best reflect the underlying cancer het-
erogeneity, restricting model expressiveness and downstream
classification accuracy for cancer subtypes.

To address these challenges, we revisit GNNs through
an optimization-inspired lens, recognizing that many popu-
lar architectures can be interpreted as iterative solutions to
smoothness-based objectives via gradient descent. Extend-
ing this perspective to multi-omics data, we propose a frame-
work that aligns heterogeneous omics profiles into a unified
semantic space through contrastive learning. This alignment
facilitates meaningful information exchange across modali-
ties, which is critical for capturing the complex omics inter-
play driving cancer subtype diversity. After alignment, we
formulate a graph optimization problem for multi-omics anal-
ysis, aiming to ensure that representations of the same omics
across different cancer patients gradually converge, while
representations of different omics within the same cancer pa-
tient also become similar. To prevent the updating process
from deviating prematurely, we incorporate a regularization
term. In this optimization problem, we design two sets of
attention coefficients to represent the graph structural priors
within and among omics data, respectively. By refining the
optimization framework, we derive a preliminary update for-
mula. A key insight from our analysis is the critical role of
step size in gradient-based optimization; improper tuning can
cause slow convergence or even divergence, especially given
the heterogeneity of multi-omics cancer data. To overcome
this, we propose leveraging Newton’s method to solve the op-
timization problem, obviating the need for manual step size
selection and guaranteeing stable, theoretical convergence.
Our contributions are summarised as follows:

• We propose GTMancer, an optimization-inspired frame-
work that enables effective global integration across
multi-omics modalities for cancer subtype classification.

• We provide theoretical evidence demonstrating that an
artificially defined step size is unnecessary, as GT-
Mancer achieves stable convergence through iterations.

• The proposed method demonstrates strong performance
in comparison to other state-of-the-art algorithms across
seven real-world cancer datasets.

2 Related Work
2.1 Graph-based Multi-omics Analysis
Graph-based multi-omics integrative analysis promotes new
research by combining patient information and biomedical
knowledge. Several studies have demonstrated the potential
of graph-based approaches in multi-omics integration, pro-
viding inspiration and insights to scientists and clinicians for
addressing their carefully designed research questions. Pai
et al. proposed to utilize the patient similarity graph, which
improves survival prediction across four tumor types and en-
hances result interpretability by visualizing decision bound-
aries in the patient similarity space [Pai et al., 2019]. Fang
et al. demonstrated the effectiveness of learning patient sim-
ilarity features using a marginal graph autoencoder, followed
by graph clustering, to stratify non-small cell lung cancer pa-
tients into subgroups with different immunotherapy outcomes

[Fang et al., 2021]. Given the strong performance of graph
neural networks across various domains, many researchers
have applied them to multi-omics analysis. Schulte-Sasse
et al. proposed an interpretable machine learning method
based on graph convolutional networks that predicted cancer
genes by integrating multi-omics pan-cancer data (e.g., mu-
tations, copy number variations, DNA methylation, and gene
expression) with protein-protein interaction (PPI) networks
[Schulte-Sasse et al., 2021]. Li et al. applied a multimodal
autoencoder to extract features and used a similarity network
fusion model to build a patient similarity network, which,
through a graph convolutional network, integrated these het-
erogeneous features to train a subtype classification model
[Li et al., 2022b]. Wang et al. conducted a multi-omics
analysis of rare cell population inference using a single-cell
graph transformer, which identifies rare populations through a
probability-based heterogeneous graph model on multi-omics
data, providing biological insights for both synthetic and real
datasets [Wang et al., 2024]. Existing approaches struggle to
integrate omics data into a cohesive narrative and fail to ac-
count for the complex interrelationships between molecular
entities while considering connectivity patterns across multi-
ple histological collections.

2.2 Graph Neural Networks
Graph neural networks have garnered significant attention
due to their ability to simultaneously model both topology
and node features. With the advancement of biotechnol-
ogy, graph neural networks are increasingly being applied in
this field. Wang et al. employed graph neural networks to
model and aggregate cell-cell relationships, and used a left-
truncated Gaussian mixture model to capture heterogeneous
gene expression patterns [Wang et al., 2021a]. Wen et al.
proposed the general graph neural network framework sc-
MoGNN to model the relationships between modalities and
integrate large unimodal datasets into downstream analyses
[Wen et al., 2022]. Ma et al. modeled scMulti-omics in a het-
erogeneous graph and used a multi-headed graph transformer
to learn the relationships between cells and genes in local and
global contexts in a robust manner [Ma et al., 2023]. Liu et
al. developed an informative graph structure for model train-
ing and gene representation generation, combining regular-
ization, weighted similarity learning, and contrastive learn-
ing to capture gene-gene relationships across data [Liu et
al., 2024]. Fan et al. moved beyond relying on predefined
graphs by learning a comprehensive network of cell-cell rela-
tionships directly from scRNA-seq data, constructing a dense
graph structure that captured the full range of cellular inter-
actions [Fan et al., 2024]. These methods are often restricted
to interactions within a single omics, overlooking the impact
of interactions between different omics of information.

3 Method
In this section, we first review GNNs from an optimization
perspective and subsequently extend them to the multi-omics
domain. By applying optimization techniques, we derive the
forward propagation formula, which updates the represen-
tation of each omics dataset. This process integrates atten-
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Figure 1: Proposed GTMancer Framework. The framework dynamically models interactions between different histological modalities. First,
semantic alignment across multiple omics modalities is achieved using contrastive learning. Following alignment, dynamic interactions
between modalities are performed to capture global information across modalities. Finally, the latent representation is refined through K
iterations of these interactions.

tion mechanisms both within and between omics modalities,
thereby enhancing the representations for downstream tasks.

3.1 Preliminary
Denote given multi-omics data as {V(m) ∈ RN×Dm}Mm=1,
where {V(1), · · · ,V(M)} denotes distinct modalities, N is
the number of samples, and Dm is the dimension of the m-
th omics. Let Y ∈ RN×c be the label matrix and c denotes
the number of classes. || · ||2 denotes the Euclidean norm of
vector and || · ||F represents the Frobenius norm of matrix.

3.2 Proposed Method
We first revisit the forward propagation formulation of the
GNN, it is equivalent to the stepwise optimization of an ob-
jective function that captures the interactions between node
features. This objective function is given by:

H(F) =
1

2

∑
i,j

Aij∥Fi − Fj∥22, (1)

where F is the feature matrix, A is the adjacency matrix of
the graph. By minimizing this objective function, we encour-
age connected nodes to have similar feature representations,
thereby promoting smoothness across the graph. To optimize
H(F), we compute its gradient with respect to the node fea-
tures F. The gradient is derived as follows:

▽H(F) = (I−A)F, (2)

Utilizing the gradient, we update the node features iteratively
through the following update rule:

F(k+1) = F(k)−α▽H(F(k)) = (1−α)F(k)+αAF(k), (3)

When α = 0, F(k+1) = F(k), the model only performs a
linear transformation of node features, which is equivalent to
an MLP. When 0 < α < 1, the model is equivalent to an
extended version of APPNP with residual connections. By
adjusting α, a balance can be found between feature trans-
formation and neighborhood aggregation. When α = 1,
F(k+1) = AF(k), the model degenerates to a standard GCN,
which completes feature aggregation by directly averaging
neighborhood information.

Since data from different omics reside in distinct seman-
tic spaces, effectively exploring their interactions requires ro-
bust encoding methods for seamless multi-modal collabora-
tion. To achieve this, we focus on developing such encoding
strategies. Building on previous research, we adopt a con-
trastive approach to align data from various biological modal-
ities, such as DNA methylation, mRNA expression, and pro-
tein levels, aiming to reconcile their differences and empha-
size shared biological patterns as follows:

Z(m) = V(m)W(m) + b(m), (4)
where W(m) ∈ RDm×d and b(m) ∈ Rd are the trainable
weight matrices and bias. To align the encoded representa-
tions across multiple omics modalities, we employ a normal-
ized similarity measure:

Γ(m) =
Z(m)

∥Z(m)∥F

(
Z

∥Z∥F

)⊤

· exp(τ) (5)

where Z = 1
M

∑M
m=1 Z

(m) represents the aggregated rep-
resentation across all modalities. The temperature parame-
ter τ controls the concentration level of the similarity distri-
bution, ensuring robust gradient signals during optimization.
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The contrastive loss is formulated to maximize the agreement
between the aligned representations of different omics modal-
ities, encouraging the model to learn consistent and biologi-
cally coherent embeddings across these heterogeneous data
types.

LCt = − 1

M

M∑
m=1

1

N

N∑
i,j=1

Tij(logΓ
(m)
ij + log(Γ(m)⊤)ij),

(6)
where T = RN×N is the label matrix. The two terms
in the summation enforce symmetric consistency between
modalities. Following the alignment step, the data from dif-
ferent omics modalities are projected into a shared seman-
tic space. Building upon this representation, we extend the
classic graph-smoothness objective so that it simultaneously
models sample-level and modality-level relations important
for distinguishing subtle cancer subtypes:

H({Z(m)}Mm=1) =
1

2

M∑
m=1

N∑
i,j=1

S
(m)
ij ∥Z(m)

i − Z
(m)
j ∥22︸ ︷︷ ︸

Intra-omics smoothness

+

1

4

M∑
e,n=1

Pen∥Z(e) − Z(n)∥2F︸ ︷︷ ︸
Inter-omics smoothness

+
1

2

M∑
m=1

∥Z(m) − Z
(m)
init∥

2
F︸ ︷︷ ︸

Regularization

,

s.t. S(m) = S(m)⊤, P1 = 1, P = P⊤.
(7)

where S
(m)
ij denotes the similarity between the i-th sample

and the j-th sample in the m-th omics, Pen denotes the sim-
ilarity between the e-th omics and the n-th omics, and Z

(m)
init

is Z(m) in Equation (4).
The first term enforces smoothness within each omics, en-

suring that patients with similar profiles are embedded closely
in the latent space, which helps retain modality-specific bio-
logical signals. The second term encourages coherence be-
tween different omics, such as aligning the representations of
DNA methylation and protein expression for the same patient,
which facilitates integrated modeling of complementary bio-
logical information crucial for understanding cancer hetero-
geneity. The third term acts as a regularizer, preventing dras-
tic changes from the initial modality-specific embeddings,
thereby maintaining biologically meaningful baseline signals
during the integration process. To optimize H({Z(m)}Mm=1),
we compute its gradient with respect to the node features
Z(m). The gradient is derived as follows:

▽H(Z(m)) = (3I− S(m))Z(m) −
M∑
e=1

PemZ(e) − Z
(m)
init,

(8)
where I represents the identity matrix. Then, each iterative
step with step size α can be formulated as the first-order gra-
dient descent:
Z(m,k+1) = Z(m,k) − α▽H(Z(m,k))

=
[
(1− 3α)I+ αS(m,k)

]
Z(m,k) + αP(k)

emZ(e,k) + αZ
(m)
init,

(9)

Theorem 1. Let Z(m,k) follow the update rule in Equa-
tion (9). A sufficient condition for ensuring mono-
tonic non-increasing behavior of the objective function
H

(
{Z(m,k)}Mm=1

)
:

H({Z(m,k+1)}Mm=1) ≤ H({Z(m,k)}Mm=1),

is that the step size α satisfies:

0 < α ≤ min
m

{
2 · ∥3I− S(m,k) −P(k)

mm1N×N∥−1
2

}
.

See Appendix A for proof of the theorem and other details.
Theorem 1 indicates that ensuring a consistent decrease in the
objective function may require complementary constraints on
the step sizes. In such cases, excessively small step sizes re-
sult in slow convergence, whereas overly large step sizes can
lead to divergence and instability. Furthermore, adapting the
step size to the M omics datasets is both computationally de-
manding and cumbersome in terms of selection.

To address this issue, we employ the second-order Newton
method, thereby circumventing the complexities involved in
step size adjustment. The details are as follows:

Z(m,k+1) = Z(m,k) − [▽2H(Z(m))]−1▽H(Z(m,k))

= Z(m,k) − [3I− (S(m,k) +P(k)
mm1N×N )]−1▽H(Z(m,k)),

(10)
where ▽2H(Z(m)) is the Hessian matrix. This formulation
dynamically adjusts the step size based on the local curva-
ture of the objective function. Given that directly computing
the matrix inverse for large-scale Hessian matrices is compu-
tationally prohibitive, we approximate the inverse using the
Neumann series expansion. For ρ(S

(m,k)

3 ) < 1, the inverse
can be approximated by truncating the series after the first
term as:[

3I− (S(m,k) +P(k)
mm1N×N )

]−1

≈ 1

3

(
I+

S(m,k)

3

)
.

(11)
Substituting the approximated inverse Hessian into Equation
(10) results in:

Z(m,k+1) = Z(m,k) − 1

3

(
I+

S(m,k)

3

)
▽H(Z(m,k))

=
S(m,k)2

9
Z(m,k) +

3I+ S(m,k)

9
(
M∑
e=1

P(k)
emZ(e,k) + Z

(m)
init).

(12)
For the equation above, we introduce alternative terms to

simplify it. The final propagation steps are shown as follows:

S
(m,k)
ij = 1 +

〈
W

(m,k)
K Z

(m)
i

∥W(m,k)
K Z

(m)
i ∥2

,
W

(m,k)
Q Z

(m)
j

∥W(m,k)
Q Z

(m)
j ∥2

〉
,

P(k)
em = 1 + exp

(
−
(
W

(k)
K Z(e)

)⊤
⊗
(
W

(k)
Q Z(m)

))
,

(13)
where W

(m,k)
K , W

(m,k)
Q , W

(k)
K , and W

(k)
Q are learnable

weight matrix in the k-layer, ⊗ denotes the tensor operation.
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Theorem 2. If the update rule in Equation (12) is followed,
the objective function H

(
{Z(m,k)}Mm=1

)
exhibits monotonic

non-increasing behavior across iterations, i.e.,

H
(
{Z(m,k+1)}Mm=1

)
≤ H

(
{Z(m,k)}Mm=1

)
, ∀k ≥ 0.

See Appendix A for proof of the theorem and other de-
tails. To compute the doubly stochastic symmetric matrix P,
we employ a cyclic constraint projection method known as
Dykstra’s algorithm, which is proven to converge for projec-
tions onto the nonempty intersection of finitely many closed
convex sets. The central idea is to decompose the entire con-
straint set into multiple simpler subsets, each allowing an eas-
ily determined projection operator.

C1 = {P|P = P⊤}, (Symmetry)
C2 = {P|P1 = 1}, (Row Normalization)

C3 = {P|P⊤1 = 1}, (Column Normalization)

(14)

where 1 is all one vector. More details about the iteration pro-
cess as shown in Appendix A. For each modality, we perform
a K-step data update to obtain {Z(m,K)}Mm=1, after which we
integrate this modality into a fused representation to make the
final decision.

Z = FUSE({Z(m,K)}Mm=1)

Ỹ = Softmax(ZW),
, (15)

where W is the learnable weight and the FUSE(·) denotes
the fuse function, which usually can be average, sum, con-
catenate, and attention operation. For a semi-supervised clas-
sification task, the proposed method employs a loss function
defined by the cross-entropy loss:

LCe = −
∑
i∈Φ

c∑
j=1

Yij lnỸij , (16)

where Φ is the set of samples with labels. The total loss of
the proposed method is:

Ltotal = LCt + LCe. (17)
The time complexity for aligning data from various modal-

ities is O(MN2d + MNd2). The time complexity for
forward propagation is O(K(MNd2 + M2Nd)). There-
fore, the total time complexity of the system is O(MN2d +
K(MNd2 +M2Nd)).

4 Experiment
We evaluate the performance of our model by applying it to
different types of cancer datasets. Specifically, our study aims
to address the following questions:

• (RQ1) How does GTMancer perform relative to state-
of-the-art methods for handling multi-omics datasets in
cancer research?

• (RQ2) Can GTMancer maintain its effectiveness in cat-
egorizing cancer subtypes when faced with extreme
scarcity of labeled samples?

• (RQ3) Are the alignment and dynamic information ex-
change mechanisms integral to improving cancer sub-
type identification accuracy?

• (RQ4) How sensitive is the proposed method to varia-
tions in the temperature parameter τ?

4.1 Datasets
The study utilizes seven multi-omics datasets across vari-
ous cancer types, including BRCA, KIPAN, LGG, UCEC,
CDRD, GBMLGG, and TCGA. Each dataset incorporates
three or two types of omics data, such as DNA methylation,
mRNA, and miRNA (or other data types like CNV and RPPA
in specific cases), and is used for classifying cancer subtypes
or grades. The more details of these datasets are shown in
Appendix B.1.

4.2 Compared Methods
We evaluate the proposed method against seven benchmark
algorithms, comprising both traditional machine learning
techniques and multi-omics analysis approaches. The ma-
chine learning algorithms include Support Vector Machines
(SVM) and Random Forests (RF), while the multi-omics
methods consist of DeepMO [Lin et al., 2020], MOGONET
[Wang et al., 2021b], MoGCN [Li et al., 2022b], Moanna
[Lupat et al., 2023], and MOSGAT [Wu et al., 2024a]. All
compared methods use the default parameters following the
original paper. The more details are shown in Appendix B.2.

4.3 Experimental Setting
For the proposed method, we specify the following hyperpa-
rameters: The layers number K = 3, the temperature τ = 10,
the learning rate is set as 1e−2, the training epoch is 200, the
weight decay set as 5e − 5, and the random dropout is 0.5.
In multi-omics semi-supervised classification, the proposed
method leverages a split of 10% supervised omics samples
for training and 90% unsupervised samples for testing. Due
to the need for additional labeled samples to create a vali-
dation set, we do not use a separate validation set. Instead,
we evaluate the model using the parameters from the final
iteration for testing. More experiment results are shown in
Appendix C.

4.4 Cancer Subtype Classification (RQ1)
As shown in Table 1, our method outperforms the seven com-
parative algorithms in both ACC and F1 scores across most
datasets, particularly the BRCA and KIPAN datasets. In con-
trast, traditional machine learning methods such as SVM and
RF exhibit inferior performance on multiple datasets. While
multi-omics deep learning approaches like DeepMO and
MOGONET achieve competitive results on certain datasets,
they still lag behind our method overall. Our approach
demonstrates high robustness and adaptability, maintaining
excellent performance across datasets of varying complexity.
It significantly enhances ACC and F1 metrics, underscoring
its superior advantage in multi-omics data analysis.

4.5 Visualization (RQ1)
To further validate the effectiveness of the proposed method
in multi-omics tasks, we conducted t-SNE visualizations
on multi-omics representations derived from various ap-
proaches. As shown in Figure 2, the embeddings derived
from GTMancer exhibit highly distinct clusters for the three
categories (labels KICH, KIRC, and KIRP), with minimal
overlap between the clusters. This distinct separation is par-
ticularly evident in the marginal distributions along both the
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Metrics Methods/
Datasets BRCA KIPAN LGG UCEC CDRD GBMLGG TCGA

ACC

SVM 70.2 (0.0) 93.9 (0.0) 60.0 (0.0) 72.5 (0.0) 76.3 (0.0) 52.0 (0.0) 68.0 (0.0)
RF 80.2 (0.0) 93.9 (0.0) 49.8 (0.0) 72.5 (0.0) 77.6 (0.0) 54.6 (0.0) 67.0 (0.0)

DeepMO 81.4 (2.1) 94.1 (0.9) 64.2 (3.1) 80.2 (3.1) 75.4 (4.7) 53.5 (2.4) 73.0 (6.9)
MOGONET 71.6 (1.5) 91.4 (0.5) 62.3 (1.8) 75.4 (1.9) 75.9 (0.0) 49.2 (1.5) 42.1 (0.7)

MoGCN 73.6 (0.4) 91.5 (0.4) 51.1 (0.0) 71.6 (0.0) 77.9 (1.2) 53.0 (6.3) 73.9 (0.4)
Moanna 77.5 (1.8) 92.5 (0.9) 61.3 (1.8) 81.6 (2.2) 62.1 (2.9) 53.1 (4.9) 58.7 (2.2)

MOSGAT 73.0 (3.2) 91.1 (0.4) 58.5 (1.3) 82.1 (1.9) 75.7 (1.1) 49.6 (1.2) -
GTMancer 84.4 (1.4) 94.8 (0.1) 68.7 (0.6) 84.2 (1.4) 82.9 (1.2) 56.5 (0.7) 74.1 (0.5)

F1

SVM 43.6 (0.0) 92.9 (0.0) 60.0 (0.0) 28.0 (0.0) 43.3 (0.0) 39.4 (0.0) 61.4 (0.0)
RF 68.8 (0.0) 92.8 (0.0) 49.6 (0.0) 28.7 (0.0) 48.9 (0.0) 47.0 (0.0) 52.0 (0.0)

DeepMO 76.4 (4.9) 92.5 (0.8) 63.7 (3.8) 53.8 (1.9) 67.6 (5.2) 51.1 (2.2) 64.6 (6.9)
MOGONET 58.9 (2.6) 90.5 (0.5) 61.8 (2.4) 43.7 (0.6) 43.2 (0.0) 43.6 (2.7) 38.5 (0.4)

MoGCN 55.3 (0.7) 91.4 (0.4) 33.8 (0.0) 28.0 (0.0) 67.7 (4.6) 41.5 (8.4) 66.7 (0.4)
Moanna 69.9 (2.0) 90.3 (1.7) 60.8 (1.9) 53.4 (2.0) 58.5 (2.5) 48.1 (3.0) 51.7 (2.3)

MOSGAT 57.8 (5.3) 90.8 (0.5) 55.0 (2.9) 52.3 (4.1) 47.8 (3.1) 46.7 (1.5) -
GTMancer 80.0 (1.6) 93.9 (0.8) 68.9 (0.6) 57.6 (1.8) 69.4 (1.9) 53.4 (0.7) 66.9 (0.3)

Table 1: Classification results (mean% and standard deviation%) of all comparative algorithms on the seven cancer subtype datasets, super-
vised by 10% of the labeled samples, where the best results are filled with red and the second-best results are filled with blue.

GTMancer

MoannaMoGCN

MOSGAT

Figure 2: The visualization of the representations of three compared
methods on the KIPAN dataset.

X and Y axes, where the distributions of different categories
are compact and well-separated. In contrast, the other meth-
ods (MoGCN, Moanna, and MOSGAT) show varying degrees
of cluster overlap, particularly for categories KIRC and KIRP,

UCEC GBMLGG

Figure 3: Performance comparison of the proposed GTMancer with
other algorithms on the UCEC dataset under extremely few labeled
samples (1% label ratio).

which are less distinguishable. This performance underscores
the robust feature extraction and precise category representa-
tion capabilities of our method.

4.6 Performance in few labeled scenarios (RQ2)
In this subsection, we further analyze the performance of GT-
Mancer in minimally labeled scenarios. As shown in Fig-
ure 3, the proposed GTMancer is highly effective in scenar-
ios of extreme sample scarcity. Furthermore, the proposed
method has smaller fluctuations. By harnessing the power-
ful integration and alignment of diverse omics information,
it significantly outperforms state-of-the-art methods. This
makes the framework particularly well-suited for applications
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Figure 4: Performance of the proposed method under different temperature coefficients (τ ).

BRCA UCEC

CDRD GBMLGG

Figure 5: Ablation study of the proposed GTMancer framework on
four datasets.

with limited labeled data, such as rare diseases or resource-
constrained studies.

4.7 Ablation Study (RQ3)

To further validate the effectiveness of the proposed mod-
ules, we developed three experimental variants: w/o ALL,
w/o LCt, and w/o CoE (Cross-omics Exchange). As shown in
Figure 5, the ablation study results demonstrate that the com-
plete model consistently outperforms all variants across all
datasets, particularly on complex datasets such as BRCA and
GBMLGG. This underscores the crucial role of each mod-
ule’s synergy in enhancing model performance. Removing
all modules (w/o ALL) led to a significant decline in per-
formance, while eliminating specific modules (w/o LCt or
w/o CoE) also resulted in reduced performance, especially on
complex datasets. In contrast, on simpler datasets like KIPAN
and CDRD, the impact of module removal was minimal, indi-
cating that the feature relationships in these datasets are more
straightforward. Overall, the complete model exhibits high
adaptability.

4.8 Parameter Sensitivity (RQ4)

In this section, we perform a sensitivity analysis on the tem-
perature coefficient τ in the model, with the results presented
in Figure 4. The value of τ directly influences the feature
alignment between different modalities. A smaller τ (e.g.,
0.01 or 0.1) produces an overly smooth similarity distribution,
weakening the contrast between positive and negative sam-
ples. This impairs modality alignment and results in lower
overall ACC and F1 scores. Conversely, a larger τ (e.g.,
1000) makes the similarity distribution overly sharp, causing
the model to overemphasize high-similarity positive samples
while neglecting global information from negative samples,
ultimately degrading performance. A moderate τ (e.g., 10,
100) achieves a balance between positive and negative sample
contrast, effectively capturing global features across modali-
ties and emphasizing key connections, which leads to optimal
performance for most cancer types.

5 Conclusion

In this paper, we proposed the GTMancer framework, which
provided multi-omics data with a global receptive field across
modalities, resulting in improved performance. Inspired by
graph optimization processes, we designed a multi-omics
graph optimization objective and derived the forward prop-
agation formula using gradient descent. This approach
captures both omics-omics and sample-sample associations
through an attention mechanism operating within and among
omics. The convergence of this optimization process was rig-
orously proven. To further mitigate the effects of step size
during gradient descent, we employed Newton’s method as
an alternative and also provided theoretical proof of its con-
vergence. Experimental results demonstrated that our frame-
work outperforms existing state-of-the-art methods, high-
lighting its effectiveness and competitiveness.
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