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Abstract
Efficient generation of targeted drug molecules is
crucial in the field of drug discovery. Most exist-
ing methods neglect the high-order information in
the structure of protein pockets, limiting the per-
formance of generated drug molecules. This pa-
per proposes a pocket-aware drug design frame-
work, namely PAMol, constructing the hypergraph
to represent the spatial structure of protein pock-
ets, effectively capturing high-order relations and
neighborhood information within the pocket struc-
tures. This framework also fuses different modal
embeddings from proteins and molecules, to gen-
erate high-quality molecules. In addition, a condi-
tional molecule generation module uses the high-
order structural information in protein pockets as
constraints to more accurately generate molecules
for specific targets. The performance of PAMol has
been assessed by analyzing generated molecules
in terms of vina score, high affinity, QED, SA,
LogP, Lipinski, diversity, and time. Experimental
results demonstrate the potential of PAMol for tar-
geted drug design. The source code is available at
https://github.com/YICHUANSYQ/PAMol.git.

1 Introduction
Drug design aims to efficiently generate molecules that have
both significant potential for clinical application and precise
treatment of disease [Wong et al., 2024]. It relies on in-depth
analysis of structures and biochemical properties of existing
drugs or target proteins. Traditional drug design is a com-
plex process with high costs, long cycles and high risks. It
costs about 2.5 billion dollars to design a new drug, and the
development process can take up to 10 to 15 years [Bano et
al., 2023]. The chemical space for drugs ranges between ap-
proximately 1023 and 1060 molecules [Medina-Franco and
López-López, 2024]. There will be more than 1015 kinds of
diverse and new compounds that can be synthesized [Sady-
bekov and Katritch, 2023]. In such a large, discrete and dis-
organised chemistry space, it is a very difficult task to find

∗Corresponding author
†Corresponding author

molecules that interact with disease targets and conform to
specific physicochemical properties. The application of deep
learning in the field of drug design has received increasing at-
tention [Zhang and Chen, 2022]. Compared with traditional
methods, deep learning can learn molecular and protein fea-
tures from massive data, accelerating the drug discovery pro-
cess. Currently, drug design methods are usually divided into
ligand-based and structure-based methods.

Ligand-based methods are based on the fact that com-
pounds with the same physicochemical properties or struc-
tures should have the same activity or similar targets [Fen-
glei et al., 2021]. [Wang et al., 2021] proposed a genera-
tion model that satisfies multiple constraints by combining
the knowledge distillation, conditional Transformer and rein-
forcement learning. [Iwata et al., 2023] combined variation
graph autoencoder and Monte Carlo Tree Search to capture
structural features of molecules. [Mao et al., 2023] proposed
a novel data-driven self-supervised pre-trained model to gen-
erate molecules, which extends the SMILES molecule gener-
ation space to optimize the generated molecules from a chem-
ical semantic perspective. These methods have limitations in
prediction accuracy and reliability due to ignoring the struc-
tural information of the target protein.

Structure-based methods are currently dominated by pro-
tein pocket-based drug design [Zhang et al., 2024], which
relies on known structures of protein pockets. Currently, the
structure of protein pockets is mainly represented in the form
of graphs. [Peng et al., 2022] used the graph neural network
(GNN) to capture the spatial relations of binding pockets, and
generated molecules that satisfy geometric and chemical con-
straints. [Guan et al., 2023] represented protein pockets as
sets of atomic points in 3D space, and used GNN to gener-
ate target-aware molecules in continuous space. [Zhang et
al., 2023] proposed a fragment-based generation framework
that encodes contextual information and used GNN to gener-
ate molecules. [Zhang and Liu, 2023] captured the interac-
tions between sub-pockets and molecular motifs by learning
sub-pocket prototypes, and constructed a global interaction
graph to generate molecules. [Lin et al., 2024] represented
pocket amino acids and molecular functional groups as frag-
ments to generate molecules. [Qian et al., 2024] introduced
a scoring function for binding affinity to generate molecules
that bind with high affinity to specific targets. [Huang et
al., 2024b] incorporated protein-ligand interaction priors to
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generate molecules with high affinity. [Huang et al., 2024a]
proposed a pocket-based molecular diffusion model that in-
corporates protein pocket information to generate drug-like
molecules. The limitations of structure-based methods are
mainly in two aspects: (1) 3D structures of target proteins are
often difficult to be obtained directly by experimental meth-
ods, which are demanding and time-consuming in terms of
computational resources. (2) Even though some proteins have
been experimentally resolved, their critical pocket structure
information may not be fully annotated or compiled into pro-
tein databases, which restricts their applications.

These methods have made great progress in generating
molecules, but there are still challenges. Ligand-based meth-
ods are limited by the available chemical space, making it dif-
ficult to generate molecules with novel structures. Structure-
based methods require in-depth knowledge of protein struc-
tures, but obtaining 3D structures is expensive, and still has
much to be explored. Although the protein structure predic-
tion can be performed using AlphaFold [Jumper et al., 2021],
the accuracy of the prediction cannot be fully guaranteed. In
addition, most methods neglect the high-order information in
the structure of protein pockets, which leads to an incomplete
understanding of the properties of protein pockets. This lim-
itation may restrict the model’s ability to provide a compre-
hensive understanding of complex biological systems.

To address these issues, we propose a pocket-aware drug
design framework (PAMol) to generate molecules, which
constructs the hypergraph of protein pockets to represent
the spatial structure. It can capture high-order relations and
neighborhood information of protein pockets. This frame-
work also fuses multi-modal embeddings from proteins and
molecules, including the structure and sequence of protein
pockets, fingerprint features and physicochemical properties
of molecules. A multi-level cross fusion module integrates
the structure and sequence of protein pockets to obtain fused
features, which contain high-order structural information.
The fused features serve as constraints for the conditional
molecule generation module, helping to improve the quality
of generated molecules for specific targets. In addition, the
fused features of protein pockets and molecules provide more
comprehensive information for the supervised discriminator,
enabling it to optimize the quality of the generated molecules.
The contribution of this work can be concluded as follows:

• To capture the high-order structural information in pro-
tein pockets, we proposed a pocket-aware drug de-
sign method with hypergraph representation of protein
pocket structure. The proposed method helps to improve
the performance of targeted drug design.

• We fused different modal embeddings from structure
and sequence of proteins, fingerprint and physicochemi-
cal properties of molecules. We also developed a con-
ditional molecule generation module that incorporates
an unsupervised discriminator and a supervised discrim-
inator. It uses the fused features of pockets that contain
high-order structural information, as constraints to guide
and optimize the process of molecule generation.

• We demonstrated the effectiveness of PAMol on Cross-
Docked dataset. PAMol outperforms related state-of-

the-art methods in terms of vina score, QED, Lipinski,
diversity, and time, showing the feasibility for targeted
drug design.

2 Methods
Figure 1 shows the framework of PAMol model. First, for
a given protein pocket, the spacial structure and sequence
are represented by HGNN and ProteinBERT, respectively, as
shown in Figure 1 (a). Hypergraph structure and sequence
features of protein pockets are fused by multi-level cross fu-
sion module, as shown in Figure 1 (b). For a given molecule,
fingerprint features and physicochemical properties are rep-
resented separately. Figure 1 (c) illustrates the process of
obtaining and fusing these molecular features. Finally, the
Conditional Molecule Generation module (Figure 1 (d)) uses
fused features of pockets as conditions to guide the molecule
generation.

2.1 Hypergraph Representation of Protein Pocket
Structure

The spatial structure of proteins is the basis of their functions.
We construct a hypergraph that contains the structural hyper-
edges of multiple amino acids. It can reflect the spatial re-
lation between amino acids in protein pocket and thus repre-
sent the higher-order structural information of protein pocket
more accurately.

The hypergraph of a protein pocket can be defined as G =
(V,E,W ), where V = {v1, v2, . . . , vn} denotes the set of
nodes, with each node representing an amino acid in the pro-
tein pocket. E = {e1, e2, . . . , em} denotes the spatial struc-
ture hyperedge set. Suppose the coordinates of the central
carbon atoms of the i-th and j-th amino acid are (xi, yi, zi)
and (xj , yj , zj), respectively. The distance between them can
be calculated by:

Dij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (1)

where j ∈ {1, 2, . . . , n} and i ̸= j. If Dij < 5Å, the j-th
amino acid is added to the hyperedge ei.

In a hypergraph G, each hyperedge ei ∈ E is assigned a
weight w(ei) that indicates the importance of its connectiv-
ity relations within the entire hypergraph. These weights are
organized into a diagonal matrix W , defined as follows:

diag(W ) =
[
w(e1), w(e2), . . . , w(e|E|)

]
where diag(W ) denotes the diagonal of matrix. Each diago-
nal element w(ei) corresponds to the weight of the i-th hyper-
edge ei in the hyperedge set E. This represents the individual
importance of each hyperedge in the hypergraph.

To specifically describe the relation between nodes and hy-
peredges, the hypergraph of a protein pocket can be further
represented as an association matrix Hp ∈ {0, 1}|V |×|E|,
which is defined as:

Hp(v, e) =

{
1 if v ∈ e
0 if v /∈ e

(2)

where Hp(v, e) = 1 indicates that node v is a member of
hyperedge e. Conversely, Hp(v, e) = 0 indicates that node v
does not belong to hyperedge e.
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Figure 1: Framework of the proposed PAMol. (a) Representations of the structural and sequence features of protein pockets. PAMol constructs
the hypergraph to represent the spacial structure of protein pockets. HGNN is used to capture the high-order relation in pocket structures.
ProteinBERT is used to obtain sequence features. (b) Hypergraph structure features and sequence features of protein pockets are fused by
Multi-level Cross Fusion (MCF) module. (c) Representation of molecules, including fingerprint features and physicochemical properties
of molecules. (d) Conditional Molecule Generation (CMG) module, consisting of a generator, an unsupervised discriminator, a supervised
discriminator and a decoder, which uses the fused features Fp of pockets as constraints to guide and optimize the molecule generation.

To learn the high-order structural information in protein
pockets, we apply hypergraph neural network [Feng et al.,
2019] to encode the protein pocket hypergraph through its
unique hypergraph convolution layer. The hypergraph of pro-
tein pocket is first mapped to a feature matrix Xh ∈ R|V |∗|E|.
In the hypergraph convolution process, the representation of
each node is updated based on the features of its connected
hyperedges and neighboring nodes. The hypergraph convolu-
tion operation is defined as:

P
(l+1)
h = σ(λ

− 1
2

v HpWλ−1
e HT

p λ
− 1

2
v P

(l)
h Θ(l)) (3)

where λv ∈ R|V |∗|V | and λe ∈ R|E|∗|E| denote the diagonal
matrices of the node degree and hyperedge degree, respec-
tively. Hp is the association matrix. W is the weight matrix
of hyperedges for protein pockets. Θ(l) is the trainable pa-
rameter matrix at layer l, which is used to capture the com-
plex structural and attribute relations of protein pockets. P (l)

h
is the feature matrix of protein pocket nodes at layer l with
P

(0)
h = Xh. This initial feature matrix Xh passes through

two convolutional layers and one average pooling layer to ob-
tain a final representation Ph ∈ R|V |∗ds , where ds =768.

By multi-layer aggregation and propagating mechanisms,
hypergraph neural network is able to learn high-order re-
lations within the protein pocket, capturing both local and
global structural information.

2.2 Embedding Representation of Protein Pocket
Sequence

The protein pocket sequences can map discrete amino acid
sequences into a low-dimensional continuous vector space,
generating embedding vectors. These embedding vectors are
used as feature representations of pocket sequences and can
capture key information in the sequence, such as the rela-
tive positions between amino acids, thus improving the per-
formance of the model in drug design tasks. A pre-trained
ProteinBERT model [Rao et al., 2019] is used to obtain the
sequence features. First, the protein pocket sequences are
encoded by IUPAC Tokenizer to get the token sequences.
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The resulting token sequences are passed through a 12-layer
Transformer with a hidden layer size of 512 units and 8 at-
tention heads, to obtain the final representation Ps ∈ Rnp∗ds ,
where np is the number of amino acids in the protein pocket
and ds is the embedding dimension of 768.

2.3 Multi-Level Cross Fusion
In this work, we fuse features of different modalities and dif-
ferent scales, improving the model’s capability to represent
features. Figure 1 (b) shows the process of feature fusion
across the structure and sequence of protein pockets based on
Multi-level Cross Fusion (MCF).

Before cross fusion operation, a fully connected layer maps
the feature vectors into a unified embedding space. Specifi-
cally, Ph is the feature of protein pocket hypergraph struc-
tures, and Ps is the feature of protein pocket sequences. Then,
the feature vectors are represented as h and s, corresponding
to Ph and Ps, respectively.

h = wPh + b (4)
s = wPs + b (5)

where w is trainable weight, and b is bias, respectively.
Multi-Scale Feature Fusion. This block first constructs a
cross matrix by the cross-product operation [Chen et al.,
2021]. Let the structure representation and sequence rep-
resentation of the protein pocket after transformation be
denoted as vectors hi = [hi1, hi2, . . . , hid] and si =
[si1, si2, . . . , sid], respectively, where d=768. hi and si de-
note the i-th row in vectors h and s. The cross matrix
Ci ∈ Rd×d represents the interaction between hi and si,
which is defined as:

Ci = CrossProduct(hi, si) (6)
Then, it extracts local and global features from the cross ma-
trix at different scales for comprehensive understanding. The
CNN model incorporates a pooling layer to capture localized
interactive patterns, denoted as feature Flocal:

Flocal = ReLU(Pooling(Conv(Ci)))

The flatten operation on the cross matrix Ci allows learning
global features.

Fglobal = Linear(flatten(Ci))

Flocal and Fglobal are passed through a MLP to obtain the
final multi-scale fused feature representation Flg of protein
pocket.

Flg = MLP (Concat(Flocal, Fglobal)) (7)
Scalar-Based Multi-Feature Fusion. First, the feature in-
teraction between hi and si obtained from structure and se-
quence representations of the protein pocket is encoded by an
element-wise product operation. Then, the element-wise vec-
tor is passed through MLP to obtain the scalar fusion feature
Fsc, which is defined as:

Fsc = MLP (hi ⊙ si) (8)
Flg and Fsc are concatenated to obtain the final representa-
tion Fp with the embedding dimension of 512, which fuses
the hypergraph structure features and sequence features of the
protein pocket.

Fp = MLP (Concat(Flg, Fsc)) (9)

2.4 Embedding Representation of Molecule
This module can extract fingerprint features and physic-
ochemical properties of molecules [Kotsias et al., 2020],
which is useful for optimizing the performance of gener-
ated molecules. The embedding vectors of structural fea-
tures are obtained by Morgan fingerprint, which are gen-
erated by considering the topology structure of molecules.
In the generation process, each atom and its neighboring
atoms are iteratively considered until a predetermined radius
is reached. This iterative process captures the connection
patterns and distances between atoms, thereby reflecting the
structure of molecules. Based on this structural data, we ob-
tain a one-dimensional vector, denoted as Ms. The physico-
chemical properties obtained by RDKit [Landrum and others,
2013], including Octanol-Water Partition coefficient (LogP),
Topological Polarity Surface Area (TPSA), Molecular Weight
(MW), Number of Hydrogen Bond Acceptors (HBA) and
Number of Hydrogen Bond Donors (HBD). The embedding
representation of physicochemical properties is denoted as a
one-dimensional vector Mp. The fingerprint features Ms and
physicochemical features Mp are concatenated to obtain Fm

with the embedding dimension of 512.

2.5 Conditional Molecule Generation (CMG)
Module

The Conditional Molecule Generation (CMG) module uses
the fusion features Fp of protein pockets that contain high-
order structural information as generative conditions, to fa-
cilitate the discovery of potential drug molecules against spe-
cific targets. CMG module includes two discriminators, one
generator, and one decoder, as shown in Figure 1 (d).

First, the 512-dimensional noise vector z sampled from a
normal distribution [Chen et al., 2023] is concatenated with
the fused features Fp of the protein pocket, serving as the
input to the generator. It can enhance the expressive power
of the generator, enabling it to produce molecules that are
both diverse and conform to specific biological properties.
Through the processing of a 3-layer neural network, the la-
tent feature vectors Mf of the molecules are obtained.

Mf = network([z, Fp]) (10)

In the process of molecule generation, to more accurately
optimize the fit between the generated molecules and the pro-
tein pockets, the real molecule features Fm and the protein
pocket features Fp are concatenated as fused feature Fmp:

Fmp = Concat(Fm, Fp) (11)

We also fuse the latent feature vector Mf of generated
molecules and protein pocket features Fp, obtaining the fu-
sion feature Ffp:

Ffp = Concat(Mf , Fp) (12)

Then, an unsupervised discriminator captures global fea-
tures of real molecules to refine the overall quality of the
generated ones. The features Fm of real molecules and the
latent feature vectors Mf of generated molecules are passed
through an unsupervised discriminator, to compute the un-
supervised loss. This loss measures the difference or simi-
larity between the features of generated molecules and real
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molecules. The quality of generated molecules is optimized
in the back propagation, which motivates the generator to pro-
duce molecules that are closer to the real data distribution.

Meanwhile, a supervised discriminator, by focusing on
protein pocket features including the high-order structural in-
formation, learns and optimizes relevant features of generated
molecules to ensure compatibility with those pockets. The
fusion features Fmp and Ffp are served as the inputs to the
supervised discriminator. During the back propagation pro-
cess, the discriminator learns the relevant features between
the generated molecules and protein pockets. By calculating
the supervised loss, it performs back propagation and updates
its internal neural network parameters based on the loss gra-
dients. This optimization process aims to improve the quality
of the generated molecules for targeting the protein pockets.

An integrated loss function combines the discriminatory
capabilities of the two discriminators, enabling the generative
model to integrate the information of molecules and protein
pockets during the training process. The loss is defined as:

LD =− Ereal

[
D(Fm) + SD(Fmp)

2

]
+ Efake

[
D(Mf ) + SD(Ffp)

2

]
+ λgp · gp

(13)

where Ereal represents the expectation over the real data dis-
tribution. Efake represents the expectation over the generated
data distribution. gp is a gradient penalty. λgp represents the
weight coefficient of the gradient penalty. This loss function
effectively balances the learning process of two discrimina-
tors, thus improving the overall performance of the model.

3 Experiments and Results
3.1 Dataset and Preprocessing
We used the same dataset CrossDocked with [Luo et al.,
2021]. This dataset removes the protein-ligand pairs with a
binding pose RMSD of less than 1Å, leading to a total of
183,468 pairs. To avoid overlap between training and test
sets, [Luo et al., 2021] first clustered the data based on pro-
tein sequence similarities. Then, 100,000 protein-ligand pairs
were randomly selected from the clustered data for training.
For the test set, 100 proteins were randomly selected from
the remaining clusters, ensuring no overlap with the training
set. In this work, to construct the structural hypergraph of
protein pockets, we parsed the PDB files containing informa-
tion about protein pockets. The files that could not be parsed
were removed from both the training and test sets. Finally,
we obtained 53,268 protein-ligand pairs for training and 47
protein-ligand pairs for testing.

3.2 Implementation Details
PAMol has been performed based on Python 3.8, Tensorflow
and Keras. The hardware setup consisted of an NVIDIA
GeForce RTX 3090 with CUDA and cuDNN. We set the
training process to run for 2000 epochs, with a batch size of
64, and a low learning rate of 0.0001 to ensure smooth and
stable convergence. Adam optimizer was used to optimize
the training process of PAMol, ensuring an efficient adjust-
ment of learning rates and a well-behaved convergence.

3.3 Evaluation Metrics
We evaluated the performance of PAMol, with common met-
rics [Luo et al., 2021; Polykovskiy et al., 2020] including:
(1) Vina Score, it estimates the binding affinity between the
ligand and target protein, which is a crucial measure to eval-
uate how well the generated molecule fits into the target pro-
tein pocket. (2) High Affinity, it represents the percentage
of molecules whose Vina Score is higher than that of the
ground truth molecule in the test set. (3) QED, it evaluates
the drug-likeness of a molecule by combining multiple desir-
able molecular properties. (4) SA (Synthetic Accessibility), it
measures the synthetic difficulty of the molecule. (5) LogP, it
indicates the octanol-water partition coefficient, which should
be between -0.4 and 5.6 [Ghose et al., 1999] for a good drug
candidate. (6) Lipinski, it measures how well the molecule
complies with Lipinski’s five rules. (7) Diversity, it quanti-
fies the average pairwise Tanimoto dissimilarity of the gener-
ated molecules for each target pocket. (8) Time, it represents
the average time required to generate 100 samples for each
pocket across all targets.

Figure 2: The proportion of different ring sizes among molecules
generated by PAMol.

3.4 Ablation Study
The ablation studies were performed with different feature
combinations, including the molecule features (MolF), the
pocket sequence features (SeqF), the pocket structure features
(StruF), and the pocket fused features (CrossF), to investigate
their impacts. As shown in Table 1, MolF+CrossF achieves
the best vina score of -7.646 among all models, indicat-
ing that it can generate molecules with higher binding affin-
ity. MolF+CrossF performs second-best on the high affinity
(0.840), with only a 0.001 gap from MolF+SeqF. In addi-
tion, MolF+CrossF obtains the highest score on both QED
(0.778) and diversity (0.823), and has a logP value of 3.149
within the acceptable range, which indicates that it can im-
prove the drug-likeness and diversity of generated molecules.
SA of MolF+CrossF is higher than that of MolF+SeqF, but
lower than that of two other combinations. MolF+CrossF
and MolF+SeqF both score 5.000, complying with Lipinski’s
Rule of Five. Despite MolF+CrossF slightly longer runtime
compared to the second best model, it is a promising model
due to its superior performance on several key metrics.
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Models Vina Score(↓) High Affinity(↑) QED(↑) SA(↑) LogP Lipinski(↑) Diversity(↑) Time(↓)
MolF+SeqF -7.628 0.841 0.777 0.654 2.610 5.000 0.778 368.59
MolF+StruF -7.556 0.817 0.744 0.670 2.022 4.993 0.756 334.21

MolF+SeqF+StruF -7.547 0.823 0.634 0.666 2.769 4.935 0.766 142.94
MolF+CrossF (PAMol) -7.646 0.840 0.778 0.659 3.149 5.000 0.823 341.08

Table 1: Ablation experiment results of different features. (Best, Second Best)

Figure 3: The distribution of the nine common covalent bonds in the dataset and the generated molecules, including C–C, C=C, C–O, C=O,
C–N, C–F, C=N, C–Cl and C–S.

To evaluate the global view of the chemical structures of
generated molecules, Figure 2 shows the proportion of dif-
ferent ring sizes among molecules generated by PAMol. We
notice that PAMol tends to generate molecules containing rel-
atively more stable rings (5-atom ring and 6-atom ring), and
few unstable rings. This is consistent with the regular prin-
ciples of drug design, indicating that PAMol has high effec-
tiveness in generating molecules with drug potential. In addi-
tion, we present the distribution of the nine common covalent
bonds in the dataset and the generated molecules, including
C–C, C=C, C–O, C=O, C–N, C–F, C=N, C–Cl and C–S. As
shown in Figure 3, for all nine covalent bonds, the bond dis-
tributions of molecules generated by MolF+CrossF (PAMol)
are closer to those of dataset (CrossDocked2020).

3.5 Performance Comparison and Analysis
Table 2 shows the comparison results of different models.
PAMol outperforms other models on general metrics ex-
cept vina score and SA. PAMol can generate the molecules
with high affinity (0.840), which has improved by 6.06%
compared to the second-best method. PAMol improves by
26.92% over the second-best method in QED, indicating sig-
nificantly enhanced drug-likeness of generated molecules.

(a) Mol K1 with target KRAS (Vina Score: -10.8 kcal/mol)

(b) Mol E1 with target EGFR (Vina Score: -10.9 kcal/mol)

Figure 4: Docking results of the generated molecules with targets
KRAS and EGFR.
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Models Vina Score(↓) High Affinity(↑) QED(↑) SA(↑) LogP Lipinski(↑) Diversity(↑) Time(↓)
Ref. (Test) -6.277 - 0.372 0.654 0.777 3.723 - -
Pocket2Mol [Peng et al., 2022] -7.288 0.542 0.563 0.765 1.586 4.902 0.688 2503.51
Targetdiff [Guan et al., 2023] -7.800 0.581 0.480 0.580 - - 0.720 -
FLAG [Zhang et al., 2023] -7.247 0.580 0.495 0.745 0.630 4.943 0.704 1047.60
DrugGPS [Zhang and Liu, 2023] -7.276 0.565 0.613 0.743 0.913 4.917 0.681 1007.8
D3FG [Lin et al., 2024] -6.960 0.459 0.501 0.840 2.821 4.965 - -
KGDiff [Qian et al., 2024] -9.430 0.792 0.510 0.540 - - - -
IPDiff [Huang et al., 2024b] -8.570 0.695 0.520 0.610 - - 0.740 -
PMDM [Huang et al., 2024a] -7.572 0.628 0.594 0.611 0.301 4.975 0.709 906
PAMol(Ours) -7.646 0.840 0.778 0.659 3.149 5.000 0.823 341.08

Table 2: Performance comparison of PAMol and other different models. (Best, Second Best)

The logP value (3.149) of PAMol within the acceptable range
(-0.4 to 5.6) indicates that the generated molecules are more
potential as drug candidates. PAMol scores 5.000 on the Lip-
inski criteria, indicating that generated molecules meet all the
conditions of the Rule of Five. PAMol improves diversity by
at least 11.22%, showing its ability to generate diverse and
novel molecular structures. As in Table 2, vina score and SA
of PAMol are not optimal among all models but higher than
those in the test set, indicated that PAMol has certain poten-
tial. In addition, PAMol achieves a significant reduction in
time, thereby enhancing efficiency and saving time costs in
molecule generation, and showing competitiveness.

(a) Mol K1 (b) Mol K2

(c) Mol E1 (d) Mol E2

Figure 5: Radar charts of the basic properties about targeted
molecules generated by PAMol.

3.6 Case Study
To further validate the capability of PAMol model to gener-
ate molecules, the case experiments were conducted. We se-
lected two key targets in pancreatic cancer, KRAS (UniProt
ID: P01116, PDB ID: 8onv) and EGFR (UniProt ID: P00533,

PDB ID: 8a27). Figure 4 shows the docking results of the
generated molecule Mol K1 with target KRAS and the gen-
erated molecule Mol E1 with target EGFR. Light cyan in-
dicates carbon, sulfur, hydrogen, and fluorine atoms. Black
indicates nitrogen atoms, and yellow indicates oxygen atoms.
It can be seen that the generated molecules bind to the tar-
get at distances between 2.4 Å and 3.1 Å, with the promising
vina scores. It indicates that there are the strong interactions
between the molecules and the targets. In addition, it is clear
that the shapes of the generated molecules are ideally suited
to the shapes of the active pockets.

To evaluate physicochemical properties of targeted
molecules generated by PAMol, we used ADMET [Fu et al.,
2024] to obtain radar charts of some basic properties, includ-
ing MW, nRig, fChar, nHet, MRing, nRing, nRot, TPSA,
nHD, nHA, logD, logS and logP, as shown in Figure 5. The
green line represents the physicochemical property scores of
the generated molecule, the blue outline indicates the upper
limit, and the red outline indicates the lower limit. It can be
seen that four targeted molecules (Mol K1, Mol K2, Mol E1
and Mol E2) meet most of the physicochemical property
standards.

4 Conclusion
This paper proposes a pocket-aware drug design framework,
namely PAMol, which captures the high-order structural in-
formation of protein pockets to generate molecules for spe-
cific targets. We constructed the hypergraph to represent the
intricate spatial structure of protein pockets, aiming to capture
high-order relations among residues and detailed neighbor-
hood information that reflects the local environment within
the pocket. We also fused the cross-modal embeddings from
protein pockets and molecules to guide and optimize the pro-
cess of molecule generation. In addition, we designed a Con-
ditional Molecule Generation (CMG) module that focuses on
the features of protein pockets including the high-order struc-
tural information. It learns the latent features and distribu-
tion patterns of molecules through an unsupervised discrim-
inator, and uses a supervised discriminator to optimize rele-
vant features of generated molecules to ensure compatibility
with specific pockets. Experiments show that PAMol can ef-
ficiently generate molecules for specific targets. In the future,
we will consider incorporating the molecule hypergraph and
further optimize the quality of generated molecules.
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