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Abstract

Heterophilic graph neural networks (GNNs) have
gained prominence for their ability to learn ef-
fective representations in graphs with diverse,
attribute-aware relationships. While existing meth-
ods leverage attribute inference during message
passing to improve performance, they often strug-
gle with challenging heterophilic graphs. This
is due to edge distribution shifts introduced by
diverse connection patterns, which blur attribute
distinctions and undermine message-passing sta-
bility. This paper introduces H2OGNN, a novel
framework that reframes edge attribute inference
as an out-of-distribution (OOD) detection prob-
lem. H2OGNN introduces a simple yet effective
symbolic energy regularization approach for OOD
learning, ensuring robust classification boundaries
between homophilic and heterophilic edge at-
tributes. This design significantly improves the sta-
bility and reliability of GNNs across diverse con-
nectivity patterns. Through theoretical analysis,
we show that H2OGNN addresses the graph de-
noising problem by going beyond feature smooth-
ing, offering deeper insights into how precise edge
attribute identification boosts model performance.
Extensive experiments on nine benchmark datasets
demonstrate that H2OGNN not only achieves state-
of-the-art performance but also consistently outper-
forms other heterophilic GNN frameworks, partic-
ularly on datasets with high heterophily.

1 Introduction
Heterophilic graph neural networks (GNNs) [Luan et al.,
2024; Ma et al., 2022; Li et al., 2023b; Gong et al., 2024]
have garnered significant attention due to their ability to pro-
cess both homophilic and heterophilic graphs. Unlike tradi-
tional GNNs, such as GCN [Welling and Kipf, 2017], GAT

∗Corresponding Author (cqhuang@zju.edu.cn)
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Figure 1: The left presents a trend graph that demonstrates how the
performance of existing methods significantly declines as the num-
ber of heterophilic edges increases. The inflection point occurs ap-
proximately when the ratio of heterophilic edges exceeds 60%, with
performance reaching its lowest point when the ratio hits or exceeds
80%. The right further investigates a potential cause for this decline,
revealing a shift in edge label semantics that leads to confusion in the
distribution. Insignificant differences in the edge-attribute distribu-
tions between the training and testing stages on graphs with more
than 80% heterophilic edges may contribute significantly to the sub-
stantial performance drop observed in current methods.

[Veličković et al., 2018], and GCNII [Chen et al., 2020], het-
erophilic GNNs have demonstrated remarkable performance
in real-world tasks, particularly when handling structured
data with heterophilic attributes.

A central challenge in the development of heterophilic
GNNs is effectively integrating graph structure and node
features to infer edge attributes and enhance the propaga-
tion of local homophilic features[Abu-El-Haija et al., 2019;
Zhu et al., 2020; Li et al., 2022; Chen et al., 2024; Bi
et al., 2024]. Enhancing local homophilic message pass-
ing has thus emerged as a fundamental objective. For in-
stance, methods like MixHop [Abu-El-Haija et al., 2019] and
H2GNN [Zhu et al., 2020] address this challenge by aggre-
gating information from higher-order neighbors with simi-
lar attributes, improving the transmission of homophilic fea-
tures. Other approaches, such as GloGNN++ [Li et al., 2022],
CAGNN [Chen et al., 2024] and DHGR [Bi et al., 2024],
have designed guidance mechanisms based on node-level
features to directly estimate edge attributes in local struc-
tures. These mechanisms enhance the perception and prop-
agation of homophilic features during message passing. Re-
cent advancements have expanded the scope of heterophilic
GNNs by exploring diverse learning paradigms. For exam-
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ple, heterophilic GNNs based on contrastive learning [He
et al., 2023; Li et al., 2023a; Wang et al., 2024] lever-
age the power of representation learning to strengthen lo-
cal message passing. Similarly, spectral domain appraoches
on heterophilic GNNs [Bo et al., 2021; Luan et al., 2022;
Li et al., 2024] provide new insights from a frequency-
domain perspective.

Although these methods have shown success, they pri-
marily rely on node-level representations to infer edge at-
tributes, which poses significant challenges in scenarios in-
volving high heterophily. As the proportion of heterophilic
edges increases, the graph’s connectivity patterns become
more complex and diverse. This complexity disrupts the sta-
bility and reliability of message passing, resulting in deteri-
orated performance, particularly in graphs with a higher pro-
portion of heterophilic edges. As shown in Figure 1(a), the
performance of these algorithms significantly declines as the
number of heterophilic edges increases. Upon further investi-
gation, we identify the underlying cause of this performance
degradation: insignificant distribution shift. Figure 1(b) il-
lustrates how graphs with a high ratio of heterophilic edges
exhibit unclear distinctions in the disbrituion of homophilic
and heterophilic edge semantics between training and testing
phases. This unclear distribution shift arises due to the in-
creased diversity in the classes of connected nodes, making
it difficult to compress edge semantics, determined by node
representations, into a binary attribute space (homophily vs.
heterophily).

To address this limitation, we propose a novel approach
that shifts focus from node-level to edge-level representa-
tions. However, distinguishing between homophilic and het-
erophilic edge in the presence of insignificant attribute distri-
bution shifts remains a significant challenge. We frame this
problem as an Out-of-Distribution (OOD) detection issue,
where OOD samples, which differ in distribution from in-
distribution (IND) data, must be identified [Song and Wang,
2022; Liu et al., 2023; Cai et al., 2025b]. By reframing the
problem in this way, we can design more reliable and sta-
ble message-passing paradigms that can handle heterophilic
graphs more effectively.

In summary, this paper introduces a novel heterophilic
GNN framework, H2OGNN, which employs an edge-level
OOD detection strategy to improve performance. The main
contributions of this paper are as follows.

• New Problem Formulation: By defining heterophilic
edges as OOD samples, we propose a new problem for-
mulation from the perspective of OOD detection. This
formulation lays the foundation for heterophilic graph
representation learning, enabling a clearer separation be-
tween homophilic and heterophilic edge distributions.

• New Learning Framework: We present H2OGNN, a
novel framework that incorporates a signed energy regu-
larization OOD method for inferring edge-level attribute
semantics. This method improves the generalization of
GNNs across diverse connection patterns and establishes
clear boundaries between homophilic and heterophilic
edge attributes. As a result, H2OGNN ensures robust
edge attribute identification, making it highly effective

for a variety of graph learning tasks.

• Theoretical Insight: To further validate H2OGNN, we
provide a theoretical proof that it is equivalent to solv-
ing the graph denoising problem with signed smoothing.
Additionally, we offer an enhanced explanation of the
graph denoising process from the OOD detection per-
spective, which deepens our understanding of the under-
lying mechanism of H2OGNN.

2 Preliminaries
Consider a graph G = (V, E) consisting of a vertex set V
with N = |V| vertices, and an edge set E with M = |E|
edges. The vertex feature matrix is denoted by X ∈ RN×m.
Let Y ∈ RN denote the labels. The fundamental task of
node classification is to find the optimal mapping g∗θ from X
to Y such that Y = g∗θ(X), where g∗θ is typically fitted by a
GNNs model with parameters θ. A key aspect of this task in-
volves designing an effective message-passing (MP) scheme
to generate node representations that align with the task’s re-
quirements. Traditional MP methods often struggle to ag-
gregate useful information effectively, especially in the pres-
ence of numerous heterophilic edges in heterophilic graphs.
For heterophilic graphs, it is crucial to differentiate between
homophilic and heterophilic connections. In the following,
we introduce the definition of homophilic/heterophilic edges
(See Definition 1) along with commonly used quantification
metrics for the homophily ratio of edges (See Definition 2).

Definition 1. (Homophilic/Heterophilic Edge) A homophilic
edge is a link between two nodes that share the same type,
while heterophilic edge connects two nodes of different types.

Edge Homophily/Heterophily. The homophily of a graph,
from the perspective of its edges, is typically measured as the
proportion of homophilic edges. Conversely, the heterophily
of a graph is calculated by subtracting its homophily from
1. For simplicity, only edge homophily is considered in the
subsequent section. The specific calculation method is given
in Definition 2.

Definition 2. The edge homophily (H) on a graph is defined
as:

H =
|{(v, u) ∈ E : yv = yu}|

|E|
, (1)

where yv and yu are the labels of nodes v and u, respectively.

3 Methods
This section provides an in-depth analysis of our proposed
framework, H2OGNN. It includes the problem formulation
(see Section 3.1), a detailed explanation of the framework
(see Section 3.2), and its theoretical underpinnings (see Sec-
tion 3.3). Further insights into the design motivation are pro-
vided in Appendix C1.

3.1 Problem Formulation
We aim to model the attribute distribution of edges and pro-
pose a novel problem formulation for representation learning

1https://kellysylvia77.github.io/H2OGNN/Appendix.pdf
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on heterophilic graphs from an OOD detection perspective,
as described in Problem 1. Additionally, we incorporate the
more challenging and realistic Hypothesis 3.1 into the model
design.
Problem 1. (OOD Detection Perspective) Given a graph
G = (V, E ,X), a label set Y = {yv}v∈V and a train-
ing set D = {xv, yv}v∈Vtrain drawn from G, from which
the known homophilic edge set Ein and heterophilic edge set
Eout on G can be determined. The objective is to jointly op-
timize an edge attribute discriminator p∗θ and a graph pre-
dictor g∗ϕ that achieves optimal generalization representation
under significant differences in attribute distributions, i.e.,
p(Ein) ̸= p(Eout):

p∗θ, g
∗
ϕ = argmin

θ,ϕ
Ev∈Vtrain

[L(gϕ({pθ(u, v)xu :

u ∈ N (v)}), yv)], (2)

where pθ(u, v) denotes the estimated attribute of edge (u, v)
and N (v) is the neighbors set of node v.

Remark: From the perspective of OOD detection, it is es-
sential that p(Ein) ̸= p(Eout). However, several factors com-
plicate the learning of differentiated attribute distributions.
These include the limited availability of labeled training data,
the challenge of learning edges with similar semantics but
different attributes, and the difficulty of handling edges with
distant semantics but identical attributes. As a result, design-
ing an optimal edge attribute discriminator p∗θ becomes the
most challenging aspect of this problem formulation.

Two dissimilar nodes in a graph are often connected due
to shared similarities in specific knowledge domains, which
may also influence the linking patterns observed among sim-
ilar nodes.

3.2 The H2OGNN Framework
Guided by the problem formulation, we introduce a novel
framework for heterophilic GNNs. This framework addresses
the challenges of learning effective representations for het-
erophilic graphs while incorporating OOD detection. By
unifing generalization and detection, it enhances edge-aware
inference, thereby improving representation learning for het-
erophilic graphs. We name this framework H2OGNN, as il-
lustrated in Figure 2.

Aligning edge-attribute Inference with OOD Detection
to enhance edge-aware learning. Accurate edge-attribute
inference plays a crucial role in facilitating effective knowl-
edge propagation during local message passing. We hypoth-
esize that aligning edge-attribute inference with the OOD de-
tection task provides an effective approach. To achieve this,
we first sample in-distribution (IND) and OOD data from the
graph structure based on edges with known attributes, sup-
porting subsequent OOD detection for edge attribute identi-
fication. Specifically, We define heterophilic edges as OOD
samples and homophilic edges as IND samples, as follows:

Eind = {(u, v) : yu = yv}, Eout = {(u, v) : yu ̸= yv}, (3)

where (u, v) is sampled from the training data. The edge set
E is then divided into three subsets: E = Eind ∪ Eout ∪ Eun,
where Eun is the set of edges with unknown attributes. The

objective of aligning edge-attribute identification with OOD
detection is to model the distribution boundary between sam-
ples from Eind and Eout, enabling effective inference of edge
attributes in Eun. Next, a key challenge arises in ensuring the
accurate identification of homophilic edges across different
attributes while maintaining robust detection of heterophilic
edges under the more realistic conditions described in Hy-
pothesis 3.1.

Energy-based modeling for edge attribute distribu-
tion to establish boundaries between homophilic and het-
erophilic edges. To address this challenge, we propose an
effective solution: a unified approach to generalization and
detection in edge identification. Specifically, we use logits
pθ(r(u,v)|G) to derive the distribution of edge attributes, en-
abling direct estimation of the attribute r(u,v) for any edge
(u, v) ∈ E , based on the graph structure G = (X,A). For-
mally, the probability distribution is expressed as:

pθ(r(u,v)|G) =
efθ(G,r)∑

r′∈A efθ(G,r′)
. (4)

Here, A = {0, 1} denotes an indicator set. fθ(G, r) is a fea-
ture transformer that fuses the node features and adjacency
matrix into a representation for node-pairs. To further en-
hance our approach, we seek to train an effective boundary for
the edge attribute distribution using energy-based methods.
By defining the relationship between the energy function and
probability density through an EBM model [Ranzato, 2007;
Cai et al., 2025a], we define an energy form E(G, r; fθ) =
−fθ(G, r). Additionally, the free energy function E(G, r; fθ)
marginalizes over r(u,v) and is given by the denominator in
Eq. (4):

E(G, r; fθ) = − log
∑
r′∈A

efθ(G,r
′). (5)

It is important to note that the energy function is derived
directly from the predicted logits, with no modifications to
the parameterization. The non-probabilistic energy score in
Eq. (5) incorporates information from the specific edge in-
stance, as well as potential dependencies with other instances
based on the observed structures. While optimizing the en-
ergy scores effectively models the distribution boundary, en-
suring the generalizability of the in-distribution data, specifi-
cally for the homophilic edge distribution, remains challeng-
ing—a common issue in existing OOD detection methods. To
address this, we propose further symbolizing the energy and
applying signed energy inference to align information from
edges with identical attributes to enhance the generalizabil-
ity of the in-distribution data. The signed inference rule is as
follows:

Ẽ(u,v) = Sign(E(u,v) < τ), (u, v) ∈ E , (6)

where E(u,v) represents the energy function E(G, r; fθ) and
Sign(·) is a signed discriminative function that compares the
energy with a threshold τ . This function enforces similar-
ity for edges with the same attributes and differentiation for
edges with different attributes.

Remark: We introduce hard constraints on the energy gap
through a regularization loss Lreg , which bounds the energy
value for in-distribution data (i.e., labeled instances in Ein
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Figure 2: Schematic diagram of H2OGNN: A unified OOD framework for heterophilic graph representation learning.

and for OOD data (i.e., auxiliary training instances in Eout
from a different distribution). The regularization term Lreg

offers great design flexibility. We define it as bounding con-
straints on the signed energy values, as follows:

Lreg=
1

|Eind|
∑

(u,v)∈Eind

(
ReLU

(
Ẽ(G, r(u,v); fθ)−ρind

))2

+

1

|Eout|
∑

(u,v)∈Eout

(
ReLU

(
ρout − |Ẽ(G, r(u,v); fθ)|

))2

, (7)

where bounds the values within the range [ρind, ρout] to de-
crease for in-distribution samples and increase for out-of-
distribution samples. This approach encourages the dis-
tinction between homophilic edges and heterophilic edges,
while simultaneously pulling together edges with the same at-
tributes.

Signed message passing for effective representation
learning. We use signed GNNs that align with the weak bal-
ance theory assumption to learn node representations. This
not only optimizes the overall objective of graph representa-
tion learning but also enhances the performance of edge at-
tribute distribution modeling. Specifically, we employ signed
message passing to distinguish between homophily and het-
erophily attributes. A formal description is provided below:

H(l+1)
v = gϕ

({
tanh(Ẽ

(l)
(u,v))H

(l)
u : u ∈ N (v)

})
, (8)

where H(l) represents the feature derived from the l-th layer
of message passing, with the specific initial condition H(0) =
X. gϕ(·) is a signed message passing function. Regardless
of the aggregation strategy used in the message-passing pro-
cess, the primary step in signed message passing is to de-
fine a rule for assigning appropriate symbolized coefficients.
tanh(·) further normalizes the energy values, preventing gra-
dient explosion in this model.

Remark: The sign inference based on edge identification
is reasonable, as it implicitly implements the structural bal-
ance theory, similar to the discussion in [Liang et al., 2023],
following the idea that “the homophilic neighbor of my het-
erophilic neighbor is a heterophilic node.” This suggests that
our strategy can accurately predict the label relationships be-
tween direct neighbors, thereby supporting signed message
passing to achieve effective representation learning.

3.3 Theoretical Analysis

Existing research [Ma et al., 2021; Zhu et al., 2021] shows
that most standard GNNs can be reduced to a graph informa-
tion denoising problem, formulated as

argmin
H

∥H−X∥22 + ξ · tr
(
HTLH

)
, (9)

where L = D −A is the graph Laplacian matrix, and ξ is a
constant coefficient. The term tr

(
HTLH

)
represents Lapla-

cian regularization, enforcing feature smoothness between
connected nodes. This implies that features of heterophilic
nodes become overly smoothed in GNNs, reducing class sep-
arability—a key reason why standard GNNs perform poorly
on heterophilic graphs, where most connections are between
heterophilic nodes. However, in open-world scenarios, het-
erophilic nodes often connect due to shared knowledge, and
smoothing over this knowledge can enhance node representa-
tions. Hypothesis 3.1 suggests aggregating shared knowledge
along edge attributes, dividing graph filtering into two types:
feature smoothing along homophilic edges and differentiated
feature smoothing along heterophilic edges. This generalizes
the traditional graph signal denoising problem in Eq. (9) as
follows.

Theorem 1. The proposed H2OGNN is equivalent to tackling
the attribute-aware graph denoising probelm, which can be
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Datasets Cora Citeseer Pubmed Actor Cornell Texas Wisconsin Chameleon Squirrel RankEdge Hom. H 0.81 0.74 0.80 0.22 0.30 0.11 0.21 0.23 0.22

MLP 75.69±2.00 74.02±1.90 87.16±0.37 36.53±0.70 81.89±6.40 80.81±4.75 85.29±3.31 46.21±2.99 28.77±1.56 11

GCN 86.98±1.27 76.50±1.36 88.42±0.50 27.32±1.10 60.54±5.30 55.14±5.16 51.76±3.06 64.82±2.24 53.43±2.01 13
GAT 87.30±1.10 76.55±1.23 86.33±0.48 27.44±0.89 61.89±5.05 52.16±6.63 49.41±4.09 60.26±2.50 40.72±1.55 14

GCNII 88.37±1.25 77.33±1.48 90.15±0.43 37.44±1.30 77.86±3.79 77.57±3.83 80.39±3.40 63.86±3.04 38.47±1.58 6

MixHop 87.61±0.85 76.26±1.33 85.31±0.61 32.22±2.34 73.51±6.34 77.84±7.73 75.88±4.90 60.50±2.53 43.80±1.48 12
H2GCN 87.87±1.20 77.11±1.57 89.49±0.38 35.70±1.00 82.70±5.28 84.86±7.23 87.65±4.98 60.11±2.15 36.48±1.86 8
LINKX 84.64±1.13 73.19±0.99 87.86±0.77 36.10±1.55 77.84±5.81 74.60±8.37 75.49±5.72 68.42±1.38 61.81±1.80 10

GPR-GNN 87.95±1.18 77.13±1.67 87.54±0.38 34.63±1.22 80.27±8.11 78.38±4.36 82.94±4.21 46.58±1.71 31.61±1.24 9
ACM-GCN 87.91±0.95 77.32±1.70 90.00±0.52 36.28±1.09 85.14±6.07 87.84±4.40 88.43±3.22 66.93±1.85 54.40±1.88 3rd
GloGNN++ 88.33±1.09 77.22±1.78 89.24±0.39 37.70±1.40 85.95±5.10 84.05±4.90 88.04±3.22 71.21±1.84 57.88±1.76 2nd

CAGNN 87.28±1.01 76.03±1.16 89.74±0.55 35.83±0.73 81.35±5.47 85.13±5.73 82.55±4.17 69.16±1.90 61.82±1.45 7
HopGNN+ 87.57±1.33 76.69±1.56 90.28±0.42 37.09±0.97 84.05±4.48 82.97±5.12 85.69±5.43 71.21±1.45 64.23±1.33 4
PEGFAN 87.16±1.31 76.92±1.57 89.56±0.30 35.48±0.94 86.22±4.75 86.22±3.30 86.67±4.28 80.31±1.10 75.06±1.72 4

H2OGNN 88.09±0.85 77.17±1.25 89.37±0.26 37.09±0.71 86.76±5.85 89.73±3.97 86.08±3.09 78.82±1.28 75.06±2.15 1st

Table 1: Comparative Performance of various GNNs on homophilic graphs and heterophilic graphs. The best-performing model is highlighted
in red, the second-best in blue, and the third-best in green.

generalized as follows:

argmin
H

∥H−X∥22 + ξ · tr
(
HTL+H

)
+ ξ · tr

(
HTL−H

)
,

where L+ = D+ −A+,L− = D− +A−,

s.t. D+ +D− = D,A+ −A− = A,

A+,(i,j) ∈ [0, 1],A−,(i,j) ∈ [−1, 0]. (10)

The first term, tr
(
HTL+H

)
, enforces feature smoothing

along homophilic edges, enhancing similarity among similar
nodes. In contrast, the second term, tr

(
HTL−H

)
, promotes

differentiated feature smoothing along heterophilic edges,
capturing key information from dissimilar but knowledgeably
connected nodes.

The energy E(G; fθ) allows for the distinction between ho-
mophilic and heterophilic edge attribute distributions. This is
achieved by modeling the distributions as two terms, repre-
sented in terms of log data density, which decrease as den-
sity increases. This formulation aligns with the ideal condi-
tions for OOD detection. Formally, the energy function is
expressed as:

E(G; fθ) =− logE(u,v)∈Eind
pθ(r(u,v) = 1|G)︸ ︷︷ ︸

↓ for homophilic edges

− logE(u,v)∈Eind
pθ(G)︸ ︷︷ ︸

↓ for homophilic edges

+ C.
(11)

The above equation shows that E(G; fθ) promotes attribute
inference by effectively distinguishing IND and OOD data.
The second term benefits energy-based OOD detection by
aligning with the principle that higher probability densities
(homophilic samples) correspond to lower scores, meeting
the requirements for OOD detection. The first term further
enhances the discriminability between IND and OOD data, as
OOD data is expected to have a lower conditional likelihood.
A key advantage of our approach is that it avoids the com-
putationally expensive task of directly estimating joint like-
lihoods with generative models, making it more practical for
deployment on complex datasets.

For any energy distribution regularization term Lreg , the
edge attribute discriminator p∗θ that minimizes Lreg produces

energy distribution scores that are upper-bounded by ρind for
homophilic edges and lower-bounded by ρout for heterophilic
edges, where ρind < ρout are two margin parameters.

The implications of this proposition are significant, as it
demonstrates that our chosen regularization term, Lreg , en-
sures optimal energy distribution scores for identifying het-
erophilic edges across the graph while maintaining alignment
with the supervised training of the graph predictor. As a re-
sult, this approach provides a training objective that guar-
antees precise discrimination between homophilic and het-
erophilic edges in the training set, while simultaneously en-
hancing the quality of representation learning.

All theoretical proofs are provided in Appendix D.

4 Experiments
In this section, we present a series of experiments designed to
evaluate the performance of H2OGNN in addressing the chal-
lenges of homophilic/heterophilic graph learning from OOD
detection perspective. The primary objectives of these exper-
iments are to answer the following key questions:

Q1: Can H2OGNN effectively handle heterophilic graphs?
(Section 4.3)

Q2: Do OOD detection strategies enable effective edge at-
tribute identification? (Section 4.4)

Q3: How does H2OGNN demonstrate its power and ro-
bustness? (Section 4.5 and Section 4.6)

Additional details and experiments can be found in Ap-
pendix A and Appendix B.

4.1 Datasets
To comprehensively evaluate the performance of H2OGNN,
we conducted experiments on nine real-world datasets, in-
cluding comparisons, effect studies, and efficiency analysis.
We grouped these datasets into two categories, homophily
and heterophily, by edge homophily, as defined in Defini-
tion 2. Specifically, datasets with homophily ratios greater
than 0.5 are classified as homophily, while those with ratios
less than or equal to 0.5 are classified as heterophily. For
all benchmarks, we used the feature vectors, class labels, and
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Figure 3: Visualization of the edge identification performance on homophilic and heterophilic graphs. From left to right are the results on
datasets Pubmed, Wisconsin, Cornell, and Texas. The results indicate that energy-based method contributes to the effective expression of the
energy margin between homophily (Homo.) and heterophily (Hete.) edges.
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Figure 4: A trend graph showing the performance variations of ex-
isting methods and H2OGNN as the proportion of heterophilic edges
increases.
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Figure 5: Efficiency analysis on the Citeseer (left) and Chameleon
(right) datasets. The x-axis represents training time, while the y-axis
denotes the accuracy score on the validation set.

ten random splits (48%/32%/20% of nodes per class for train-
ing/validation/testing) from [Pei et al., 2020]. The dataset de-
tails are summarized in Appendix A.

4.2 Experiment Setup
We evaluate the performance of H2OGNN by comparing it
against both conventional GNNs and specialized heterophilic
GNNs. The conventional GNNs include classical models
such as GCN [Welling and Kipf, 2017], GAT [Veličković
et al., 2018], and GCNII [Chen et al., 2020]. For het-
erophilic GNNs, we benchmark against several representa-
tive methods, including MixHop [Abu-El-Haija et al., 2019],
H2GCN [Zhu et al., 2020], PR-GNN [Chien et al., 2021],
LINKX [Lim et al., 2021], ACM-GCN [Luan et al., 2022],
GloGNN++ [Li et al., 2022], CAGNN [Chen et al., 2024],
HopGNN+ [Chen et al., 2023], and PEGFAN [Li et al.,
2024].

Implementation Details. We implement H2OGNN using
PyTorch and conducted all experiments on a single NVIDIA
RTX A6000 GPU with 48GB of memory, employing Adam

[Kingma and Ba, 2014] as the optimizer. Hyperparameters
were tuned through grid search, with specific values such as
learning rates in {5e−4, 5e−3, 5e−2, 1e−2}, weight decay
in {5e−7, 5e−6, 5e−5, 1e−4, 5e−4, 1e−3, 1e−2}, hidden
dimensions in {32, 64, 128, 256, 512, 1024, 2048}, and layer
numbers range in [1, 128]. As results for most baseline meth-
ods on our benchmark datasets are publicly available, we re-
port these directly. For cases where results were unavailable,
we ran the original code provided by the authors.

4.3 Comparative Experiments: Heterophilic
Challenge (RQ1)

We evaluate H2OGNN on both homophilic and heterophilic
graphs, with results shown in Table 1. Significant observa-
tions from the analysis are as follows:

Observation 1: Most heterophilic GNNs struggle with
complex heterophilic graph data. Many heterophilic GNNs
struggle with all types of heterophilic graphs, particularly in
datasets like Actor, Chameleon, and Squirrel, which are char-
acterized by high proportion of structural imbalance. In these
cases, most methods fail to achieve satisfactory performance.

Observation 2: H2OGNN excels on both homophilic
and heterophilic graphs. H2OGNN outperforms other
heterophilic GNNs overall and performs well on complex
datasets like Actor, Chameleon, and Squirrel.

4.4 Effect of Integrating OOD Detection (RQ2)
The H2OGNN framework introduces a novel OOD detection
method based on signed energy regularization. This approach
distinguishes homophilic and heterophilic edges by assign-
ing different energy scores and minimizing shifts for edges
with the same attribute by using consistent signs. Figure 3
shows the energy distribution of homophilic and heterophilic
edges across datasets, highlighting how our strategy captures
attribute differences while avoiding excessive energy shifts.
Additionally, Figure 4 illustrates H2OGNN’s performance
trend with OOD detection as the proportion of heterophilic
edges increases. Two key observations are summarized be-
low.

Observation 3: The OOD detection strategy effectively
models the classification margin of edge attributes. As
shown in Figure 3, the energy margin gaps reveal a clear
distinction between homophilic and heterophilic edges, indi-
cating that the energy-based edge representation is discrim-
inative and aids in edge attribute identification. Homophilic
edges mainly concentrate in the positive energy range, while
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Figure 6: Visualization of the deep aggregation feature in several baselines and H2OGNN on Squirrel dataset.

heterophilic edges are concentrated in the negative range.
This boundary not only keeps homophilic edges within a fo-
cused energy region but also minimizes semantic deviations
within the same attribute, enhancing generalization.

Observation 4: The OOD detection-based H2OGNN
maintains good performance on various heterophilic
graphs. As shown in Figure 4, H2OGNN, with its OOD
detection strategy, consistently outperforms other methods,
maintaining good performance even on graphs with a high
proportion (≥ 60%) of heterophilic edges, while others expe-
rience significant performance declines.

In summary, the introduced OOD detection strategy in this
paper demonstrates good edge recognizability and can effec-
tively distinguish between homophilic and heterophilic edge
attributes.

4.5 Efficiency Analysis (RQ3)
Simplicity is a key advantage of H2OGNN. To substantiate
this with quantitative evidence, we demonstrate its efficiency
by showing that it achieves rapid convergence on both ho-
mophilic and heterophilic datasets, as depicted in Figure 5.

Observation 5: H2OGNN converges relatively fast on
both homophilic and heterophilic datasets. On heterophilic
graphs, this is a relatively obvious observation; On the
homophilic graph Citeseer, although H2OGNN converges
slightly slower than the state-of-the-art work PEGFAN, we
achieve relatively higher performance and stability.

Observation 6: H2OGNN demonstrates significant ad-
vantages in both speed and performance on heterophilic
graphs. On the heterophilic graph Chameleon, it shows a
clear trend of rapid convergence compared to other baselines.
Although there was a brief performance decline in the train-
ing process, it quickly stabilized at a better accuracy result
subsequently.

4.6 Generalization Study (RQ3)
Higher generalization is another key advantage of H2OGNN.
We demonstrate its strength by showcasing the clustering
effects of the features captured by H2OGNN and its per-
formance in facing a classic challenge for GNNs—over-
smoothing. The experimental results can be seen in Figures 6
and 7.

Observation 7: H2OGNN can capture better feature
representations. In comparison with the feature visual-
ization of the baselines on heterophilic graphs, H2OGNN
achieves good category clustering effects within its deep fea-
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Figure 7: The performance of H2OGNN across both homophilic and
heterophilic datasets as the number of layers increases.

tures, demonstrating better intra-class clustering and inter-
class separability.

Observation 8: H2OGNN can alleviate the over-
smoothing. Over-smoothing is a key challenge in graph rep-
resentation learning. A robust and generalizable GNN should
combat this issue, ensuring performance remains stable as
the number of layers increases. Many standard GNNs suf-
fer significant performance degradation after just two layers.
In contrast, H2OGNN maintains stable performance on both
homophilic and heterophilic graphs, even with up to 128 lay-
ers.

In summary, H2OGNN possesses excellent feature repre-
sentation learning capabilities and robust and generalizable
performance, which sufficiently demonstrate the strong of
H2OGNN.

5 Conclusion
This paper introduces H2OGNN, a novel framework for het-
erophilic graph representation learning (GRL) that utilizes
OOD detection to infer edge attributes and enhance local
message passing. The proposed OOD strategy effectively bal-
ances generalization on IND samples while preserving dis-
tributional differences between homophilic and heterophilic
edges. This not only boosts message passing efficiency but
also enables more distinctive representations. Extensive ex-
periments demonstrate H2OGNN’s superior performance on
heterophilic graphs and its effectiveness in edge identifica-
tion. Additionally, we provide theoretical insights into how
H2OGNN improves performance on heterophilic graphs, un-
derscoring its potential to advance the field.
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