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Abstract

Graph learning models have been empirically
proven to be vulnerable to backdoor threats,
wherein adversaries submit trigger-embedded in-
puts to manipulate the model predictions. Current
graph backdoor defenses manifest several limita-
tions: 1) dependence on model-related details, 2)
necessitation of additional fine-tuning, and 3) re-
liance on extra explainability tools, all of which
are infeasible under stringent privacy policies. To
address those limitations, we propose GRAPH-
PROT, a certified black-box defense method to sup-
press backdoor attacks on GNN-based graph clas-
sifiers. Our GRAPHPROT operates in a model-
agnostic manner and solely leverages graph in-
put. Specifically, GRAPHPROT first introduces de-
signed topology-feature-filtration to mitigate graph
anomalies. Subsequently, subgraphs are sampled
via a formulated strategy integrating topology and
features, followed by a robust model inference
through a majority vote-based subgraph prediction
ensemble. Our results across benchmark attacks
and datasets show GRAPHPROT effectively reduces
attack success rates while preserving regular graph
classification accuracy.

1 Introduction

The abundance of graph data has led to the widespread adop-
tion of graph learning models, such as Graph Neural Net-
works (GNNs), across diverse domains including social net-
work analysis [Fan et al., 2019], molecular biology [Wieder
et al., 2020], and recommendation systems [Safae et al.,
2023; Wu et al., 2021]. With the increasing complexity of
these models, there is a growing trend to outsource the train-
ing process to third parties, giving rise to a popular business
model known as Machine Learning as a Service (MLaaS).
While MLaaS can significantly simplify model training, it
concurrently raises critical security concerns, particularly
backdoor risks. Specifically, adversaries utilize poisoning
training to implant backdoor and exploit trigger-embedded
inputs to activate it for output manipulation.

*Corresponding author.

To mitigate graph backdoors, several defense methods have
been developed. Those methods leverage explainability to
identify and remove triggers based on external tools, model-
relevant details, and loss functions [Jiang and Li, 2022;
Downer et al., 2024], or employ additional benign samples or
model parameters for fine-tuning to mitigate backdoor impact
[Zhang et al., 2024; Yang et al., 2024]. However, to safeguard
the privacy and intellectual property of the model owner and
prevent extraction attacks, defenders are commonly prohib-
ited from using the aforementioned model-related informa-
tion or utilizing auxiliary data to fine-tune the model. This
restriction makes it challenging to implement current meth-
ods in MLaaS scenarios.

To address the limitations, we deploy input subgraph de-
tails for prediction to mitigate backdoor effects induced by
triggers. Within malicious graph input, trigger is the func-
tional component, despite comprising a small fraction. Sup-
pose the subgraph entirely lacks the trigger or contains only a
trivial fragment, the backdoor will remain dormant and fail to
activate. For one malicious input, most predictions of its sub-
graphs are typically normal. Hence, we determine output by
majority vote on predictions of subgraphs within suspicious
test graphs to avoid malicious results in testing. For benign
samples, assuming that the subgraph incorporates sufficient
feature-rich information, the accuracy of majority vote can
be guaranteed.

Based on this insight, we propose GRAPHPROT, a certi-
fied black-box defense method against backdoor attacks on
GNN-based graph classifiers. It functions within the test-
ing phase to ensure robust output, irrespective of input mali-
ciousness or benignity, demanding exclusively graph inputs.
Specifically, for the test input, we first implement designed
feature clustering and topological clustering to filter out the
potential anomalous parts maximally. Subsequently, multi-
ple subgraphs are sampled from the filtered graph utilizing
three proposed methods, founded on topology connectivity
and node characteristics. Finally, we use one devised ensem-
ble classifier to predict the subgraphs and perform majority
vote on the results to derive the inference decision for the
input. Additionally, we provide a certified robustness proof
for GRAPHPROT, showing that, under specific trigger size,
no further attack attempts can compromise its certified ef-
ficacy—regardless of trigger type or target. The proposed
method is depicted in Fig. 1. Our contributions are listed
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as follows:

* We propose GRAPHPROT, a provable black-box back-
door defense method for graph classifiers, which oper-
ates solely on the input test graph and several queries.
The method functions independently of model-specific
knowledge, supplementary resources, or external tools.

L]

In GRAPHPROT, we introduce a graph anomaly filtering
method to maximally eliminate segments with signifi-
cant anomalies in both features and topology. Moreover,
we devise three subgraph sampling strategies based on
topology and node characteristics.

Evaluation results reveal that GRAPHPROT can ef-
fectively reduce attack success rates, attaining effi-
cacy comparable to white-box defenses and exhibiting
marginal reductions in benign data accuracies.

2 Related Work

2.1 Graph Neural Backdoor Attack

This attack aims to manipulate graph models to out-
put adversary-prescribed targets upon receiving trigger-
embedded graphs.

Backdooring graph model is implemented by data-
poisoning [Xi et al., 2021; Zhang et al., 2021; Li et al., 2024].
Adversaries incorporate premeditated triggers A into part of
training graphs Dy, and modify their ground truths as targets
ya to compel the model f(-) to learn the mapping between
A and ya in training. The trained f(-) misclassifies trigger-
embedded graphs as ya, while correctly classifying benign
data.

To adapt backdoors to multiple graph learning scenarios,
the data-poisoning paradigm has been improved to suit the
demands of federated learning, contrastive learning, prompt
learning, and hardware-based graph systems [Xu er al., 2022;
Zhang et al., 2023; Lyu et al., 2024; Alrahis er al., 2023].
Moreover, several studies augment backdoor efficiency, effi-
cacy, and concealment through explainability, transferability,
multi-targets, and spectrum [Xu ef al., 2021; Zheng et al.,
2024; Yang et al., 2022; Wang et al., 2024; Zhao et al., 2024].

2.2 Graph Neural Backdoor Defense

Currently, only several defenses are researched for graph
backdoors, which identify and eliminate triggers within test
graphs to detect attacks and avoid backdoor activations.

Graph classification backdoor defense is initially explored
via explainability tools and available poisonous data to set
thresholds for recognizing and removing malicious triggers
[Jiang and Li, 2022]. Moreover, clustering is introduced to
identify triggers and utilize model structure details for fine-
tuning to enhance robustness [Yang er al., 2024]. Also, ex-
plainability metrics from logits and topology are harnessed to
inspect sample poisoning [Downer et al., 2024].

3 Background

3.1 Graph Classification

A graph is represented as G = (V,E,X) € G, where
V = {v1,v2,...,v,} is a set of n nodes, E denotes the set

of edges connecting the nodes in V, and X € R"*4 signifies
d-dimensional feature for all nodes v € V. With a training
set Dy, = {(Gi,yi)}7-, containing training graphs G; and
their corresponding ground truth y; € ), a graph classifier
f() : G — Y can be trained. Given a testing graph G,
the model can then be utilized to predict its label: f(G) =
y. Typically, the graph classifier is a GNN-based model
such as GCN, SAGE, and GAT [Kipf and Welling, 2017;
Hamilton et al., 2017; Veli¢kovié et al., 2018].

3.2 Threat Model

Graph model owners can externalize the training to MLaaS
providers and provision trained models for end-user interac-
tion. However, adversaries can implant backdoors by com-
promised training processes or data-poisoning. To counter
these vulnerabilities, defenders must implement countermea-
sures, while upholding privacy and intellectual property pro-
tection policies.

Adversary’s Goals and Capabilities

Given a graph classifier f(-), the adversary aims to embed
backdoor within f(-), which misclassifies graphs with trigger
A = (V* E* X*) (e.g., specific subgraph) into premedi-
tated class: f(G @ A) = ya, while functioning normally
on benign graphs: f(G) = y. To validate the efficacy of our
method, we adopt the most stringent white-box attack setting,
where adversaries can manipulate the training process, access
model-concerned information, and acquire full training and
additional datasets for attacks.

Defender’s Goals and Capabilities

Current graph backdoor defenses work under white-box or
gray-box settings, wherein the defenders have unrestricted or
partial access to model-related knowledge, e.g., parameters,
layer embeddings, and accessible datasets. However, due to
privacy policies and access restrictions, a black-box assump-
tion is more realistic. In this study, we adopt a strictly black-
box defense with only access to the input and limited queries.

4 Methodology

4.1 Overview

Given a suspicious test graph (G, GRAPHPROT executes
a three-step workflow to ensure robust inference, circum-
vent potential backdoor activation, and preserve benign sam-
ple accuracy. (1) We detect and purge potential anomalies
by topology-feature-filtering mechanism. (2) Multiple sub-
graphs are sampled by leveraging both the structural topol-
ogy and intrinsic node attributes. (3) These subgraphs are re-
tained for predictions, with robust GNN inference aggregated
via majority voting. The framework is shown in Fig. 1. The
theoretically certified defense proof is articulated in Sec. 4.3.

4.2 Detailed Method

Graph Anomaly Filtration

This step aims to maximally mitigate explicit anomalous
nodes Vinomary (i-e., outliers) within the test graph G' (not full
removal). Certain explicit Visomay manifest feature distribu-
tions that diverge substantially from the inherent properties
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Figure 1: Depiction of the proposed GRAPHPROT, comprising three steps: (1) Graph Anomaly Filtration; (2) Trimodal Subgraph Sampling;
and (3) Robust Model Inference. Initially, anomalous nodes are maximally pruned via a clustering-based heuristic. Subsequently, multiple
subgraphs are extracted from the original graph by topology and features. Finally, a dedicated majority-vote ensemble classifier aggregates

subgraph-level predictions and determines the robust output.

and structural regularities of G. Furthermore, Vinomaly Neg-
atively impact data predictions as they significantly deviate
from original dataset distribution, resulting in inaccuracies or
output instability. To identify them to the maximum degree,
clustering methods are employed, exploiting the disparities in
their feature distributions relative to the normal dataset. Us-
ing clustering, G is subdivided into anomalous and benign
components, and the smaller portion is excluded, given that
Vanomaty forms only a peripheral fraction of poisoned graphs.
The filtration procedure is described as follows:

C(G) = {1, Va}, (1)
G = (V/,E/,X')
V! = V\ (argminvle{vlyz} ‘V;D )

st. ¢ B ={(u,v) e E|lueV' AveV'}
X/:{$i|$i EX/\UiGV/},
where C(+) is the clustering function and G’ signifies the fil-
tered test graph.

For clustering C(-), we harness the intrinsic attributes of
graph data. Topological and feature-driven clustering meth-
ods are independently deployed to identify anomalies, acquir-
ing discrete anomalous segments. The overlapping segment
is considered anomalous, while the rest is deemed normal.
The utilized clustering methods are outlined as follows:

* Topology Clustering: Some Vinomaly €xhibit distinctive
topology (e.g., anomalous density patterns or connectiv-
ity structures) that varies markedly from G. The Spectral
Clustering is used to divide nodes V' C G into two clus-
ters via the adjacent matrix A (from F, V). The cluster
with minimal cardinality is considered anomalous.

* Feature Clustering: Vynomaly may show distinct node fea-
ture distribution (e.g., abnormal central tendency or dis-
persion). We utilize Gaussian Mixture to divide V C G
into two clusters via feature matrix X C G and the clus-
ter with lower cardinality is designated as anomalous.

Trimodal Subgraph Sampling
This step samples the filtered graph G’ into K subgraphs. To
this end, we propose three sampling strategies, random sam-
pling (GRAPHPROT-R), fopology-sampling (GRAPHPROT-
T), and topology-feature sampling (GRAPHPROT-TF).

* Random Sampling (GraphProt-R): A subset of nodes

Vg € V' are randomly sampled according to the sample-
rate p = \“ig,“ and retain the topological and features of

Vg to form a subgraph G. This is demonstrated by
Vg =S(V', [p- [Val)), 3)
g= (Vg7Eg,Xg)
. Eg={(u,v) e E |ueVghvelVg} @
- Xg:{xi|xiEX,/\”U¢€Vg},

where S(-,-) refers to the random sampling operator
with two inputs: the sampling target and sample size.

» Topology Sampling (GraphProt-T): Spectral clustering
is employed on the adjacent matrix of G’ to partition

: V']

V' into | =
node from each cluster, with their topology and node at-

tributes retained, to construct the subgraph G. The pro-
cess is detailed below:
V']

S(G, {KJ) = {Q1,Qz,...,Q[|\I/<'\

G =(Vg, Eg, Xg)

81N Eg = {(vi,v5) | vi,v; € Vg, (vs,v5) € E'}
Xg = {ZL’2 ‘ v; € Vg,l’i S X/},

J clusters. We then randomly draw one

J}v (5

(6)
where S(-, -) is the spectral clustering function with two
inputs: the sampling target and the sample size.
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e Topology-feature Sampling (GraphProt-TF): Based on
the topology sampling results G of (GRAPHPROT-T),
we further conduct a feature-level selection. For each
Vg C G, a fraction r of the feature dimensions is
stochastically retained, preserving these values while ze-

roing the remainder to form the new node features X, /g:

X,g :{x;|x; :xi‘lUg;xi GXg}
U ~S({L2.....d}.[r-d]) ()

s.t. (1), = 1 ifj el
“9)7 =0 otherwise,

where the node feature vector z; is d-dimensional, Ug
indicates the selected feature dimensions, and 1, de-
notes the binary mask vector.

Robust Model Inference

This step infers prediction of the suspicious test G from K
sampled subgraphs {Gy.}. Given {G)} and the victim model
f(), each Gy, is individually classified via f(-), with the final
output determined by a majority vote ensemble. This proce-
dure can be delineated as follows:

9(G) = arg max Ny, (8)

NZ]I

where g(-) is the ensemble class1ﬁer, N, denotes the count of
subgraphs predicted as the class y, and I(-) represents the in-
dicator function. In the event of a tie, the label corresponding
to the smaller index is preferentially selected.

In the MLaaS setting, we take g(G) as the final output
for the suspicious test graph G, ensuring the prevention of
backdoor activation while maintaining benign input accuracy.
This approach operates within the constraint of querying the
black-box GNN K times, without relying on auxiliary infor-
mation or explainability tools.

f(Gr) =), 9

4.3 Certifying Robustness

Although GRAPHPROT is effective in the empirical evalua-
tion, its resilience to adaptive attacks (e.g., adaptive triggers
& targets) remains uncertain. Hence, we formally propose a
certified (provable) defense for our model GRAPHPROT-R so
that no further attacks can compromise the certified accuracy.

If the trigger involves injecting new nodes into the graph,
we find the worst-case node number of the trigger graph. Let
na denote the node numbers in poisoned subgraph Ga (W/
trigger nodes and edges).

Theorem 1. (Certified robustness for graph injection trig-
ger). Given a testing graph G, a trained backdoored graph
classifier f, and the ensemble classifier g defined in Eq. (8)
with random subgraph sampling (GraphProt-R). Let G de-
note the subgraphs with s nodes sampled from G with re-
placement. Suppose ya and yp are the classes with the most
votes and the second largest votes during the ensemble. We
define pa and pp as the lower and upper bound of proba-

bility P(f(G) = ya) and P(f(G) = yp), respectively. We

guarantee that the model still predicts class ya for graphs
G inserted with any trigger size smaller than r if:

MAys _gMA T
nAH%an)Srr( n ) 2( n )
+1—(pa—pB—0a—05)<0, (10)

where n and n are the node numbers in G and Ga, respec-
tively, and 54 = pa— (|pa-n®])/n®, 6p = ([p5-n°])/n° —
Dg are the residuals.

Note: In the main paper, s = |p - |V]].
Proof. See Appendix A in the supplementary materials. [

If the trigger is attached to the existing nodes (involves
node feature modification and edge modification among r
nodes), we have the following simplified certifying condition:

Theorem 2. (Certified robustness for in-graph trigger).
Given a testing graph G, a trained backdoored graph clas-
sifier f, and the ensemble classifier g defined in Eq. (8) with
subgraph random subgraph sampling (GraphProt-R). Let G
denote the subgraphs with s nodes sampled from G with re-
placement. Suppose ya and yp are the classes with the most
votes and the second largest votes during the ensemble. We
define pa and pp as the lower and upper bound of proba-
bility P(f(G) = ya) and P(f(G) = yg), respectively. We
guarantee that the model still predicts class ya for graphs
G inserted with any trigger size smaller than r if:
2") > 1= (pa-FE—da—0dn), (1D
where n, is the node numbers in G, and 54 = pa — (|pa -
n®|)/n®, dp = ([pB - n°|)/n® — Pg are the residuals.

Proof. See Appendix A in the supplementary materials. [

5 Experiment

In this section, we present the results of our comparative anal-
yses and ablation studies on GRAPHPROT. Notably, it func-
tions within rigorous black-box conditions (with access lim-
ited to the test graph and few queries). Consequently, we
primarily assess whether our approach achieves comparable
efficacy to current defense strategies.

5.1 Experimental Settings

Victim Models

We exploited 3 state-of-the-art (SOTA) GNN models as
benchmark targets for backdoor defense: (1) Graph Convo-
lutional Network, GCN, extending convolution operations on
graphs [Kipf and Welling, 2017]; (2) SAGE, which formu-
lates node embeddings by sampling and aggregating neigh-
borhood features [Hamilton et al., 2017]; and (3) Graph At-
tention Network, GAT, deploying attention mechanisms to
modulate node weights [Velickovié er al., 2018]. The mod-
els were subjected to backdoor attacks for subsequent defense
evaluations.
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Defense Performance (ASR% . | ADP% )

GNN Defense
Arch. Method AIDS ENZYMES DHFR NCI1 PROTEINS COLLAB
Backdoored GCN* 99.8 | 0.7 97.1 | 1.7 100 \ 2.2 99.5 \ 2.2 74.4 \ 0.2 94.4 \ 1.9
Benign GCN* 16500  204|00 15300 9400 21400 10.3 0.0
GNNSECURER 212183  268|84  172]59  220]52 324165 16.5 4.9
GCN FINE-PRUNING 35919.7 27.8|15.2 33.2(9.0 154122 312194 27.219.0
RS 40517 42315  525(06  27.6]1.1 328|06 31213
GRAPHPROT-R 19.5 | 4.1 271|137  235]|40 19432 185(52 | 162]34
GRAPHPROT-T 14219  143[28  17.6]29 [152]27 112]36 | 17.4]5.1
GRAPHPROT-TF 58149 9.717.5 14.0| 6.9 16.4 | 4.6 19.7] 4.1 19.1]7.9
Backdoored SAGE* 100 ] 0.8 95.3|2.0 100 | 1.5 97.1]1.8 704 1.8 98.0|0.5
Benign SAGE* 15300  18.6|00  20.1/00  114]00  174|00  17.0|0.0
GNNSECURER 20.5|10.2 30.8 4.4 17.6 | 4.4 20.2 3.7 28.1 4.2 23.6 4.2
SAGE FINE-PRUNING 38.5|6.9 23.3|4.7 35.1|13.1 16.6 | 9.0 36.7|13.9 30.2 9.2
RS 432 2.4 41.21-0.9 33.1|04 45.010.9 55.41-09 41.6 | -0.8
GRAPHPROT-R 27.3]6.8 25629 19.1 | 4.7 21.5|2.1 24.1 |54 23.6 2.2
GRAPHPROT-T 12.0 | 4.0 18.7 | 4.4 124 4.3 143 1.3 20.2 3.9 2141 1.5
GRAPHPROT-TF 15854 7.6|9.1 18.5|6.6 18.9]6.8 27.0 8.2 23.9|8.8
Backdoored GAT* 100 | 2.3 99.210.3 100 | 1.9 98.210.9 68.7]1.1 98.0 | 0.6
Benign GAT* 18300  204|00  145]/00  128]00  198[00  12.00.
GNNSECURER 17.8 | 10.7 17.5 4.8 13.5]5.8 16.7 | 2.8 18.6 | 3.7 21.4|8.0
GAT FINE-PRUNING 28.0|7.5 31.1|7.6 29.219.8 18274 29.8 | 13.6 54.4|12.1
RS 30.1|8.0 29.6 |-1.1 40.1 1.8 36.7 | -0.4 57.3 0.7 36.7 0.2
GRAPHPROT-R 179 1.6 24.8 | 3.8 17.51]5.6 164 1.9 22.114.1 21913.1
GRAPHPROT-T 14.7 | 4.7 18.0 | 2.7 14.1 |54 15.8 ] 2.1 19.1 |54 19.8 | 3.7
GRAPHPROT-TF 9372 11.2]2.9 204 |7.1 21.9 3.6 25.0 7.7 204 |54

Table 1: GRAPHPROT defense performance across SOTA GNNs and benchmark datasets.
Attack Methodologies Evaluation Metrics

We adopted 3 graph backdoor paradigms: (1) GTA, which
implements a trigger generator to forge a graph model im-
planted with backdoor via bi-level optimization [Xi et al.,
2021]; (2) SBA, harnessesing intricately designed subgraph
triggers to train the backdoored model [Zhang et al., 2021];
and (3) Motif, which designs triggers using motif statistics to
execute the attack [Zheng et al., 2024].

Experiment Datasets

We employed 6 benchmark datasets: AIDS [Rossi and
Ahmed, 2015], ENZYMES [Dobson and Doig, 2003], DHFR
[Morris et al., 20201, NCI1 [Wale and Karypis, 20061, PRO-
TEINS [Borgwardt et al., 2005], and COLLAB [Yanardag
and Vishwanathan, 2015]. For each dataset, we randomly al-
located two-thirds of the graphs for training the backdoored
victim model, preserving the remainder for empirical testing.

Comparison Baselines

The SOTA white-box defenses were opted for compara-
tive analysis: (1) GNNSECURER, incorporating topological
saliency metrics and model-intrinsic interpretability for back-
door identification [Downer et al., 2024]; (2) FINE-PRUNING,
mitigating backdoor through the systematic excision of se-
lective GNN parameters and iterative fine-tuning refinements
[Liu et al., 2018]; and (3) RS, robustified GNN framework,
which fortifies robustness by introducing random noise into
graph, coupled with classifier smoothing [Wang et al., 2021].

We analyze GRAPHPROT from two dimensions: (1) defen-
sive efficacy and (2) capacity to preserve benign input accu-
racy.

The effectiveness of defense mechanisms for poisoned
graph is primarily assessed by attack success rate (ASR):

#tsuccessful trials

#total attack input trials’
(12)
wherein a diminished ASR reflects better defensive efficacy.
The preservation of GNN performance post-defense for be-
nign samples is evaluated via accuracy drop (ADP) metric:

Accuracy Drop (ADP) = ACC, — ACC, (13)

Attack Success Rate (ASR) =

where ACC,; and ACC represent GNN accuracies on benign
data for the non-backdoored (benign) and backdoored mod-
els, respectively. A suppressed ADP signifies augmented per-
formance preservation.

Additionally, we utilize benign data accuracy of back-
doored GNN (i.e., ACC) in ablation studies to observe varia-
tions.

5.2 Comparison Study

Our GRAPHPROT is evaluated in 2 aspects: (1) efficacy
across various GNNs and datasets (cf. Tab. 1), and (2) ro-
bustness under diverse attack strategies and datasets (cf. Tab.
2). In the first evaluation, GTA is deployed as the attack (trig-
ger size = 5, bi-level optimization epoch = 20). The second
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Defense Performance (ASR% | | ADP% |)

Attack Defense
Method Method AIDS ENZYMES DHFR NCI1 PROTEINS COLLAB
Backdoored GCN* 592 |3.0 7421 1.5 79212 66.7 0.7 73432 82.4 (4.2
Benign GCN* 7.410.0 52100 2.5]0.0 9.310.0 4.210.0 8.1]0.0
GNNSECURER 19.5|7.2 23.6|12.7 28.8|7.6 19.5]6.0 24.816.5 29.319.5
SBA FINE-PRUNING 44.6 | 16.3 31.419.9 53.9|10.1 31.6|11.3 425|127 34.3110.9
RS 22911.0 19.6 1.3 23308 29.5]0.6 34.210.3 27.1|3.5
GRAPHPROT-R 17.6 | 6.3 16.2 5.9 23.812.3 21.3|3.2 26.5]6.1 19.7] 6.4
GRAPHPROT-T 10.0 | 3.8 9449 145]1.2 10.7 | 2.6 12.5]34 14.515.0
GRAPHPROT-TF 189|5.5 22.1|6.7 16.9 | 5.1 17.6 | 7.1 19.1]5.3 18.2]6.3
Backdoored GCN*  96.5|1.2 82.413.3 934|1.2 94.80.2 87.810.9 83.6 | 1.1
Benign GCN* 8.710.0 6.410.0 14.510.0 8.1]0.0 39100 7.5]0.0
GNNSECURER 14.2 7.7 16.3]6.9 13.5|2.1 19.6 | 5.9 21.8|4.6 22417.6
Motif FINE-PRUNING 37.1]14.3 39.7113.9 29.2|6.1 48.219.8 399|125 44.5|13.1
RS 21.213.8 30.3[1.2 40.1|-1.9 31.6 0.9 33.710.3 29.410.8
GRAPHPROT-R 21428 19.1 4.8 22619 18.6 [ 4.0 19.2]3.6 20.5|3.3
GRAPHPROT-T 17.8]1.9 15.413.6 14.1| 1.7 13524 12.1 2.5 17.3 3.8
GRAPHPROT-TF 13.2]5.6 13.5[4.9 204134 199 7.3 21.7|8.6 194 7.1
Table 2: GRAPHPROT defense performance across attack threats and benchmark datasets.
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Figure 2: Ablation analysis of GRAPHPROT: Influence of (a) Subgraph Number, (b) Trigger Size, (c) Trigger Pattern, and (d) Sample-Rate
and Feature Fraction. Empirical findings demonstrate that (1) augmenting subgraph numbers elevates ACC and suppresses ASR, (2) larger
trigger sizes predominantly intensify ASR, (3) the impact of trigger pattern on ACC and ASR is minimal, and (4) both ACC and ASR exhibit a
positive correlation with incremental sampling-rates and expanded feature fractions.

evaluation used SBA (5-node Erd6s—Rényi trigger) and Motif
(trigger size = 5) for attacking GCN. The GRAPHPROT con-
figuration includes the subgraph number K= 5, the sample-
rate p = 0.2, and the feature selection proportion r = 0.8.

Defense Results across GNNs and Datasets

From Tab. 1, the following observations can be discerned:
(1) regarding defensive efficacy, generally, GRAPHPROT >
GNNSECURER > FINE-PRUNING > RS, with ASR values
of 19.7%, 20.9%, 34.1%, and 37.9%, respectively. GRAPH-
PROT achieves the most lowest ASRs and demonstrates better
overall anti-backdoor capability (solely requires test input &
K queries). (2) In terms of benign input accuracy preser-
vation, RS > GRAPHPROT > FINE-PRUNING > GNNSE-
CURER, with ADP values of 1.3%, 5.3%, 8.0%, and 9.7%,
respectively. GRAPHPROT closely aligns with SOTA white-
box defense paradigms and shows slight ADP disparity, un-
derscoring its competitive efficacy in preserving regular per-
formance. (3) The ASRs of benign models marginally surpass
that of GRAPHPROT and GNNSECURER across several cases

(e.g., under AIDS set & GAT) due to the adversarial attack
nature of GTA, which remain partially effective without ex-
plicit backdoor training.

Defense Results across Attacks and Datasets

From Tab. 2, the following points can be identified:
(1) GRAPHPROT demonstrates better overall defense effi-
cacy with consistently lower ASR (GRAPHPROT: 17.2% <
GNNSECURER : 24.3% < RS : 26.1% < FINE-PRUNING :
39.7%), highlighting its robustness across attacks and
datasets. (2) With respect to benign data accuracy reten-
tion, GRAPHPROT attains an ADP of 4.5%, surpassed solely
by RS (1.3%), and exceeding the performance of GNNSE-
CURER (8.3%) and FINE-PRUNING (11.9%). (3) GNNSE-
CURER ranks as the second most effective defense, and FINE-
PRUNING exhibits the least effective performance, with the
highest ASR and ADP.
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5.3 Ablation Study

We delve into the key factors influencing GRAPHPROT-R,
GRAPHPROT-T, and GRAPHPROT-TF via comprehensive
ablation studies, examining (1) subgraph number, (2) trigger
size, (3) trigger pattern, and (4) sample-rate and feature frac-
tion. This study leveraged the GTA attack on GCN trained
via AIDS set, and the results are presented in Fig. 2.

Subgraph Number

Multiple subgraph numbers K were configured at intervals
of 3, ranging from 1 to 22, to examine variations in ASR and
ADP. The results are shown in Fig. 2a.

From the figure, with increasing K, the ASR declines,
with GRAPHPROT-TF = 6% < GRAPHPROT-T = 14%
< GRAPHPROT-R = 19%, highlighting improved robust-
ness. Meanwhile, the ACC for all three methods improves
and progressively stabilizes, with GRAPHPROT-T = 90% >
GRAPHPROT-R = 87% > GRAPHPROT-R = 86%. Gen-
erally, GRAPHPROT-TF achieves the best defense but in-
curs the lowest ACC due to joint topology-feature sampling.
Conversely, GRAPHPROT-R minimizes ACC degradation but
yields the highest ASR, with GRAPHPROT-T exhibiting inter-
mediary performance.

Trigger Size

We executed attacks with trigger sizes ¢ ranging from 1 to 10
and deployed GRAPHPROT next. Notably, the average graph
size in AIDS set is 15.69, indicating that a trigger size t = 8
exceeds the halfway threshold. The findings are illustrated in
Fig. 2b.

For defense efficacy, as ¢ escalates, ASR rises across
all methods, with defense efficacy following the hierarchy
of GRAPHPROT-TF > GRAPHPROT-T > GRAPHPROT-R.
Concerning the benign data accuracy, the fluctuation in ACC
remains negligible (variations < 3%). The ACC is high-
est for GRAPHPROT-T, succeeded by GRAPHPROT-R and
GRAPHPROT-TF. Furthermore, when ¢ ~ 8 (half the av-
erage graph size), the ASR across all methods rises sharply.
GRAPHPROT-TF exhibits the most restrained increase, likely
attributed to its node feature sampling mitigating trigger.

Trigger Pattern
The evaluation implemented SBA attack using diverse trigger
types (w/ 5 nodes): (1) Erd6s-Rényi Graph, (2) Small World
Graph, (3) Preferential Attachment (PA) Graph, and (4) Com-
plete Graph. The defense results are shown in Fig. 2c.
Overall, the differences in ASR and ACC among de-
fense methods utilizing various triggers are marginal, sug-
gesting consistent defense efficacy across trigger types.
GRAPHPROT-R demonstrates moderate ACC but encounters
limitations with elevated ASR, particularly in Preferential At-
tachment networks. Conversely, GRAPHPROT-T attains bet-
ter ACC alongside the lowest ASR, whereas GRAPHPROT-TF
upholds both robust ACC and minimal ASR.

Sample-Rate and Feature Fraction

We first evaluate how the sample-rate p of GRAPHPROT-R
influences defense efficacy. Sample-rates (0 — 100%) were
applied for GRAPHPROT-R, with the outcomes shown in Fig.
2d. Referring to the figure, at higher p, both ASR and ACC

8- AIDS_ACC_cert
—m— AIDS_ACC_def

NCI1_ACC_cert
NCI1_ACC_def

081

Ground Truth Accuracy

0.2

0.1 0.2 0.3 0.4 0.5 0.6
Sample-rate

Figure 3: Certified robustness analysis: certified accuracy AC Ceert
vs. defense data accuracy AC'Cyer under AIDS & NCII1 datasets.

increase, with ACC rising more steeply. When p = 0.2, ASR
remains comparatively low, while ACC achieves a relatively
high level.

We subsequently adjusted the feature fraction r of
GRAPHPROT-TF across [0, 100]% to evaluate its impact (re-
sults illustrated in Fig. 2d). Based on the figure, when r in-
creases, both ASR and ACC exhibit upward trends, though
ACC grows at a more pronounced rate. Peak performance is
observed at r = (.8, where ACC approximately achieves its
peak with minimal ASR, indicating an optimal balance.

5.4 Certified Robustness Study

In Sec. 4.3, we elucidate the theoretically certified robustness
of GRAPHPROT. Furthermore, we inspect the discrepancy
between the achieved defensive accuracy of our method and
its theoretically certified accuracy. We conduct GTA attacks
against GCN trained on the AIDS and NCI1 sets. After apply-
ing GRAPHPROT-R (w/ K = 1000 & multiple sample-rates
p), we examine certified accuracy ACCqey (i.e., benign data
accuracy conforming to Eq. (10)) and defense data accuracy
ACCye (i.e., poisoned data accuracy satisfying Eq. (11)).
The findings are illustrated in Fig. 3.

The results across datasets indicate that as p increases,
ACCrery and ACCyer exhibit non-monotonic trends, first ris-
ing and then falling. When p ~ 20%, both ACC and
ACCyet attain their maxima, thereafter converging towards 0
as p — 60%. This phenomenon stems from the amplification
of both benign and malicious node features with increasing p,
finally causing a sharp degradation in AC'C.t. To equilibrate
benign and poisoned sample accuracy, p is set to 20%. For the
AIDS and NCI1 sets, the AC'Cyet reached 56.4% and 40.3%,
respectively, exceeding the ACC ey, of 36.0% and 24.1%.

6 Conclusion

We introduce GRAPHPROT, an input-dependent black-box
defense strategy requiring no ancillary data, external tools, or
model specifications. Our approach mitigates backdoor acti-
vation by leveraging topology-feature-filtering and sampling-
based robust model inference. We further provide GRAPH-
PROT with a formally certified robustness guarantee. Empir-
ical evaluations conducted on multiple attack paradigms and
benchmark datasets confirm its effectiveness in reducing at-
tack success rates while preserving benign data accuracy.
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