
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

EFormer: An Effective Edge-based Transformer for Vehicle Routing Problems
Dian Meng1,4 , Zhiguang Cao2 , Yaoxin Wu 3 , Yaqing Hou1,4∗ , Hongwei Ge1,4 and Qiang Zhang1,4

1School of Computer Science and Technology, Dalian University of Technology (DUT)
2School of Computing and Information Systems, Singapore Management University

3Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology
4Key Laboratory of Social Computing and Cognitive Intelligence (DUT), Ministry of Education, China

mengdian@mail.dlut.edu.cn, zhiguangcao@outlook.com, wyxacc@hotmail.com, {houyq, gehw,
zhangq}@dlut.edu.cn

Abstract
Recent neural heuristics for the Vehicle Routing
Problem (VRP) primarily rely on node coordinates
as input, which may be less effective in practical
scenarios where real cost metrics—such as edge-
based distances—are more relevant. To address this
limitation, we introduce EFormer, an Edge-based
Transformer model that uses edge as the sole in-
put for VRPs. Our approach employs a precoder
module with a mixed-score attention mechanism
to convert edge information into temporary node
embeddings. We also present a parallel encoding
strategy characterized by a graph encoder and a node
encoder, each responsible for processing graph and
node embeddings in distinct feature spaces, respec-
tively. This design yields a more comprehensive rep-
resentation of the global relationships among edges.
In the decoding phase, parallel context embedding
and multi-query integration are used to compute sep-
arate attention mechanisms over the two encoded
embeddings, facilitating efficient path construction.
We train EFormer using reinforcement learning in
an autoregressive manner. Extensive experiments on
the Traveling Salesman Problem (TSP) and Capaci-
tated Vehicle Routing Problem (CVRP) reveal that
EFormer outperforms established baselines on syn-
thetic datasets, including large-scale and diverse dis-
tributions. Moreover, EFormer demonstrates strong
generalization on real-world instances from TSPLib
and CVRPLib. These findings confirm the effective-
ness of EFormer’s core design in solving VRPs.

1 Introduction
The vehicle routing problem (VRP), a fundamental NP-hard
combinatorial optimization problem (COP), appears in numer-
ous real-world contexts, including logistics [Konstantakopou-
los et al., 2022], navigation systems [Elgarej et al., 2021], and
circuit design [Brophy and Voigt, 2014]. Despite extensive re-
search across various fields, VRPs remain notably challenging
due to their inherent computational complexity [Ausiello et

*Yaqing Hou is the Corresponding author.

al., 2012]. Approaches to solving VRPs can be divided into
exact algorithms and heuristic algorithms [Helsgaun, 2017].
Exact algorithms, although theoretically robust, often face
scalability issues when applied to large instances because of
their high computational demands. In contrast, heuristic al-
gorithms are generally more practical yet depend heavily on
manually crafted rules and domain-specific knowledge, which
restricts their applicability and generalizability.

Recently, there has been a surge in neural heuristics that
leverage deep (reinforcement) learning to solve VRPs. These
methods learn problem-solving strategies end-to-end from
data, offering a novel and efficient perspective on VRPs [Kool
et al., 2019]. Compared to traditional heuristics, neural heuris-
tics typically provide higher solution efficiency and stronger
generalization capabilities [Zhang et al., 2025].

Nevertheless, most existing neural heuristics rely heavily on
node coordinates (or their embeddings) as a crucial input to the
model, with many methods generating problem instances from
these coordinates to train neural networks. The core assump-
tion is that the relationship between coordinates and distance
can be readily learned by the network when searching for the
shortest path, particularly in classical Euclidean spaces. In
these approaches, each iteration selects a node from the prob-
lem instance, and the encoded information of the remaining
nodes is then used to incrementally construct the solution by
inferring the corresponding Euclidean distance. However, this
prevalent focus on node coordinates often lacks the robustness
and generalizability required in practical applications. When
distances cannot be easily inferred from coordinates alone,
such methods tend to struggle, reducing their effectiveness in
solving VRPs—especially in scenarios where the input space
deviates from idealized conditions.

To address this issue, we propose a neural heuristic featuring
an Edge-based Transformer (EFormer) model that exclusively
relies on edge information as the original input. Specifically,
we introduce a precoder module that employs a multi-head
mixed-score attention mechanism to convert edge information
into temporary node embeddings. We then design a parallel
encoding strategy comprising two encoders: a graph encoder
and a node encoder. The graph encoder employs a residual
gated graph convolution network (GCN) to process sparse
graph embeddings, while the node encoder leverages atten-
tion mechanisms to independently process temporary node
embeddings. By encoding these two embedding types in sepa-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

rate feature spaces, the model achieves a more comprehensive
representation of global edge relationships. Finally, parallel
context embedding and multiple-query integration are used
to decode the two types of encoded features, facilitating the
effective construction of a complete path. The EFormer is
trained using reinforcement learning in an autoregressive man-
ner and achieves favorable performance on the TSP and CVRP.
Accordingly, our contributions can be summarized as follows:

• Novel Edge-based Transformer (EFormer). We pro-
pose a new and practical edge-based Transformer model
designed to leverage the edge information for solving
VRPs. The introduction of a multi-head mixed-score at-
tention mechanism enables the extraction of temporary
node features directly from edge weights.

• Parallel Encoding Strategy. We develop a parallel en-
coding strategy that utilizes residual gated graph convolu-
tion networks to encode graph embeddings and attention
mechanisms to process node embeddings. By encoding
graph and node embeddings in separate feature spaces,
the model generates more comprehensive global edge
relationship embeddings. A multiple-query integration
method is then used to decode the embeddings, facilitat-
ing complete path construction.

• Favorable Performance and Versatility. Our purely
edge-based method demonstrates strong performance
on TSP and CVRP, surpassing other edge-based neu-
ral methods. Its robust generalization is evident in its
performance on real-world instances from TSPLib and
CVRPLib across diverse scales and distributions. The
edge-based nature of EFormer also allows us to apply
it to Asymmetric TSP (Appendix D). Furthermore, we
demonstrate its versatility by adapting it to solve VRPs
using only node information as input (Appendix C)1.

2 Related Work
2.1 Node-based Neural Heuristics for VRP
Graph neural network-based methods. Graph neural net-
works (GNNs) [Scarselli et al., 2008] provide a flexible frame-
work for learning message-passing strategies among nodes,
making them applicable to graphs of arbitrary size. In the
context of routing problems, GNNs typically predict edge
probabilities or scores, which are then leveraged by search
algorithms (e.g., beam search, tree search, or guided local
search) to produce approximate solutions [Khalil et al., 2017;
Li et al., 2018; Nowak et al., 2017; Joshi et al., 2019;
Fu et al., 2021; Xin et al., 2021; Hudson et al., 2021;
Kool et al., 2022; Min et al., 2024]. [Khalil et al., 2017]
proposed one of the earliest unified frameworks that combine
reinforcement learning with graph embeddings to solve vari-
ous combinatorial optimization (CO) problems on graphs. In
another line of work, [Li et al., 2018] incorporated advanced
Graph Convolutional Networks (GCNs) [Kipf and Welling,
2016] alongside tree search to explore the solution space for
CO problems. [Nowak et al., 2017] applied supervised learn-
ing to train a GNN and employed beam search to obtain fea-
sible solutions. [Joshi et al., 2019] designed a GCN model

1http://arxiv.org/abs/2506.16428

to predict a “heatmap” of edge probabilities in TSP instances,
which guides beam search to produce feasible solutions.

Transformer-based constructive methods. Among vari-
ous neural construction heuristics, the Transformer [Vaswani,
2017] represents a major breakthrough and has progressively
become the leading approach for solving VRPs. These meth-
ods typically construct solutions incrementally by selecting
one node at a time from the problem instance. Representa-
tive methods in this category include [Nazari et al., 2018;
Kim et al., 2021; Kool et al., 2019; Kwon et al., 2020;
Jin et al., 2023b; Drakulic et al., 2023; Luo et al., 2023;
Huang et al., 2025; Lin et al., 2024]. Specifically, [Kool et al.,
2019] is the first to leverage the Transformer architecture in a
method called Attention Model (AM), thereby introducing a
more powerful neural heuristic for VRPs. One notable variant
of AM is POMO [Kwon et al., 2020], which applies multiple
optimal policies to significantly enhance AM’s learning and
inference capabilities. More recently, [Luo et al., 2023] pro-
posed the Light Encoder and Heavy Decoder (LEHD) model,
trained via supervised learning on 100-node instances. LEHD
not only achieves higher-quality solutions but also demon-
strates strong generalization capabilities.

Transformer-based improvement methods. Neural im-
provement heuristics iteratively refine an initial feasible solu-
tion until a stopping criterion (e.g., convergence) is reached.
Drawing inspiration from classical local search algorithms,
they can optimize sub-problems or apply improvement op-
erators (e.g., k-opt) to enhance solution quality. Representa-
tive improvement-based approaches include [Lu et al., 2019;
Barrett et al., 2020; Wu et al., 2021; Ma et al., 2021;
Li et al., 2021; Wang et al., 2021; Kim et al., 2023;
Cheng et al., 2023].

2.2 Edge-based Neural Heuristics for VRP
Most neural heuristics, typically based on GNNs or Transform-
ers, capture the structure of routing problems by treating the
coordinates of problem instances as node features (Figure 1,
(a)). However, encoding edge features rather than relying
solely on node features more closely aligns with practical ap-
plications. Early works incorporating edge features include
variants of Graph Attention Networks (GAT) [Veličković et
al., 2017]. For example, [Chen and Chen, 2021] introduced
Edge-featured Graph Attention Networks (EGAT), which con-
sider edge features during message-passing, while [Shi et al.,
2020] integrated edge features into attention-based GNNs us-
ing “Graph Transformers” for semi-supervised classification.
In addition, [Jin et al., 2023a] proposed EdgeFormers, an ar-
chitecture that processes text edge networks to enhance GNNs
for better utilization of edge (text) features.

In the context of routing problems, several edge-based ap-
proaches have been explored, such as MatNet [Kwon et al.,
2021] and GREAT [Lischka et al., 2024]. Specifically, [Kwon
et al., 2021] proposed a Matrix Encoding Network (MatNet)
that accepts an encoded distance matrix to solve complex
asymmetric traveling salesman (ATSP) and flexible flow shop
(FFSP) problems. Meanwhile, [Lischka et al., 2024] intro-
duced the Graph Edge Attention Network (GREAT), an edge-
based neural model related to GNNs, which uses highly sparse

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

http://arxiv.org/abs/2506.16428

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 1: Comparison of node-based and edge-based policy networks, where multiple trajectory {τ1, τ2, . . . , τN} is pursued in both for
inferring solutions. (a) Overall scheme of the node-based methods such as POMO. (b) Overall scheme of the EFormer, which takes edge
weights as the input.

graphs to achieve high-quality solutions. Following this line
of research, our work also focuses on edge-based methods and
proposes a neural network model architecture that improves
the solution quality for solving VRPs (Figure 1, (b)).

3 Methodology: EFormer
We introduce the EFormer, a model for solving VRPs that com-
prises four main components: a precoder, a graph encoder, a
node encoder, and a decoder. Given a set of edge information,
EFormer first applies the precoder to generate temporary node
embeddings. To mitigate the heavy computation arising from
dense graphs, we adopt a k-nearest neighbor (k-nn) heuris-
tic to sparsify them. It then employs parallel graph and node
encoders to process graph and node embeddings in distinct fea-
ture spaces, respectively. Finally, the decoder constructs a path
by integrating parallel context embeddings and a multi-query
mechanism. Figure 2 shows the overall framework of EFormer,
while a more detailed version is provided in Appendix A.1.

3.1 Precoder
The precoder processes externally provided edge information
to generate node embeddings, effectively serving as a pre-
encoding step in EFormer. It comprises a multi-head mixed-
score attention layer and a feed-forward (FF) layer, as shown
in Figure 2. We introduce its key steps below.
The input’s initial representations. Along with the edge
weights, we also incorporate a zero vector, a one-hot vector,
and the edge weight matrix. This approach is crucial because
the one-hot vector is randomly selected from a predefined
matrix pool, ensuring that each iteration generates unique
embeddings. Consequently, we can supply the same prob-
lem instances along with the zero embedding multiple times,
enabling flexible instance augmentation.

We generally follow the graph attention networks (GATs)
framework [Veličković et al., 2017], which is described in
detail in Appendix A.2. Nevertheless, unlike the classic GATs,
the attention score for a pair of nodes (i, j) in our method
depends not only on ĥi and ĥj , but also on the edge weight
e(i, j). The precoder’s update function is defined as:

ĥ′
i = FR

(
ĥi, ĥj , e(i, j) | i ∈ R, j ∈ M

)
, (1)

where the learnable update function F leverages multi-head
attention (MHA). Its aggregation process uses attention scores
for each node pair (i, j), which are determined by ĥi and ĥj .
Here, R denotes the set of adjacent nodes of i, and M denotes
the set of adjacent nodes of j.

Mixed-score attention. For inputs containing only edge in-
formation, it is crucial to incorporate edge weights e(i, j) ≡
Dij in the attention mechanism. Drawing inspiration from
[Kwon et al., 2021], we adopt a “Multi-Head Mixed-Score
Attention” block to process the edge weight matrix. This block
closely follows the MHA module in Transformer, except that
the scaled dot-product attention in each head is replaced with
mixed-score attention. Specifically, the block integrates the ex-
ternally provided edge distance matrix Dij with the internally
generated attention scores. A small Multilayer Perceptron
(MLP) with two inputs and one output determines the optimal
way to combine these scores. The resultant mixed scores then
pass through a “softmax” stage, thereby retaining matrix-based
representation crucial to attention mechanisms.

By performing mixed-score attention on the given edge
information, it produces an encoded relationship matrix h

(P)
i ,

which acts as the node embeddings for both the graph and
node encoders. This process is given by:

ĥi
(P)

= hr +mixed-scoreMHA(hr, hc, Dij), (2)

h
(P)
i = ĥi

(P)
+ FF(ĥi

(P)
), (3)

where Dij is edge weight matrix, hr is zero-vector embedding,
and hc is one-hot vector embedding.

Instance augmentation. Since we initialize each run with a
random sequence of one-hot vectors, the weight matrix Dij is
encoded differently each time. As a result, the precoder can
yield diverse representations of the same problem instance and
generate distinct solutions. By providing a new one-hot vector
sequence for each run, a multitude of different solutions can
be readily obtained simply by repeatedly executing the model.
Moreover, this random one-hot embedding strategy naturally
aligns with the “instance augmentation” technique proposed
in POMO [Kwon et al., 2020]. However, whereas POMO
provides ×8 instance augmentation, EFormer can achieve ×N

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 2: Overview of the EFormer framework. From the input of sparse weighted edges, the precoder performs preprocessing, the graph
encoder and node encoder operate in parallel, and finally the decoder constructs the complete path.

augmentation. The trade-off is that while this approach yields
higher-quality solutions, it also increases runtime.

3.2 Graph Encoder
The graph encoder is a pivotal component of our parallel strat-
egy, comprising residual gated GCN layers and MLP layers.
It processes a sparse graph formed by the edge embeddings
and node embeddings produced by the precoder.

Graph sparsification. To mitigate the computational bur-
den arising from dense graphs, we employ a k-nn heuristic,
in which each node is connected to its k nearest neighbors.
The choice of k and its impact on training efficiency are eval-
uated in the experimental section, where we demonstrate the
importance of sparsity for improving training efficiency.

Input layer. The precoder’s output h
(P)
i , serves as the

graph encoder’s node embedding. We project h(P)
i into h-

dimensional feature as xl=0
i = A1h

(P)
i with A1 ∈ Rh.

We define an edge adjacency matrix function δKNN
ij , which

has a value of 1 if nodes i and j are k-nearest neighbors, a
value of 2 if they are self-connected, and a value of 0 otherwise.
The edge adjacency matrix δKNN

ij and the edge weight matrix
Dij are embedded as h

2 -dimensional feature vectors. Then we
concatenate the two together to get the edge input feature as
el=0
ij = A2Dij + b3||A3 · δKNN

ij , where A2 ∈ R
h
2 , A3 ∈ R

h
2 ,

b3 is the bias, and ·||· is the concatenation operator.

Residual gated Graph Convolution layer. Let xl
i and elij

represent the node and edge embedding associated with the
node i and edge (i, j) at layer l, respectively. In our method,
we employ the GCN architecture introduced in [Bresson and
Laurent, 2017], to produce the node embedding xl+1

i and edge
embedding el+1

ij at the next layer as follows:

xl+1
i = xl

i +ReLu(BN(W l
1x

l
i + ηlij ⊙W l

2x
l
j)), (4)

el+1
ij = elij +ReLu(BN(W l

3e
l
ij +W l

4x
l
i +W l

5x
l
j)), (5)

ηlij =
∑
j∼i

σ(elij)∑
j′∼i σ(e

l
ij′) + ξ

, (6)

where W l
∗ ∈ Rh, σ is the sigmoid function, ξ is a small value,

ReLU is the rectified linear unit, and BN stands for batch
normalization [Ioffe, 2015]. Meanwhile, GCN exploits the
additive edge feature representation and dense attention map
ηij , to make the diffusion process anisotropic on the graph.
MLP layer. In the final layer, MLP modules process both
the node and edge embeddings derived from the GCN layers.
Here, we specifically focus on the node embedding xl

i, which
inherently incorporates the relevant edge and node information.
The MLP outputs hG

ij in [0, 1]2 defined as hG
ij = MLP(xl

i),
where the number of MLP layers is denoted by lmlp.

3.3 Node Encoder
Node encoder processes the node embeddings generated by
precoder, using attention mechanisms to embed them into the
distinct feature space and produce encoded representations.
Input layer. Unlike the traditional approach [Kool et al.,
2019] that relies on node coordinates, the node encoder uses
the temporary node embedding h

(P)
i derived from the precoder

as the input to its attention layer. Let H(0) denote the input to
the first layer, then it will be given as H(0) = h

(P)
i .

Attention layer. Node encoder comprises n attention lay-
ers. Each attention layer consists of two sublayers: a
MHA sublayer and a FF sublayer [Vaswani, 2017]. Each
sublayer incorporates a residual connection [He et al.,
2016] and batch normalization (BN). We denote the embed-
ding obtained from each layer as h

(l)
i , and let H(l−1) =(

h
(l−1)
1 , h

(l−1)
2 , . . . , h

(l−1)
n

)
be the input to the l-th attention

layer when l = {1, ..., L}. The output of the attention layer
for the embedding of the i-th node is calculated as follows:

ĥ
(l)
i = BN

(
h
(l−1)
i +MHA

(
h
(l−1)
i , H(l−1)

))
, (7)

h
(l)
i = BN

(
ĥ
(l)
i + FF

(
ĥ
(l)
i

))
, (8)

where the FF sublayer includes one hidden sublayer and ReLU
activation. The above process and the final output can be
summarized as follows:

H(l) = AttentionLayer(H(l−1)), hN
L = H(L). (9)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Note. we employ two parallel encoding components—the
graph encoder and node encoder—both of which take node
embeddings as (one of the) inputs. One might wonder why the
node encoder is needed if the graph encoder can already handle
node embeddings. Although using multiple GCN layers can
yield powerful encoding representations, it often increases
model complexity. By contrast, the node encoder uses fewer
layers and leverages attention mechanisms, allowing the model
to remain lightweight while still delivering strong performance.
Moreover, the attention mechanisms have been shown to be
highly effective for encoding node embeddings. Empirically,
this parallel architecture outperforms approaches that rely
solely on GCNs or a single attention-based encoder.

3.4 Decoder
During the decoding phase, the edge embeddings and node
embeddings produced by the graph encoder and node encoder,
respectively, are processed in parallel. We use superscripts
to differentiate the sources of information: G denotes edge
embeddings, while N denotes node embeddings. Initially,
two separate sets of keys and values are extracted from the
edge and node embeddings. In parallel, the current contextual
embedding is derived from the current state in combination
with these two sets of embeddings.

The embeddings of all the starting nodes hG
first, h

N
first (i.e.,

the nodes selected in the first step) and the embeddings of
the target nodes hG

last, h
N
last (i.e., the currently selected nodes)

are concatenated to form two sets of temporary queries (i.e.,
qG, qN). Afterwards, the two sets of context embeddings are
merged to create the final query as follows:

qG = WG
1 hG

first +WG
2 hG

last, (10)

qN = WN
1 hN

first +WN
2 hN

last, (11)

q = qG + qN , (12)

where the subscript first denotes the fixed start node, and the
subscript last denotes the current target node. WG

1 ,WG
2 ,WN

1
and WN

2 are learnable matrices used to recast the start node
embeddings hG

first, h
N
first and the current target node embed-

dings hG
last, h

N
last, respectively.

Next, we apply the MHA mechanism to each set of context
embeddings separately, producing two outputs, AG and AN :

AG = MHA(q, kG, vG), (13)

AN = MHA(q, kN , vN), (14)

We then apply two linear layers WG
3 and WN

3 to map AG and
AN , respectively. Subsequently, we compute a score via two
sets of single-head attention layers, apply the tanh function
to clip the score, and mask any visited nodes. The resulting
score uj for node j is given by:

uj =

C · tanh
(

(WG
3 AG+WN

3 AN)(kG
j +kN

j)
√
dk

)
, if j unvisited

−∞, otherwise
(15)

where WG
3 and WN

3 are learnable matrices, uj is the score
for node j, and dk is determined by the embedding dimension.

We then apply the softmax function to calculate the probability
pj of selecting node j. At each decoding step j, the next node
is selected based on its probability pj . Repeating this process
n times yields the complete solution τ = {τ1, · · · , τn}T :

pj = softmax(uj). (16)

3.5 Training
Since EFormer can be easily integrated into a variety of autore-
gressive solvers, we adopt the same reinforcement learning
training method as POMO. We train the EFormer model using
the REINFORCE algorithm [Williams, 1992]. We sample a
set of n trajectories {τ1, · · · , τn}, calculate the reward f(τ i)
for each, and employ approximate gradient ascent to maximize
the expected return L. The gradient of the total training loss
L can be approximated as follows:

∇θL(θ) ≈
1

n

n∑
i=1

[(f(τ i)− bi(s))∇ log pθ(τ
i|s)], (17)

where bi(s) is commonly set as the average reward of those
m trajectories, serving as a shared baseline:

bi(s) = bshared(s) =
1

n

n∑
i=1

f(τ i), for all i (18)

where pθ(τ
i|s) =

M∏
t=2

pθ(a
i
t|s, ai1:t−1). (19)

4 Experiment
We empirically evaluate our proposed EFormer model on TSP
and CVRP of various sizes and distributions, comparing it
against both learning-based and classical solvers. Our code is
publicly available2.
Basic Settings. We compare EFormer with: (1) Classical
solvers: Concorde [Cook et al., 2011], LKH3 [Helsgaun,
2017], HGS [Vidal, 2022], and OR-Tools [Perron and Furnon,
2023]; (2) Heatmap-based method: GCN-BS [Joshi et al.,
2019]; (3) Edge-based neural heuristics: MatNet [Kwon et
al., 2021] and GREAT [Lischka et al., 2024]. We follow the
standard data generation procedures from prior work [Kool
et al., 2019] to create training and testing datasets for TSP
and CVRP, where distances between nodes are calculated and
provided as inputs accordingly. Each training epoch sam-
ples 100,000 random instances, while a separate set of 10,000
uniformly generated instances is used for testing. Optimal
solutions for TSP are obtained via the Concorde solver, and
those for CVRP using LKH3. We adopt the POMO inference
algorithm [Kwon et al., 2020] and report both the optimality
gap and inference time. For EFormer specifically, we present
results for greedy inference (×1) and instance augmentation
(×8 and ×128). Details of the experimental setup and addi-
tional baseline information can be found in Appendix B.1.

Table 1 presents our main results on uniformly distributed
TSP and CVRP instances. For TSP, our proposed EFormer
achieves excellent greedy inference (x1) performance across

2https://github.com/Regina921/EFormer

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/Regina921/EFormer

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

TSP20 TSP50 TSP100
Method Len. Gap(%) Time(m) Len. Gap(%) Time(m) Len. Gap(%) Time(m)

Concorde 3.831 0.000 4.43 5.692 0.000 23.53 7.763 0.000 66.45
LKH3 3.831 0.000 2.78 5.692 0.000 17.21 7.763 0.000 49.56
OR-Tools 3.864 0.864 1.16 5.851 2.795 10.75 8.057 3.782 39.05
GCN-Greedy 3.948 3.078 0.32 5.968 4.856 1.34 8.537 9.966 4.09
GCN-BS 3.862 0.825 0.81 5.732 0.712 4.33 8.170 5.234 4.31
GCN-BS* 3.831 0.004 21.41 5.700 0.141 35.46 7.955 2.477 63.05
MatNet(×1) 3.832 0.044 0.11 5.709 0.303 0.13 7.836 0.940 0.52
MatNet(×8) 3.831 0.002 0.22 5.694 0.050 1.24 7.795 0.410 5.28
MatNet(×128) 3.831 0.000 5.71 5.692 0.013 16.47 7.776 0.170 60.11
GREAT(×1)# - - - - - - 7.850 1.210 2.00
GREAT(×8)# - - - - - - 7.820 0.810 18.00
EFormer(×1) 3.831 0.018 0.04 5.699 0.130 0.26 7.788 0.324 1.22
EFormer(×8) 3.831 0.000 0.15 5.692 0.011 1.34 7.772 0.115 6.81
EFormer(×128) 3.831 0.000 4.72 5.692 0.001 25.81 7.767 0.045 66.55

CVRP20 CVRP50 CVRP100
Method Len. Gap(%) Time(m) Len. Gap(%) Time(m) Len. Gap(%) Time(m)

LKH3 6.117 0.000 2.15h 10.347 0.000 8.52h 15.647 0.000 13.46h
HGS 6.112 -0.079 1.48h 10.347 -0.001 4.67h 15.584 -0.401 6.54h
OR-Tools 6.414 4.863 2.37 11.219 8.430 19.35 17.172 9.749 2.61h
GCN-Greedy 6.471 5.794 0.27 11.130 7.567 2.05 16.948 8.314 5.24
GCN-BS 6.284 2.740 0.26 10.786 4.248 2.11 16.487 5.371 5.45
GCN-BS* 6.192 1.232 20.78 10.636 2.796 38.36 16.243 3.811 78.78
MatNet(×1) 6.172 0.907 0.11 10.787 4.253 0.21 16.280 4.401 1.02
MatNet(×8) 6.146 0.469 0.58 10.635 2.787 1.23 16.117 3.356 4.70
MatNet(×128) 6.131 0.229 9.93 10.538 1.847 17.93 15.989 2.530 66.05
EFormer(×1) 6.147 0.490 0.04 10.457 1.067 0.25 15.844 1.259 0.98
EFormer(×8) 6.123 0.098 0.28 10.414 0.650 1.69 15.776 0.830 6.86
EFormer(×128) 6.116 -0.017 14.84 10.393 0.447 24.47 15.735 0.563 85.65

Table 1: Experimental results on TSP and CVRP with uniformly distributed instances. The results of methods with an asterisk (#) are directly
obtained from the original paper. BS: Beam search, BS*: Beam search and shortest tour heuristic

TSP50 CVRP50 TSP50 CVRP50
Method Len. Gap(%) Len. Gap(%) Method Len. Gap(%) Len. Gap(%)

OPT 5.692 0.000 10.347 0.000 OPT 5.692 0.000 10.347 0.000

K=10 (×1) 5.698 0.117 10.476 1.250 w.o. precoder(×1) 5.702 0.181 10.642 2.854
K=20 (×1) 5.699 0.130 10.474 1.231 w.o. node encoder(×1) 5.702 0.185 10.517 1.640
K=30 (×1) 5.699 0.135 10.484 1.321 w.o. graph encoder(×1) 5.705 0.233 10.499 1.466
K=40 (×1) 5.700 0.147 10.486 1.346 w.o. gcn(×1) 5.707 0.276 10.502 1.501
K=50 (×1) 5.699 0.133 10.485 1.332 EFormer(×1) 5.699 0.130 10.474 1.231

K=10 (×8) 5.692 0.012 10.424 0.746 w.o. precoder(×8) - - - -
K=20 (×8) 5.692 0.011 10.422 0.725 w.o. node encoder(×8) 5.693 0.026 10.442 0.918
K=30 (×8) 5.692 0.012 10.423 0.734 w.o. graph encoder(×8) 5.693 0.020 10.431 0.817
K=40 (×8) 5.693 0.020 10.423 0.740 w.o. gcn(×8) 5.693 0.021 10.428 0.782
K=50 (×8) 5.692 0.017 10.422 0.731 EFormer(×8) 5.692 0.011 10.422 0.725

Table 2: Ablations of various K values and four key elements of EFormer on uniformly distributed instances.

various instance sizes, all within a relatively reasonable infer-
ence time. Additionally, we perform inferences with instance
augmentation (×8, ×128), which significantly outperform other
neural heuristics. Notably, our x8 augmentation even surpasses
MatNet’s x128 augmentation. For TSP100, the optimality gap
can be as low as 0.0453% when using x128 augmentation.
EFormer thus clearly outperforms other edge-based methods,
whether using greedy inference or instance augmentation.

For CVRP, we extend and refine the two learning-based
baselines from their original formulations while retaining their

model structure and parameters to ensure effective CVRP
solutions. Regardless of whether greedy inference (×1) or
instance augmentation (×8 or ×128) is employed, our EFormer
consistently outperforms other edge-based methods. With
×128 augmentation, EFormer achieves an optimality gap of
0.5633% on CVRP100. Thus, EFormer demonstrates superior
performance over competing approaches under both greedy
inference and augmented settings. Given a larger time budget,
EFormer can leverage additional instance augmentation to
further enhance performance across all instances.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

TSPLIB1-100 TSPLIB101-300 TSPLIB301-500 CVRPLIB1-100 CVRPLIB101-300 CVRPLIB301-500
Method Len. Gap(%) Len. Gap(%) Len. Gap(%) Len. Gap(%) Len. Gap(%) Len. Gap(%)

OPT 19499.583 0.000 40129.375 0.000 43694.666 0.000 925.800 0.000 33184.483 0.000 82903.857 0.000
GCN-Greedy 25371.528 30.242 63125.529 55.716 81143.342 83.080 1233.255 34.732 44684.202 45.069 138044.859 63.597
GCN-BS 23906.973 22.631 58213.359 46.951 76546.164 72.946 1167.058 27.909 42773.044 38.466 120532.679 49.664
GCN-BS* 21195.267 10.824 55853.973 39.104 72865.950 64.648 1087.529 18.369 41403.524 34.012 114962.535 42.366
MatNet(×1) 20076.205 3.880 46876.768 17.868 63544.470 46.192 1098.828 21.017 38946.522 20.351 103278.318 24.309
MatNet(×8) 19761.313 1.786 45638.627 14.479 62427.744 42.206 1072.623 14.901 38218.037 17.657 98912.043 19.460

EFormer(×1) 19741.575 1.698 45396.807 13.599 61415.142 36.562 1107.504 18.766 38477.709 12.485 98010.813 21.023
EFormer(×8) 19662.845 0.837 43360.592 8.805 56111.793 26.924 1019.698 9.885 36968.746 9.784 94612.575 15.325

Table 3: Experimental results on TSPLib and CVRPLib.

4.1 Ablation Study
We conduct two sets of ablation studies to clarify essential
design choices in our method. Specifically, we focus on: (1)
the selection of the hyperparameter K = 20 for the k-nn graph
sparsification, and (2) the necessity of using three encoders.

K value selection. In the classic knn-based sparsification
approach, the hyperparameter K determines how many edges
are retained for each node (K ×N , where N is the TSP size).
We compare various K values (10, 20, 30, 40, and 50) on
TSP50 and CVRP50; the results are shown in Table 2. For
TSP50, the optimality gaps for K = 10, 20, and 30 are similar,
with K = 20 performing slightly better. For CVRP50, K =
20 produces the highest solution quality. Overall, K = 20
appears to capture nearly all the best solutions for TSP50 and
CVRP50, so we set K = 20 in all subsequent experiments.

The necessity of three encoders. Table 2 shows the abla-
tion results for EFormer and four variants. The first variant
removes the precoder, retaining only the node encoder and
graph encoder (denoted by w.o. precoder in the table). With-
out precoder, the model cannot re-encode the same problem
instance multiple times; hence, no additional instance aug-
mentation is performed. The second variant removes the node
encoder, keeping only the precoder and graph encoder (de-
noted by w.o. node encoder). The third variant removes the
graph encoder, retaining the precoder and node encoder (de-
noted by w.o. graph encoder). The fourth variant removes the
GCN module from the graph encoder but retains the precoder,
node encoder, and MLP module of graph encoder (denoted by
w.o. gcn). Comparing the third and fourth variants highlights
the effectiveness of our parallel dual-encoder structure. As
shown in Table 2, EFormer outperforms all variants, indicating
that each component contributes positively to the model.

4.2 Generalization
We assess the generality of our proposed EFormer from three
perspectives: 1) real-world TSPLIB and CVRPLIB bench-
marks, 2) larger-scale instances, and 3) different distributions.

Generalization to TSPLIB and CVRPLIB. Table 3 sum-
marizes the results on real-world TSPLIB [Reinelt, 1991] and
CVRPLIB [Uchoa et al., 2017] instances of various sizes and
distributions. EFormer performs best on instances with up to
100 nodes and ranks second for 101–300 nodes, demonstrating
excellent generalization on both TSPLIB and CVRPLIB. It
also outperforms GCN-BS and MatNet on all instances.

Generalization to larger-scale instances. Appendix B.2
shows the performance of EFormer on TSP and CVRP in-
stances with up to 500 nodes. Despite device limitations,
EFormer significantly surpasses other edge-based methods,
highlighting its robust generalization even when only edge
information is available.
Generalization across different distributions. We further
evaluate EFormer on TSP and CVRP instances from explo-
sion, grid, and implosion distributions. Appendix B.3 presents
the results, indicating that EFormer consistently outperforms
GCN-BS and MatNet across all three distributions. More-
over, it maintains strong performance not only on the uniform
distribution but also under varying distribution scenarios, un-
derscoring its solid generalization capabilities.

4.3 Node-based EFormer
Our EFormer architecture is highly flexible, enabling it to
address VRPs using node coordinates as the only inputs. To
compare the performance of EFormer-based solvers with other
established methods, we introduce a variant called EFormer-
node, which is tested on the traditional node-coordinate setting.
Experimental results indicate that EFormer-node delivers com-
petitive performance compared to other established neural
heuristics. For further details on the model architecture and ex-
perimental findings, please refer to Appendix C. Additionally,
we also solve ATSP based on our EFormer framework, and
the detailed experimental results are presented in Appendix D.

5 Conclusion
In this paper, we introduce a novel Edge-based Transformer
(EFormer) model designed to solve VRPs in an autoregressive
way that utilizes edge information as input. Our integrated
architecture employs three encoders that work in concert to ef-
ficiently capture and process edge information. By adopting a
parallel encoding approach, we encode different types of infor-
mation in separate feature spaces, thereby enhancing the global
strategy. Extensive experiments on both uniformly generated
synthetic instances and real-world benchmarks demonstrate
EFormer’s strong performance. Compared to node-based ap-
proaches, edge-based methods exhibit greater flexibility and
applicability to real-world scenarios. Looking ahead, we plan
to investigate lightweight architectural designs for EFormer
to improve its scalability across a broader range of problem
sizes. Another promising direction is to develop a unified
learning-based framework that can operate effectively on both
edge and node, where both are available as inputs.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work was supported in part by the National Natural
Science Foundation of China under Grant 62372081, the
Young Elite Scientists Sponsorship Program by CAST under
Grant 2022QNRC001, the Liaoning Provincial Natural Sci-
ence Foundation Program under Grant 2024010785-JH3/107,
the Dalian Science and Technology Innovation Fund under
Grant 2024JJ12GX020, the Dalian Major Projects of Basic
Research under Grant 2023JJ11CG002 and the 111 Project
under Grant D23006. This research is supported by the Na-
tional Research Foundation, Singapore under its AI Singapore
Programme (AISG Award No: AISG3-RP-2022-031).

References
[Ausiello et al., 2012] Giorgio Ausiello, Pierluigi Crescenzi,

Giorgio Gambosi, Viggo Kann, Alberto Marchetti-
Spaccamela, and Marco Protasi. Complexity and approx-
imation: Combinatorial optimization problems and their
approximability properties. Springer Science & Business
Media, 2012.

[Barrett et al., 2020] Thomas Barrett, William Clements,
Jakob Foerster, and Alex Lvovsky. Exploratory combi-
natorial optimization with reinforcement learning. In Pro-
ceedings of the AAAI conference on AI, volume 34, pages
3243–3250, 2020.

[Bresson and Laurent, 2017] Xavier Bresson and Thomas
Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

[Brophy and Voigt, 2014] Jennifer AN Brophy and Christo-
pher A Voigt. Principles of genetic circuit design. Nature
methods, 11(5):508–520, 2014.

[Chen and Chen, 2021] Jun Chen and Haopeng Chen. Edge-
featured graph attention network. arXiv preprint
arXiv:2101.07671, 2021.

[Cheng et al., 2023] Hanni Cheng, Haosi Zheng, Ya Cong,
Weihao Jiang, and Shiliang Pu. Select and optimize: Learn-
ing to solve large-scale tsp instances. In International
Conference on Artificial Intelligence and Statistics, pages
1219–1231. PMLR, 2023.

[Cook et al., 2011] William J Cook, David L Applegate,
Robert E Bixby, and Vasek Chvatal. The traveling sales-
man problem: a computational study. Princeton university
press, 2011.

[Drakulic et al., 2023] Darko Drakulic, Sofia Michel, Florian
Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco: Bisim-
ulation quotienting for generalizable neural combinatorial
optimization. arXiv preprint arXiv:2301.03313, 2023.

[Elgarej et al., 2021] Mouhcine Elgarej, Mansouri Khalifa,
and Mohamed Youssfi. Optimized path planning for elec-
tric vehicle routing and charging station navigation systems.
In Research Anthology on Architectures, Frameworks, and
Integration Strategies for Distributed and Cloud Comput-
ing, pages 1945–1967. IGI Global, 2021.

[Fu et al., 2021] Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan
Zha. Generalize a small pre-trained model to arbitrarily

large tsp instances. In Proceedings of the AAAI conference
on AI, volume 35, pages 7474–7482, 2021.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[Helsgaun, 2017] Keld Helsgaun. An extension of the lin-
kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde
University, 12:966–980, 2017.

[Huang et al., 2025] Ziwei Huang, Jianan Zhou, Zhiguang
Cao, and Yixin Xu. Rethinking light decoder-based solvers
for vehicle routing problems. In International Conference
on Learning Representations, 2025.

[Hudson et al., 2021] Benjamin Hudson, Qingbiao Li,
Matthew Malencia, and Amanda Prorok. Graph neural
network guided local search for the traveling salesperson
problem. arXiv preprint arXiv:2110.05291, 2021.

[Ioffe, 2015] Sergey Ioffe. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

[Jin et al., 2023a] Bowen Jin, Yu Zhang, Yu Meng, and Ji-
awei Han. Edgeformers: Graph-empowered transformers
for representation learning on textual-edge networks. arXiv
preprint arXiv:2302.11050, 2023.

[Jin et al., 2023b] Yan Jin, Yuandong Ding, Xuanhao Pan,
Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian.
Pointerformer: Deep reinforced multi-pointer transformer
for the traveling salesman problem. In Proceedings of
the AAAI Conference on AI, volume 37, pages 8132–8140,
2023.

[Joshi et al., 2019] Chaitanya K Joshi, Thomas Laurent, and
Xavier Bresson. An efficient graph convolutional net-
work technique for the travelling salesman problem. arXiv
preprint arXiv:1906.01227, 2019.

[Khalil et al., 2017] Elias Khalil, Hanjun Dai, Yuyu Zhang,
Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. In NeurIPS, 30, 2017.

[Kim et al., 2021] Minsu Kim, Jinkyoo Park, et al. Learning
collaborative policies to solve np-hard routing problems. In
NeurIPS, 34:10418–10430, 2021.

[Kim et al., 2023] Minjun Kim, Junyoung Park, and Jinkyoo
Park. Learning to cross exchange to solve min-max vehicle
routing problems. In The Eleventh International Confer-
ence on Learning Representations, 2023.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[Konstantakopoulos et al., 2022] Grigorios D Konstanta-
kopoulos, Sotiris P Gayialis, and Evripidis P Kechagias.
Vehicle routing problem and related algorithms for
logistics distribution: A literature review and classification.
Operational research, 22(3):2033–2062, 2022.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Kool et al., 2019] Wouter Kool, Herke Van Hoof, and Max
Welling. Attention, learn to solve routing problems! In
ICLR, 2019.

[Kool et al., 2022] Wouter Kool, Herke van Hoof, Joaquim
Gromicho, and Max Welling. Deep policy dynamic pro-
gramming for vehicle routing problems. In International
conference on integration of constraint programming, arti-
ficial intelligence, and operations research, pages 190–213.
Springer, 2022.

[Kwon et al., 2020] Yeong-Dae Kwon, Jinho Choo, By-
oungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seung-
jai Min. Pomo: Policy optimization with multiple optima
for reinforcement learning. In NeurIPS, 33:21188–21198,
2020.

[Kwon et al., 2021] Yeong-Dae Kwon, Jinho Choo, Iljoo
Yoon, Minah Park, Duwon Park, and Youngjune Gwon.
Matrix encoding networks for neural combinatorial opti-
mization. In NeurIPS, 34:5138–5149, 2021.

[Li et al., 2018] Zhuwen Li, Qifeng Chen, and Vladlen
Koltun. Combinatorial optimization with graph convo-
lutional networks and guided tree search. In NeurIPS, 31,
2018.

[Li et al., 2021] Sirui Li, Zhongxia Yan, and Cathy Wu.
Learning to delegate for large-scale vehicle routing. In
NeurIPS, 34:26198–26211, 2021.

[Lin et al., 2024] Zhuoyi Lin, Yaoxin Wu, Bangjian Zhou,
Zhiguang Cao, Wen Song, Yingqian Zhang, and Senthilnath
Jayavelu. Cross-problem learning for solving vehicle rout-
ing problems. In Proceedings of the Thirty-Third Inter-
national Joint Conference on Artificial Intelligence, pages
6958–6966, 2024.

[Lischka et al., 2024] Attila Lischka, Jiaming Wu,
Morteza Haghir Chehreghani, and Balázs Kulcsár.
A great architecture for edge-based graph problems like
tsp. arXiv preprint arXiv:2408.16717, 2024.

[Lu et al., 2019] Hao Lu, Xingwen Zhang, and Shuang Yang.
A learning-based iterative method for solving vehicle rout-
ing problems. In International conference on learning
representations, 2019.

[Luo et al., 2023] Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang,
and Zhenkun Wang. Neural combinatorial optimization
with heavy decoder: Toward large scale generalization. In
NeurIPS, 36:8845–8864, 2023.

[Ma et al., 2021] Yining Ma, Jingwen Li, Zhiguang Cao, Wen
Song, Le Zhang, Zhenghua Chen, and Jing Tang. Learn-
ing to iteratively solve routing problems with dual-aspect
collaborative transformer. In NeurIPS, 34:11096–11107,
2021.

[Min et al., 2024] Yimeng Min, Yiwei Bai, and Carla P
Gomes. Unsupervised learning for solving the travelling
salesman problem. In NeurIPS, 36, 2024.

[Nazari et al., 2018] Mohammadreza Nazari, Afshin Oroo-
jlooy, Lawrence Snyder, and Martin Takác. Reinforce-
ment learning for solving the vehicle routing problem. In
NeurIPS, 31, 2018.

[Nowak et al., 2017] Alex Nowak, Soledad Villar, Afonso S
Bandeira, and Joan Bruna. A note on learning algorithms
for quadratic assignment with graph neural networks. stat,
1050:22, 2017.

[Perron and Furnon, 2023] Laurent Perron and Vincent
Furnon. Or-tools. https://developers.google.com/
optimization/routing, 2023. Accessed: 2024-08.

[Reinelt, 1991] Gerhard Reinelt. Tsplib—a traveling sales-
man problem library. ORSA journal on computing,
3(4):376–384, 1991.

[Scarselli et al., 2008] Franco Scarselli, Marco Gori,
Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE
transactions on neural networks, 20(1):61–80, 2008.

[Shi et al., 2020] Yunsheng Shi, Zhengjie Huang, Shikun
Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked
label prediction: Unified message passing model for semi-
supervised classification. arXiv preprint arXiv:2009.03509,
2020.

[Uchoa et al., 2017] Eduardo Uchoa, Diego Pecin, Artur Pes-
soa, Marcus Poggi, Thibaut Vidal, and Anand Subramanian.
New benchmark instances for the capacitated vehicle rout-
ing problem. European Journal of Operational Research,
257(3):845–858, 2017.

[Vaswani, 2017] A Vaswani. Attention is all you need. In
NeurIPS, 2017.

[Veličković et al., 2017] Petar Veličković, Guillem Cucurull,
Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[Vidal, 2022] Thibaut Vidal. Hybrid genetic search for the
cvrp: Open-source implementation and swap* neighbor-
hood. Computers & Operations Research, 140:105643,
2022.

[Wang et al., 2021] Runzhong Wang, Zhigang Hua, Gan Liu,
Jiayi Zhang, Junchi Yan, Feng Qi, Shuang Yang, Jun Zhou,
and Xiaokang Yang. A bi-level framework for learning to
solve combinatorial optimization on graphs. In NeurIPS,
34:21453–21466, 2021.

[Williams, 1992] Ronald J Williams. Simple statistical
gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229–256, 1992.

[Wu et al., 2021] Yaoxin Wu, Wen Song, Zhiguang Cao, Jie
Zhang, and Andrew Lim. Learning improvement heuristics
for solving routing problems. IEEE transactions on neural
networks and learning systems, 33(9):5057–5069, 2021.

[Xin et al., 2021] Liang Xin, Wen Song, Zhiguang Cao, and
Jie Zhang. Neurolkh: Combining deep learning model with
lin-kernighan-helsgaun heuristic for solving the traveling
salesman problem. In NeurIPS, 34:7472–7483, 2021.

[Zhang et al., 2025] Ni Zhang, Jingfeng Yang, Zhiguang Cao,
and Xu Chi. Adversarial generative flow network for solv-
ing vehicle routing problems. In International Conference
on Learning Representations, 2025.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://developers.google.com/optimization/routing
https://developers.google.com/optimization/routing

