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Abstract
Coalition formation involves self-organized coali-
tions generated through strategic interactions of
autonomous selfish agents. In online learning
of coalition structures, agents’ preferences toward
each other are initially unknown before agents in-
teract. Coalitions are formed iteratively based on
preferences that agents learn online from repeated
feedback resulting from their interactions. In this
paper, we introduce online learning in coalition
formation through the lens of distributed decision-
making, where self-interested agents operate with-
out global coordination or information sharing, and
learn only from their own experience. Under our
selfish perspective, each agent seeks to maximize
her own utility. Thus, we analyze the system in
terms of Nash stability, where no agent can im-
prove her utility by unilaterally deviating. We
devise a sample-efficient decentralized algorithm
for selfish agents that minimize their Nash regret,
yielding approximately Nash stable solutions. In
our algorithm, each agent uses only one utility feed-
back per round to update her strategy, but our algo-
rithm still has Nash regret and sample complexity
bounds that are optimal up to logarithmic factors.

1 Introduction
Freelance developers collaborating on open-source projects
pursue individual goals like skill enhancement and portfolio
building. Their self-interest affects their collaborative choices
of forming project teams, but they cannot make optimal deci-
sions as they initially lack clarity on their preferences about
other developers, team size, or project types. After contribut-
ing to a certain team, these selfish developers learn about their
preferences from feedback only about their team’s produc-
tivity and satisfaction with the collaborative dynamics. This
adaptive process allows them to selfishly optimize their work-
ing experiences, making informed decisions to join project
teams that best align with their personal goals and working
styles. Such scenarios and many other real-life cases exem-
plify online learning in coalition formation, where coalitions
are formed iteratively based on preferences that agents learn
online from repeated feedback about their interactions.

Hedonic games [Dreze and Greenberg, 1980] are a popular
framework for studying coalition formation, where the util-
ities of selfish agents only depend on the coalition they are
part of, disregarding the structure of other coalitions, i.e., ex-
ternalities are ignored. The outcome of such games is a set
of disjoint coalitions (hereafter, partition), whose desirability
is often assessed in terms of stability [Aziz and Savani, 2016;
Bullinger and Romen, 2024], reflecting the likelihood of self-
ish agents maintaining their coalitions. Traditional literature
on stability in hedonic games often focuses only on the fi-
nal outcome of coalition formation, ignoring the process of
reaching stable partitions. Particularly, in most existing works
it is implicitly assumed that a central authority can attain the
agents’ preferences, find a stable partition and impose it on
the agents. Recent works, however, consider a dynamic pro-
cess where, starting from an initial partition, agents delib-
erately move between coalitions based on their preferences
[Boehmer et al., 2023; Brandt et al., 2022]. In many realis-
tic cases as our project teams example, agents’ preferences
toward others are initially unknown prior to interactions (see,
e.g., [Cohen and Agmon, 2023a]). Hence, each agent must
make decisions individually based on her own preferences,
which she learns online from repeated feedback by iteratively
joining coalitions. To reflect such cases, Cohen and Ag-
mon [2024b] study online learning in hedonic games, aim-
ing to maximize social welfare. Recently, Cohen and Agmon
[2025b] explored a centralized setting where selfish agents
seek to maximize their own utility.

In contrast, in this paper we introduce and study a new
model for online learning in coalition formation, reflecting
such realistic situations from the perspective of decentralized
decision-making by self-interested agents. As agents are usu-
ally not aware of other agents’ strategies, we assume ban-
dit feedback, i.e., agents solely observe their utility from the
coalition they joined. We exhibit our findings for additively
separable hedonic games with symmetric preferences [Bogo-
molnaia and Jackson, 2002], where an agent’s utility for a
coalition is the sum of her utilities from other coalition mem-
bers. Essentially, our framework has no global coordination
among agents, and thus they learn only from their own history
of strategies, coalitions’ composition and utility feedbacks.

Agents’ selfish behavior can lead to stable partitions, which
we evaluate by means of Nash stability, where no agent can
improve her utility by unilaterally deviating. This stability
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notion is well-suited to our distributed context as it does not
allow any agent to coordinate with others to determine if
she can increase her utility (see, e.g., [Balliu et al., 2019]).
In this setting, the partition formed by uncoordinated self-
ish agents can be inferior to a centrally designed one. Un-
der our online learning setup, a popular metric for such in-
efficiency of equilibria is Nash regret [Ding et al., 2022;
Liu et al., 2021], comparing an agent’s learnt strategy against
her best response strategy at any round. Sublinear Nash re-
gret translates to low sample complexity as it implies best-
iterate convergence to an approximate Nash stable solution
with fewer samples (by classic online-to-batch conversion
due to, e.g., [Jin et al., 2018]), strongly tying these notions
to our online learning setting.

Our Contributions. We develop a sample-efficient decen-
tralized algorithms for online learning in coalition formation
by selfish agents that minimizes its Nash regret, thus obtain-
ing approximately Nash stable partitions. Such a distributed
approach is also often favored over centralized ones due to
its simplicity of implementation, versatility, and faster exe-
cution resulting from reduced communication overhead. We
devise a Frank-Wolfe-based algorithm for distributed online
learning in coalition formation, where each agent only uti-
lizes one sample per round to update her strategy. We prove
that our algorithm obtains Nash regret and sample complexity
bounds that are optimal (up to logarithmic factors). All omit-
ted proofs can be found in the supplementary materials
[Cohen and Agmon, 2025a].

2 Related Work
Hedonic games were introduced by Drèze and Greenberg
[1980], and later expanded to the study of various notions
of stability, fairness, and optimality (see, e.g., [Aziz and
Savani, 2016]). We focus on additively separable hedonic
games (ASHGs) with symmetric preferences [Bogomolnaia
and Jackson, 2002], where a large body of work evaluates the
system in terms of stability. Unlike cooperative approaches
(e.g., core stability [Bogomolnaia and Jackson, 2002]), we
explore a non-cooperative perspective, where many works
study Nash stability [Balliu et al., 2019; Aloisio et al., 2020;
Banerjee et al., 2001; Ballester, 2004]. Particularly, Bogo-
molnaia and Jackson [2002] proved that Nash stable parti-
tions may not exist in general ASHGs, while Sung and Dim-
itrov [2010] showed that checking if an instance admits such
partition is NP-complete in the strong sense. Yet, for sym-
metric preferences, the existence of a Nash stable outcome
is guaranteed by potential function argument [Bogomolnaia
and Jackson, 2002], but computing such partitions is PLS-
complete [Gairing and Savani, 2019]. However, the above
works explore offline settings, while we regard online ones.

Hence, our work is closely related to time-dependent mod-
els in hedonic games, including their online variant intro-
duced by Flammini et al. [2021b], where agents arrive one
at a time and should be immediately and irrevocably as-
signed to coalitions with the goal of maximizing social wel-
fare. This problem was recently extended to other setups [Co-
hen and Agmon, 2024a; Bullinger and Romen, 2023], with
Bullinger and Romen [2024] also exploring various stability

concepts. However, the assumption that the agents are par-
titioned by a central authority may be unrealistic, as agents
typically make decisions individually. In contrast, we adopt
a decentralized perspective, where agents make selfishly de-
cide to either form a new coalition or to join an existing
one based only on their local information from past rounds.
Recently, dynamic and distributed approaches to hedonic
games have also received increased attention, focusing on de-
viation dynamics [Bilò et al., 2018; Boehmer et al., 2023;
Brandt et al., 2022].

However, existing works on online and dynamic hedo-
nic games unrealistically require that the agents’ preferences
are fully known. Research on PAC learnability in hedonic
games attempts to tackle this issue [Sliwinski and Zick, 2017;
Fioravanti et al., 2023]. Unlike our work, they take a co-
operative approach, aiming to efficiently infer preferences
from a limited, fixed number of offline samples. They also
assume exact knowledge of preferences before making de-
cisions, limiting practicality as agents often need time to
learn their own preferences from social interactions, as in our
project teams example. In particular, the PAC learning ap-
proach is unfit to our dynamic setting due to its static nature,
requiring a fixed set of preferences that is known in advance.
We consider situations where each agent dynamically learns
her own preferences through repeated interactions, enabling
her to adapt to changing scenarios so as to learn the coalitions
proven most relevant and effective for her selfish desires.

We propose a novel framework that addresses these chal-
lenges by examining online learning in coalition formation
through the lens of decentralized decision-making by selfish
agents, unlike the centralized approaches presented by Co-
hen and Agmon [2024b; 2025b]. We also contribute to the
growing focus on online learning in combinatorial domains
(e.g., online task allocation [Cohen and Agmon, 2023b]).
Traditional literature on learning in games often studies how
various dynamics asymptotically converge to a Nash equi-
librium (e.g., no-regret dynamics [Daskalakis et al., 2021;
Chen and Peng, 2020], fictitious play [Daskalakis and Pan,
2014; Leslie and Collins, 2006]). In contrast, we focus
on non-asymptotic convergence, as done in recent stud-
ies on multi-agent reinforcement learning where Nash re-
gret serves as a key performance metric [Ding et al., 2022;
Liu et al., 2021], comparing an agent’s learnt strategy with
her best response strategy at each round. This metric is thus
well-suited to the inherently non-stationary nature of our set-
ting. By classic online-to-batch conversion (e.g., [Jin et al.,
2018, Section 3.1]), sublinear Nash regret yields low sample
complexity, yielding best-iterate convergence to approximate
Nash stable solutions with fewer samples.

Matching markets also relate to our work. Unlike prior
works [Maheshwari et al., 2022; Zhang et al., 2022; Liu
et al., 2020], we address more practical and complex set-
tings with broader utility functions under bandit feedback
that go beyond matchings. Our work also ties to potential
games, where prior distributed methods often rely on com-
putationally expensive projection-based approaches [Ding et
al., 2022; Leonardos et al., 2022], using costly or even in-
tractable projection operations. Conversely, our projection-
free Frank-Wolfe method resolves both issues by using a
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more efficient linear optimization step. Unlike prior meth-
ods for potential games, whose sample complexity and Nash
regret scale linearly in the number of actions an agent may
take, our algorithm removes this dependency (See Appendix
H for details). For congestion games, a subclass of poten-
tial games, Cui et al. [2022] also provide a projection-free
Frank-Wolfe method, yet it suffers from suboptimal sample
complexity and Nash regret bounds, relying on large mini-
batches of samples and thus not updating optimization pa-
rameters frequently enough due to Defazio et al. [2019]. Yet,
existing one-sample Frank-Wolfe schemes either exhibit sub-
optimal convergence rates [Mokhtari et al., 2018] or make re-
strictive assumptions such as knowing each agent’s true util-
ity function [Zhang et al., 2020]. In contrast, without know-
ing actual utilities, our one-sample algorithm uses a single
sample per round while having optimal sample complexity
and Nash regret bounds (up to logarithmic factors). Our al-
gorithm also contrasts with that of Dadi et al. [2024], which
has suboptimal sample complexity and generally exponential
running time, becoming polynomial only for restricted cases,
whereas our algorithm runs in polynomial time. Finally, un-
like prior methods that update policies independently [Ding
et al., 2022; Leonardos et al., 2022], our algorithms exploit
awareness of other coalition members for better guarantees.

3 Preliminaries
We study an online learning version of hedonic games, where
selfish agents with initially unknown preferences partition
themselves into disjoint subsets (i.e, coalitions) over a known
number of rounds T , which holds in many real-life scenar-
ios as our project teams example, where developers may
join project teams over a predefined number of project mile-
stones. Formally, our strategic game is given by a finite set
N = {1, . . . , n} of n selfish agents with unknown prefer-
ences. Hereafter, we denote [k] := {1, . . . , k} for k ∈ N and
[0] = {0}. At any time t ∈ [T ], each agent can join one of
n candidate coalitions since there are n agents (i.e., a parti-
tion can contain between 1 to n coalitions). In our project
teams example, this can be thought of as if each developer
picks which room to enter among n rooms. Thus, each agent
i joins a certain coalition among n candidate ones at time t
following a mixed strategy φt

i, built based only on local in-
formation from past rounds. Time t = 1 is exceptional, where
each agent i arbitrarily initializes her strategy φ1

i . Formally,
φt
i ∈ Sn where Sn is the probability simplex over [n], i.e.,

for any x ∈ [n], agent i picks the xth candidate coalition
with probability φt

i(x) ∈ [0, 1]. Let φt = (φt
i)i∈N ∈ Sn

n
be the agents’ joint mixed strategy at time t. At any time
t, each agent i then samples an assignment xi ∈ [n] from
φt
i independently from other agents, forming a joint assign-

ment x = (xi)i∈N . Thus, the agents’ iterative process of
distributed decision-making at time t unfolds as follows:

1. Each agent i samples xi ∼ φt
i and joins the xith candi-

date coalition, forming a joint assignment x = (xi)i∈N .

2. Each agent i observes the other members in the coali-
tion she joined and gets bandit feedback about the utility
gained from her own coalition.

3. Based only on this obtained information, agent i updates
her strategy to be φt+1

i and moves to the next round t+1.

We term the game formed by this learning process as de-
centralized online learning ASHGs (DOL-ASHGs). Next,
we elaborate on this process in detail. The constructed
joint assignment x induces a partition of the agents πx =
(Cx

ℓ )ℓ∈[n], where, for any ℓ ∈ [n], Cx
ℓ is the set of agents join-

ing the ℓth candidate coalition, i.e., Cx
ℓ = {i ∈ N : xi = ℓ}.

As the number of candidate coalitions equals to the number
of agents, some coalitions may be empty. Thereby, we denote
by |πx| the number of non-empty coalitions in πx. After her
assignment, notice that agent i becomes aware of the other
members within the coalition she joined. We thus denote the
coalition in πx containing agent i as πx(i).

Afterwards, we can derive each agent’s utility from her
chosen strategy, determined by aggregating her utilities of
other agents. We focus on additively separable hedonic
games (ASHGs) with symmetric preferences, where any pair
of agents assign the same numerical value toward each other,
indicating the intensity by which they prefer each other to
another agent. As common in the literature (see, e.g., [Flam-
mini et al., 2021a]), we assume that agents’ valuations are
within [−1, 1]. Recall that preferences are unknown and even
the agents themselves may not be aware of them. Thus, for
any pair of distinct agents i, j, the uncertainty about their mu-
tual valuation is captured by an unknown and fixed distribu-
tion Di,j over [−1, 1] with mean di,j , which agents i, j aim to
learn. At any time t, the utility vti,j of agents i, j for each other
is then independently drawn from Di,j . We use the conven-
tion that vti,i = di,i = 0 for any agent i. For any joint assign-
ment x sampled at time t, agent i’s utility from the induced
partition πx is then vti(x) =

∑
i̸=j∈πx(i) v

t
i,j , whose mean is

di(x) =
∑

i̸=j∈πx(i) di,j . Agent i’s utility from her strategy
φt
i at time t is thus defined as Vi(φ

t) := Ex∼φt [di(x)].
Each agent’s strategies are evaluated by her true unknown

utility, but she cannot observe her true utility. We thus con-
sider the most general decentralized setting where each agent
should learn her own preferences from repeated partial feed-
backs. At any time t and for any joint assignment x, we as-
sume that each agent i can only receive bandit feedback, i.e.,
in practice, agent i only obtains her utility from the entire par-
tition induced by x (i.e., vti(x)), with no information about
the utility vti,j gained from interacting with any other agent j.

Each agent joins a coalition with the goal of maximizing
her own utility. We thus want to study stability under single
agents’ incentives to deviate between coalitions. The tradi-
tional literature on hedonic games focuses on pure strategies
(e.g., [Aziz et al., 2013; Bilò et al., 2018]), where each agent
i’s strategy is joining a single candidate coalition at time t by
only selecting some xi ∈ [n]. Let x−i = (xj)j ̸=i be the joint
strategy of all agents except for agent i. Agent i can then devi-
ate by moving from her selected coalition to another one with
index yi ∈ [n], which is a Nash deviation if it improves her
utility, i.e., V t

i (x−i, yi) > V t
i (x−i, xi). Unlike prior work

on hedonic games, we also study mixed strategies, where we
define the other notion of mixed Nash deviations. Consider
the joint strategyφt at time t. Lettingφt

−i = (φt
j)j ̸=i for any
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agent i, agent i may perform a (mixed single-agent) deviation
from her strategy φt

i to another strategy ϕi ∈ Sn, which is a
mixed Nash deviation only if it immediately makes her bet-
ter off, i.e., Vi(φ

t
−i, ϕi) > Vi(φ

t). Hence, a (pure or mixed)
joint strategy for which no Nash deviation is possible is said
to be Nash stable (NS), also called a Nash equilibrium (NE).
As mentioned earlier, for symmetric preferences under pure
strategies, the existence of a Nash stable outcome is guaran-
teed by potential function argument [Bogomolnaia and Jack-
son, 2002], but computing such strategies is PLS-complete
[Gairing and Savani, 2019].

We thus further consider an approximate notion of Nash
stability. At each time t, note that agent i’s best response
to the other agents’ strategies is a Nash deviation given by
a strategy ϕ⋆,t

i satisfying V ⋆
i (φ

t
−i) := Vi(φ

t
−i, ϕ

⋆,t
i ) =

maxϕ∈Sn Vi(φ
t
−i, ϕ). Thus, for any ε ≥ 0, the agents’

joint strategy φt at time t is ε-approximate Nash stable
(ε-NS) if no agent can improve her gain by more than ε,
i.e., maxi∈N (V ⋆

i (φ
t
−i) − Vi(φ

t)) ≤ ε. Here, the quantity
maxi∈N (V ⋆

i (φ
t
−i)− Vi(φ

t)) measures the worst agent’s lo-
cal gap between the expected utilities she receives from her
best response and her current strategy at time t.

Remark 1. Consider the following mixed strategy where
each agent treats all coalitions as equally desirable, i.e., the
mixed strategy φt

i of any agent i and each time t satisfies
φt
i(x) =

1
n for any x ∈ [n]. Clearly, this is an exact mixed NS

strategy. However, it ignores the agents’ preferences entirely,
which is unrealistic in practical scenarios as agents often act
strategically based on their own preferences, not arbitrarily.
Instead, our framework aims to learn meaningful mixed NS
strategies that align with agents’ preferences, reflecting real-
life behavior by accounting for agents’ incentives.

Our goal is thus devising a decentralized algorithm that
learns an ε-NS joint strategy for some ε ≥ 0, which aligns
with agents’ preferences. Putting everything together, at any
time t, each agent i updates her strategy from time t−1 based
only on her own local history up to time t − 1, consisting
only of her strategies, the composition of the coalitions she
joined and the bandit feedbacks from her own utilities until
time t−1, without any information about other coalitions and
utilities. We analyze the performance of such algorithm via
Nash regret [Ding et al., 2022; Liu et al., 2021], comparing
each agent’s learnt strategy with her best response strategy at
any time instant. Formally, given a sequence of joint strate-
gies {φt}Tt=1, the Nash regret after T rounds is:

RT :=
∑T

t=1 maxi∈N (V ⋆
i (φ

t
−i)− Vi(φ

t)) (1)

The intuition behind the Nash regret lies in our definition of
approximate NS strategies. As maxi∈N (V ⋆

i (φ
t
−i)− Vi(φ

t))
is the worst agent’s local gap at time t, the Nash regret in (1)
is the total sum of the worst agent’s local gap at each individ-
ual round. That is, at each time t, the Nash regret compares
learned strategy φt

i of each agent i with the best strategy agent
i can take by fixing the other agents’ strategies φt

−i. By our
definition of an approximate NS strategy, the Nash regret thus
evaluates how far the agents’ strategies in each round are from
being an (approximate) NS strategy.

For any ε ≥ 0, it is well-known that the the above con-
nection between ε-NS strategies and Nash regret can be used
to show that an algorithm with a Nash regret bound of ε ob-
tains an ε-NS strategy (see, e.g., [Ding et al., 2022]). Hence,
one of our objectives is minimizing the Nash regret, i.e., at-
taining a Nash regret bound that is sublinear in the num-
ber of rounds T and polynomial in the number of agents n.
Another goal is finding an ε-NS strategy using a number of
rounds T that is small in its dependency on the number of
agents n and 1/ε, guaranteeing a (PAC) sample complexity
bound. An algorithm with low sample complexity requires
a fewer rounds for best-iterate convergence to an ε-NS strat-
egy. In fact, any algorithm with sublinear Nash regret can be
directly converted to a polynomial-sample algorithm via stan-
dard online-to-batch conversion (see, e.g., [Jin et al., 2018]).

3.1 DOL-ASHGs as Series of Potential Games
We begin with a useful structural property satisfied by our
model. For a single round (i.e., T = 1), a Nash stable strat-
egy is guaranteed for ASHGs with known symmetric pref-
erences through a potential function argument [Bogomolnaia
and Jackson, 2002]. In general DOL-ASHGs, where the sym-
metric preferences are unknown at any time t, we show that
the game associated with each time t is also a potential game:

Lemma 1. At each time t, the ASHG with symmetric and un-
known preferences associated with time t is a potential game.

Proof. Consider a joint mixed strategy φt at time t. Given
a joint assignment x ∼ φt, note that Φt(x) =

∑
i∈N vti(x)

is a potential function for pure strategies as Φt(x−i, xi) −
Φt(x−i, x

′
i) = vti(x−i, xi) − vti(x−i, x

′
i) for any agent i

and another assignment x′
i ∈ [n] of agent i. Therefore, by

slight abuse of notation, Φ(φt) =
∑

i∈N Vi(φ
t) is a potential

function for mixed strategies as Φ(φt
−i, φ

t
i) − Φ(φt

−i, ϕi) =
Vi(φ

t
−i, φ

t
i) − Vi(φ

t
−i, ϕi) for any agent i and another strat-

egy ϕi ∈ Sn of agent i. Note that, for pure strategies, the po-
tential is denoted as Φt as it directly depends on t through the
utilities. Yet, for mixed strategies, it is expressed by Φ(φt) as
it does not directly depend on t, while its input φt does.

Thus, online learning algorithms for our context should be
based on the principle that any Nash stable strategy is a sta-
tionary point of the potential function from Lemma 1. Other
key design factors are computational efficiency and scalabil-
ity. Note that one main challenge in our setting is that the
size of the joint pure strategies’ space equals to the number of
possible partitions over n agents which grows exponentially
with the number of agents n [Sandholm et al., 1999]. Thus,
an efficient algorithm should exhibit Nash regret and sample
complexity polynomial in the number of agents n, without
dependence on the size of the joint pure strategies space.

As mentioned in Section 2, existing methods for online
learning in potential games are unfit for our context [Cui et
al., 2022; Ding et al., 2022; Leonardos et al., 2022]. Hence,
we devise a Frank-Wolfe method [Hazan and Kale, 2012],
replacing projections with a less expensive linear optimiza-
tion step, and thus can be implemented efficiently in high-
dimensional domains such as ours. The classic Frank-Wolfe
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algorithm addresses constrained convex optimization prob-
lems by iteratively approximating the objective function with
its first-order Taylor expansion around the current solution
and solving the resulting linear problem over the feasible set.
In each iteration, it identifies a feasible direction by optimiz-
ing the linear approximation, and updates the current solution
via a convex combination with a properly chosen step size.

Tailored to decentralized online learning in ASHGs, our al-
gorithm also exploits each agent’s knowledge about the iden-
tities of other members in the coalitions she joins. Namely,
each agent makes decisions based only on her own history
of strategies, the members of the coalitions she joined and
the resulting utility feedbacks, without communicating with
other agents to coordinate their strategies. Instead of using
large mini-batches as done by Cui et al. [2022], in our al-
gorithm each agent only uses one sample per round (Section
4), yet it has Nash regret and sample complexity bounds that
are optimal up to logarithmic factors. At each round, agents
form coalitions, obtain a single utility feedback, update their
strategies and move to the next round (i.e., agents consecu-
tively follow the stages (1), (2), (3) from the iterative process
specified in Section 3).

4 Distributed One-Sample Algorithm
In this section, we devise a sample-efficient decentralized
online learning algorithm for DOL-ASHGs (Algorithm 1),
termed as Decentralized One-Sample Frank-Wolfe (D1S-
FW), that requires only one sample per round to update the
optimization variables and obtains sublinear Nash regret that
is also polynomial in the number of agents n. As input, D1S-
FW receives the number of rounds T , a set of n agents and
step sizes ρt, ηt, µt ∈ (0, 1) for each time t whose choices af-
fect the resulting Nash regret and sample complexity bounds,
as detailed later. Next, we depict D1S-FW’s main compo-
nents. Note that we do not have access to the exact gradient
of the potential function from Lemma 1. Thus, at any time t,
each agent i first computes an unbiased and variance reduced
gradient estimation of the potential function at time t using
only one utility feedback (Section 4.1). Using this estima-
tion, agent i then follows the classic Frank-Wolfe update rule
to pick her next strategy (Section 4.2). Finally, we prove that
D1S-FW has Nash regret and sample complexity bounds that
are optimal up to logarithmic factors (Section 4.3).

4.1 The Gradient Estimation Step
Our algorithm first modifies the momentum variance reduc-
tion approach in [Mokhtari et al., 2018; Mokhtari et al., 2020;
Zhang et al., 2020] to compute an unbiased estimator of the
potential’s gradient using a single utility feedback. Formally,
at each time t, note that the potential’s gradient w.r.t. any
joint strategy φ is given by ∇Φ = ( ∂Φ

∂φi
(xi))i∈N,xi∈[n], or

equivalently ∇Φ = (∇φi
Φ)i∈N where ∇iΦ := ∇φi

Φ =

( ∂Φ
∂φi

(xi))xi∈[n] is the potential’s gradient w.r.t. agent i’s
strategy φi. A naive approach for agent i is thus using an
unbiased one-sample estimation ∇̂t

iΦ at time t of ∇iΦ(φ
t).

Yet, this method yields a high variance. To reduce the vari-
ance, in our algorithm agent i sets her gradient estimation gt

i

Algorithm 1 D1S-FW
Input: T rounds; n agents; Step sizes ρt, ηt, µt ∈ (0, 1) ∀t.

1: Initialize an arbitrary initial policy φ1
i for each agent i.

2: for each time t = 1, . . . , T do
3: Each agent i joins a coalition by sampling xt

i ∼ φt
i.

4: Each agent i receives a utility vti from her coalition.
5: for each agent i ∈ N individually do
6: Compute ∇̂t

iΦ using (5).
7: if t = 1 then
8: Set the gradient estimation as g1

i := ∇̂1
iΦ.

9: else
10: Compute ∆̂t

i = ∇̂t
iΦ− ∇̂t−1

i Φ.
11: Compute the gradient estimator gt

i using (2).
12: Calculate ϕ̂t

i = argmaxϕ∈Sn
⟨ϕ,gt

i⟩.
13: Compute πt

i using (6) (See Remark 4).
14: Set φt+1

i = (1− ρt)[φ
t
i + ηt(ϕ̂

t
i − φt

i)] + ρtπ
t
i .

at time t to be a weighted average involving the previous gra-
dient estimate gt−1

i and the one-sample estimation ∇̂t
iΦ:

gt
i = (1− µt)(g

t−1
i + ∆̂t

i) + µt∇̂t
iΦ (2)

where µt ∈ (0, 1) is an averaging parameter and ∆̂t
i is an un-

biased estimator of the gradient variation ∆t
i = ∇iΦ(φ

t) −
∇iΦ(φ

t−1). Intuitively, adding the term ∆̂t
i to gt−1

i in (2)
ensures that gt

i is an unbiased estimator of ∇iΦ due to an
inductive argument. Indeed, if gt−1

i is an unbiased estimate
of ∇iΦ(φ

t−1) and ∆̂t
i is an unbiased estimate of ∆t

i, then
E[gt

i ] = (1− µt)(∇iΦ(φ
t−1) +∇iΦ(φ

t)−∇iΦ(φ
t−1)) +

µt∇iΦ = ∇iΦ, where the expectation is over all random-
ness up to time t. Next, we explain how to compute the
one-sample gradient estimator ∇̂t

iΦ and the gradient varia-
tion estimator ∆̂t

i, both in an unbiased manner. Particularly,
we prove that this can be done by approximating each agent’s
mean utilities from others using linear regression.

One-Sample Gradient Estimator. To come up with such
estimator, we first need to know the closed form of the true
gradient. In Lemma 2, we show that, for each agent i and
any selection xi ∈ [n], the gradient (∇iΦ)xi

:= ∂Φ
∂φi

(xi)

evaluated at φt can be written as an inner product between
the vector ξi = [di,j ]j∈N of all agent i’s mean utilities from
any agent j ∈ N and the vector φt(xi) ∈ [0, 1]n given by
[φt(xi)]j = φt

j(xi) for any joint strategy φt at time t. In-
tuitively, this will allow us to obtain our one-sample gradient
estimator by proving that linear regression can be applied to
approximate ξi at time t via a least squares estimator.

Lemma 2. For each agent i, the gradient evaluated at φt,
which is given by (∇iΦ(φ

t))xi
, can be rephrased as follows:

(∇iΦ(φ
t))xi

= ⟨φt(xi), ξi⟩ (3)

where φt(xi) ∈ [0, 1]n is defined as [φt(xi)]j = φt
j(xi) for

any joint strategy φt at time t, xi ∈ [n] and agent j ∈ N .

Proof. See Appendix A for a detailed proof.
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Using Lemma 2, at any time t, each agent i can derive
a one-sample gradient estimation as follows. First, agent i
samples her chosen candidate coalition xt

i ∈ [n] from her
strategy φt

i (line 3). After forming the partition πt := πxt

,
each agent i obtains a utility feedback vti from her coali-
tion πt(i) (line 4), whose expectation given that the agents’
joint assignment is xt ∈ [n]n at time t can be expressed as
E[vti |xt] = di(x

t) =
∑

i̸=j∈πt(i) di,j =
∑

i̸=j∈N 1{xt
j =

xt
i}di,j , where, for any xi, xj ∈ [n], 1{xj = xi} equals to 1

if xj = xi and 0 otherwise. This can be rephrased as follows:

E[vti |xt] = ⟨ψi(x
t), ξi⟩ (4)

whereψi(x
t) ∈ {0, 1}n is given by [ψi(x

t)]j = 1{xt
j = xt

i}
for any agent j ∈ N , capturing whether agent j joined agent
i’s selected coalition or not.

Remark 2. In practice, each agent i can compute ψi(x
t) by

only using her knowledge about other agents in the coalition
she joined via [ψi(x

t)]j = 1{j ∈ πt(i)} for any agent j.

Therefore, by Lemma 2, we can use linear regression to
estimate ξi at time t via the least squares estimator ξ̂ti =

(Ψ̂t
i)

−1ψi(x
t)vti , where Ψ̂t

i = Exi∼φt
i
[∥ψi(x

t
−i, xi)∥22] is

the covariance matrix and ∥ · ∥2 is the standard Euclidean
norm (i.e., ∥ψi(x

t
−i, xi)∥22 = ψi(x

t
−i, xi)ψi(x

t
−i, xi)

⊤). We
can obtain an estimator ∇̂t

iΦ(xi) = ⟨ψi(x
t
−i, xi), ξ̂

t
i⟩ of

(∇iΦ(φ
t))xi , which satisfies the following:

∇̂t
iΦ(xi) = ψi(x

t
−i, xi)

⊤(Ψ̂t
i)

−1ψi(x
t)vti (5)

One can easily verify that this is indeed an unbiased estimator
of the potential’s gradient, as we prove in Appendix B.

Remark 3. From the perspective of agent i, she deduces
ψi(x

t) only from the coalition πt(i) she joined, but we in-
clude the implicit dependence on the agents’ joint selection
xt for the sake of the analysis so as to, e.g., reason about the
covariance matrix.

One-Sample Gradient Variation Estimator. For any
agent i, our one-sample approach for estimating the gradient
variation ∆t

i = ∇iΦ(φ
t)−∇iΦ(φ

t−1) at time t is comput-
ing the difference between our one-sample gradient estima-
tion for agent i’s current selection and that for her previous
one, i.e., ∆̂t

i = ∇̂t
iΦ − ∇̂t−1

i Φ. As we saw earlier (Recall
Lemma B.1), ∇̂t

iΦ and ∇̂t−1
i Φ are unbiased estimators of

∇iΦ at times t and t−1 (resp.), and thus E[∆̂t
i] = ∆t

i, where
the expectation is over all randomness up to time t. That is,
∆̂t

i is an unbiased estimator of the gradient variation ∆t
i.

4.2 The Frank-Wolfe Update Step
At each time t, in line 12 each agent i then optimizes a lin-
ear optimization problem to get the feasible ascent strategy
ϕ̂t
i as the regular Frank-Wolfe method. Instead of updating

her strategy at window t + 1 to be φt
i + ηt(ϕ̂

t
i − φt

i) as in
the standard Frank-Wolfe update, in line 14 agent i mixes
this strategy with an exploratory strategy πt

i which is com-
puted in line 13. Specifically, agent i computes a G-optimal
design πt

i for {ψi(x
t
−i, xi)}xi∈[n] (see, e.g., [Lattimore and

Szepesvári, 2020, Chapter 21]). The G-optimal design mini-
mizes the maximal mean-squared prediction error in linear re-
gression. In our context, the G-optimal design can be viewed
as the strategy allowing a uniformly well estimation of ξi over
all candidate coalitions. That is, sampling a candidate coali-
tion xi ∈ [n] in proportion to πt

i(xi) minimizes the number
of samples required for reaching a desired level of accuracy
in estimating E[vti |xt

−i, xi] = ⟨ψi(x
t
−i, xi), ξi⟩. Formally,

agent i’s G-optimal design πt
i at time t satisfies:

πt
i ∈ argminϕ∈Sn

f t
i (ϕ) (6)

where f t
i (ϕ) = maxxi∈[n]ψi(x

t
−i, xi)

⊤(Ψt
i,ϕ)

−1ψi(x
t
−i, xi).

Hence, agent i then mixes πt
i with the strategy φt

i+ηt(ϕ̂
t
i−φt

i)
obtained from the standard Frank-Wolfe update.
Remark 4. While the original G-optimal design problem is
NP-hard [Soare et al., 2014], for our purposes it suffices to
compute an approximate G-optimal design with minimal im-
pact on performance. For instance, using the Frank-Wolfe al-
gorithm and a proper initialization, agent i can efficiently find
an approximate G-optimal design π̂t

i with f t
i (π̂

t
i) ≤ 2n. For

easing the analysis in the main text, we hereafter assume that
a G-optimal design can be found efficiently and accurately,
which is an assumption common in the literature (see, e.g.,
[Yang and Tan, 2022]). See Appendix G for a vast discussion
on the minor effect of using an approximate G-optimal design
in our algorithm, including a time complexity analysis.

4.3 Nash Regret Analysis of D1S-FW
To obtain the Nash regret bound of D1S-FW (Algorithm 1),
the key step is devising an upper bound on our estimators’
errors. First, mixing the regular Frank-Wolfe update with the
exploration strategy πt

i allows us to regulate the one-sample
gradient estimator’s error as follows:
Lemma 3. At each time t, for all δ ∈ (0, 1], agent i and
xi ∈ [n], the following holds with probability at least 1− δ:

|∇̂t
iΦ(xi)− (∇iΦ(φ

t))xi | ≤
O
(√

n4 log(nT/δ)
ρt

+ n3 log(nT/δ)
ρt

) (7)

In particular, if ρt ≤ 2 log(1/δ)
9 , then the following holds with

probability at least 1− δ:

|∇̂t
iΦ(xi)− (∇iΦ(φ

t))xi
| ≤ O

(
n3 log(nT/δ)

ρt

)
(8)

Proof. (Sketch) At any time t, let Rt =
ψi(x

t
−i, xi)

⊤(Ψt
i,φt

i
)−1ψi(x

t)vti . In Appendix D, we

first prove that |Rt| ≤ n2

ρt
(Lemma D.1) and Et[R2

t ] ≤ n3

ρt

(Lemma D.2), where Et[·] is the expectation over xt
i ∼ φt

for each agent i and all the utilities’ randomness at
time t. As we proved in Lemma B.1 that ∇̂t

iΦ(xi)
from (5) is an unbiased estimator of (∇iΦ(φ

t))xi
(i.e.,

Et[∇̂t
iΦ(xi)] = E[Rt] = (∇iΦ(φ

t))xi
), we can apply

Bernstein’s inequality to obtain both (7) and (8).

We next supply the required upper bound on the error
At

i := ∥∇iΦ(φ
t) − gt

i∥∞ of agent i’s gradient estimator in
(2), where ∥ · ∥∞ is the L∞ norm (i.e., ∥z∥∞ = maxi∈[n] |zi|
for any z ∈ Rn).
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Lemma 4. For any time t ≥ 3 and any δ ∈ (0, 1], the follow-
ing holds with probability at least 1− δ for any agent i:

∥∇iΦ(φ
t)− gt

i∥∞ ≤
O
(∑t−1

τ1=2 Bτ1
∏t

τ2=τ1+1(1− µτ2) + Bt
) (9)

where Bt :=
√

n4 log(nT/δ)
ρt

+ n3 log(nT/δ)
ρt

. If ρt ≤ 2 log(1/δ)
9

for any time t, then an improved bound in (9) is obtained for
Bt := n3 log(nT/δ)

ρt
. For t ∈ {1, 2}, the errors A1

i and A2
i are

bounded as in Lemma 3 since At
i = ∥∇iΦ(φ

t)−∇̂t
iΦ∥∞ for

t ∈ {1, 2}.

Proof. (Sketch) As g1i = ∇̂1
iΦ, then A1

i is bounded as in
Lemma 3. For any time t ≥ 2, we first prove in Appendix
E that our estimators satisfy At

i := ∥(1− µt)(∇iΦ(φ
t−1)−

gt−1
i ) + (1 − µt)(∇̂t−1

i Φ − ∇iΦ(φ
t−1)) + (∇iΦ(φ

t) −
∇̂t

iΦ)∥∞ for each agent i, from which our bound for time
2 can be easily obtained. For each time t ≥ 3, this equality
allows us to prove (9) by induction on t.

We are now ready to establish our Nash regret bound:
Theorem 1. For any δ ∈ (0, 1], D1S-FW (Algorithm 1) with
ρt = 1

T , ηt = 1√
T

, µt = 1 − 1
T for any time t and T ≥ 2

obtains the following Nash regret bound with probability at
least 1− δ:

RT ≤ O
(
(n+ n3 + n4)

√
T + n4 log(nT/δ)

)
(10)

If δ ≤ e−
9

2T , then, with probability at least 1 − δ, the Nash
regret bound in (10) can be reduced to:

RT ≤ O((n+ n3 + n4)
√
T + n4 log(nT/δ)) (11)

Proof. (Sketch) The key idea behind our proof is using the
fact that the Nash regret is at most the sum of the Frank-Wolfe
gaps across all rounds (Appendix C). Namely, as the Frank-
Wolfe gap of any joint strategy φ w.r.t. the potential function
Φ(φ) is given by G(φ) = maxφ′∈Sn

n
⟨φ′ − φ,∇φΦ⟩, then

RT ≤
∑

t∈[T ] G(φt), and thus we derive an upper bound on
the right-hand side to attain our Nash regret bound. First, con-
sider the joint strategies ϕ̂t = (ϕ̂t

i)i∈N andπt = (πt
i)i∈N ob-

tained from the strategies computed in lines 12-13. As the po-
tential function Φ(φ) =

∑
i∈N Vi(φ) is n2-smooth w.r.t. the

L1-norm ∥·∥1 by Lemma F.1 in Appendix F, then Φ(φt+1) ≥
Φ(φt) + ⟨∇Φ(φt),φt+1 −φt⟩ − n2

2 ∥φt+1 −φt∥21. Com-
bined with line 14, we prove in Appendix F that:

Φ(φt+1) ≥ Φ(φt) + (1− ρt)ηt⟨∇Φ(φt), ϕ̂t −φt⟩
−ρt · n3 − n4

2 [(1− ρt)
2η2t + ρ2t ]

(12)
Thus, we then devise a lower bound on the right-hand side.
In Appendix F, we first show that ⟨∇Φ(φt), ϕ̂t − φt⟩ ≥
G(φt) − 2n∥∇Φ(φt) − gt∥∞, where gt = (gt

i)i∈[n] is the
gradient estimator of ∇Φ(φt). After applying this inequality
to (12), we rearrange the resulting inequality to obtain:

G(φt) ≤ Φ(φt+1)−Φ(φt)
(1−ρt)ηt

+ 2n∥∇Φ(φt)− gt∥∞
+ ρtn

3

(1−ρt)ηt
+ n4(1−ρt)ηt

2 +
ρ2
tn

4

2(1−ρt)ηt

(13)

By summing this inequality over all rounds T while noting
that

∑
t∈[T ][Φ(φ

t+1) − Φ(φt)] = Φ(φt+1) − Φ(φ1) as a
telescoping series and |Φ(φt+1)−Φ(φ1)| ≤ n, we then have
that the Nash regret is upper bounded by:

RT ≤ 2n
∑

t∈[T ] ∥∇Φ(φt)− gt∥∞ + nT
(1−ρt)ηt

+

+ ρtn
3T

(1−ρt)ηt
+ n4T (1−ρt)ηt

2 +
ρ2
tn

4T
2(1−ρt)ηt

(14)

Recall that this bound also serves as an upper bound on
the Nash regret incurred by our algorithm since RT ≤∑

t∈[T ] G(φt). Further, our bound in (14) depends on the
algorithm’s error term, for which we have already supplied
an upper bound in Lemma 4. Hence, after plugging the algo-
rithm’s inputs ρt = 1

T , ηt = 1√
T

, µt = 1 − 1
T for any time t

and T ≥ 2 to (14), in Appendix F we then apply Lemma 4 to
obtain the Nash regret bounds in (10)–(11).

Remark 5. Theorem 1 indicates that D1S-FW has a Nash
regret bound of Õ(

√
T ). By standard online-to-batch con-

version (see, e.g., [Jin et al., 2018]), our Nash regret bound
suggests a sample complexity bound of T = O(n8/ε2) for
obtaining an ε-NS strategy. Surprisingly, though D1S-FW
uses only one sample per round, our Nash regret and sam-
ple complexity bounds are optimal up to logarithmic factors
[Hassani et al., 2020; Bai and Jin, 2020]. To guarantee those
bounds, Theorem 1 dictates that the step sizes should depend
on the number of rounds T , which is known in our context. As
mentioned earlier, this is practical in many realistic cases as
our project teams example from Section 1, where developers
may participate in project teams over a predefined number of
project milestones. Even if T is not explicitly known in some
cases, developers often have a rough estimate based on the
nature of open-source projects. For example, they may an-
ticipate a typical project duration based on prior experience
or the project’s roadmap. Hence, agents can still execute our
algorithm in a distributed manner even without knowing T .

5 Conclusions and Future Work
In this paper, we presented a new model for studying online
learning in coalition formation through the lens of decentral-
ized decision-making by selfish agents. Our goal was design-
ing sample-efficient distributed algorithms for self-interested
agents that minimize their Nash regret, resulting in approxi-
mately Nash stable partitions. As such, we devised a Frank-
Wolfe methods, where every agent uses one sample per round
for gradient estimation, yet it attains Nash regret and sample
complexity bounds that are optimal up to logarithmic factors.

Our work opens the way for plenty future studies. Im-
mediate directions include the investigation of other classes
of hedonic games, other solution concepts and an empirical
analysis. Future studies also warrants exploring other models
of partial information (e.g., semi-bandit feedback), and study
cases where the number of rounds is not necessarily known.
Finally, an interesting future direction is devising distributed
algorithms with no-regret guarantees for any agent adopting
them, ensuring that each agent has diminishing regret, regard-
less of how others update their strategies.
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