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Abstract
Multiscale signals represent a formidable modelling
challenge in Machine Learning as the ubiquitous
Mean Squared Error loss function neglects signal be-
haviour at smaller values. Several scale-equalizing
error metrics have been devised to tackle this prob-
lem, amongst which the Mean Absolute Percentage
Error (MAPE) remains the most widely used due
to its simplicity and interpretability. However, by
its very definition, MAPE introduces three major
issues: asymptotic behaviour at zero-target values,
asymptotic gradient behaviour at zero error, and
accuracy loss for large signal scales. We address
these limitations by proposing the Symmetric Mean
Arctangent Squared Percentage Error (SMASPE),
which builds up from the Mean Arctangent Abso-
lute Percentage Error (MAAPE) and leverages a
mathematically smoother definition along with user-
provided signal bounds to extend its functionality.
The numerical properties of SMASPE are explored,
and its performance is tested in two real-life cases
for deterministic and stochastic optimization. The
experiments show a clear advantage of the proposed
loss function, with an improvement of up to 42%
with respect to MAAPE in terms of Mean Absolute
Error for deep learning models when appropriate
bounds are selected.

1 Introduction
When performing regression tasks, regardless of context or
modelling technique, the most common way to determine
the fitness of a model is to calculate the Mean Squared Error
(MSE). First described in [Legendre, 1806] as an algebraic pro-
cedure for fitting linear equations to data and later proven to be
optimal for the lowest-sampling-variance estimator under un-
biased assumptions [Henderson, 1975], it has persisted as the
go-to loss function in the field of Machine Learning (ML) due
to its context-free nature and, more importantly in the context
of back-propagation, function smoothness. Unfortunately, this
generality renders the MSE unsuitable for measuring model
fitness when the sample space is not normally distributed or
signal outliers are significant [Liano, 1996]. Such is the case
of multiscale modelling problems, amongst which physical

models such as the Navier-Stokes equation [Steinhauser, 2016]
or intermittent signal forecasts like that of Photo-Voltaic (PV)
energy generation can be mentioned.

To illustrate the problems associated with minimizing the
MSE for multiscale spaces, a synthetic example is presented:
let y be the target signal defined by

yi = 1 + sin2
(
2πi

20

)
(1 + 9βi)

βi ∼ B(1, 0.15), i ∈ {1, 2, . . . , 1000},
(1)

where each βi is a sample drawn from a single-trial Binomial
distribution with a 0.15 probability of success. Two dynamical
system estimators, namely ŷ(1) and ŷ(2), are defined as

ŷ
(1)
i = yi · |ηi| , ηi ∼ N (1.0, 0.15), (2)

ŷ
(2)
i =

{
θ̂ if β = 0

yi otherwise,

θ̂ := argminθ

∫ π

0

[
1 + sin2x− θ

]2
dx.

(3)

The first estimator introduces multiplicative noise to the refer-
ence signal. In contrast, the second one perfectly captures the
peaks introduced by the intermittent signal β while holding
the constant that minimizes the squared error in its absence.
Simulating these conditions yields the curves shown in Fig-
ure 1a and MSEs of 0.215 and 0.107 for estimators 1 and
2 respectively, which empirically evidences how this metric
mathematically neglects small-scale dynamics.

In ML regression, the traditional way to cope with these
variations in scale is to fit the models to minimize the Mean
Absolute Percentage Error (MAPE) [De Myttenaere et al.,
2016], defined as

MAPE(y, ŷ) =
1

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ = 1

N

N∑
i=1

∣∣δ̄i∣∣, (4)

where δ̄i :=
yi−ŷi

yi
is a term henceforth referred to as relative

sample error.
The MAPE divides each sample’s error by its target value,

making errors at lower scales numerically comparable to
those of larger reference magnitude. Figure 1b illustrates
the equalization effect of this approach, with the MAPE of the
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(a) Reference signal and Estimators as defined in Equations (2)
and (3).

(b) Squared and Relative Errors as perceived by the loss functions.

Figure 1: Synthetic multiscale example (100-sample window).

noisy signal now halving that of the small-scale-smoothing
one (0.113 and 0.199 respectively). This effectively means a
model trained to minimize the MAPE would better capture
the behaviour of the signal. Unfortunately, the instability of
this approach quickly becomes self-evident, since

∣∣δ̄∣∣ → ∞ as
|y| → 0 save for a perfect prediction, and even then stability
cannot be guaranteed due to quantization.

Division by 0 is not uncommon in informatics and mathe-
matical analysis, and some standard approaches have been
proposed to handle this exception for regression applica-
tions [Hyndman and Koehler, 2006; Hodson et al., 2021].
However, [Kim and Kim, 2016] took an unconventional ap-
proach by interpreting δ̄ as the hypotenuse slope of the “right
triangle” defined by the perpendicular sides |y − ŷ| and |y|
to introduce Mean Arctangent Absolute Percentage Error
(MAAPE), which measures the average angle of this slope as

MAAPE(y, ŷ) =
1

N

N∑
i=1

arctan
∣∣δ̄i∣∣. (5)

Albeit a clever solution to the asymptotic behaviour at |yi| →
0+, choosing to preserve the absolute value of this ratio as
a loss function introduces unwanted gradient behaviour at
ŷi → yi. A smoother gradient can thus be attained by relaxing
this one-to-one correspondence with the MAPE slope. Fur-
thermore, by exploiting enforceable bounds, we can extend
the definition to better capture the peak values of the signal
without losing the small-scale dynamics.

This work modifies MAAPE and uses this extension as a
functional unit to formulate the Symmetric Mean Average

Figure 2: Sample-wise behaviour of the MAAPE and its first two
derivatives as a function of the error ratio.

Squared Percentage Error (SMASPE). The specific contribu-
tions presented in this paper are the following:

1. The formulation of Mean Arctangent Squared Percentage
Error (MASPE), a quadratic-relative-error variation of
the MAAPE, and an analytical study of the mathematical
properties that render it a more suitable loss function for
gradient-based optimization.

2. SMASPE, a symmetrical extension of the MASPE that
exploits heuristic signal bounds to allow models to cap-
ture multiscale dynamics, and a graphical study of its
behaviour as a function of the predicted and reference
signal values.

3. A numerical validation of SMASPE’s adequacy for deter-
ministic and stochastic optimization algorithms.

The remainder of this paper is organized as follows. In
Section 2, the benefits and drawbacks introduced using the
above ratio’s square instead of its absolute value are explored
as a function of the auxiliary variable δ̄. Section 3 presents the
symmetric bound-enforcement and studies its implications as
a function of the reference and predicted values y and ŷ. In
Section 4, two real-world examples are used to showcase the
capabilities of SMASPE. Finally, in Section 5, a summary of
the obtained experimental results and possible extensions to
the proposed methodology are laid out.

The code and complementary material is made available as
a GitHub repository at [Vanegas Arias, 2025].

2 Unidimensional Analysis: Improvements
over MAAPE

Figure 2 illustrates the MAAPE and its derivatives as func-
tions of δ̄, with the first derivative being multiplied by −1
to highlight the direction of minimization. As mentioned in
Section 1, optimizing the absolute value of this ratio makes
this function C0 (not continuously differentiable) over the real
domain, which means it presents asymptotic behaviour at the
origin and thus renders the optimization problem numerically
unstable. This is the same phenomenon encountered when us-
ing the Mean Absolute Error (MAE) as a loss function, which
makes the MSE better suited as a minimization target even if
the MAE is being used as the main performance metric.

By loosening the trigonometrical correspondence with the
MAPE and focusing on the utility of MAAPE as a minimiza-
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Figure 3: Sample-wise behaviour of the MASPE and its first two
derivatives as a function of the error ratio.

tion target, the equivalent MASPE can be derived from Equa-
tion (5), yielding

MASPE(y, ŷ) =
1

N

N∑
i=1

arctan δ̄2i . (6)

Since the arctangent is monotonically increasing, the predictor
ŷ that minimizes MASPE for a given reference y also min-
imizes MAAPE. However, unlike its absolute-valued coun-
terpart, Equation (6) belongs to C∞ (proof in complemen-
tary material) over the real domain. Thus, its gradient lacks
MAAPE’s discontinuity at the origin and, consequently, its
second derivative is no longer asymptotic at 0 error, as shown
in Figure 3.

It is worth noting that the price the MAAPE (and by exten-
sion the MASPE) pays for its boundedness is the vanishing
gradient at infinity. Indeed, in both Figures 2 and 3 it is ev-
ident how the loss functions converge to π/2 as δ̄ → ±∞,
making its derivative converge to 0 by consequence. However,
as shown in Section 3, this issue can be mitigated by enforcing
loss-function symmetry w.r.t. known signal bounds.

3 Bidimensional Analysis: Symmetric Bounds
If by minimizing the expected squared error the MSE ne-
glects small-scale system dynamics, then the relative-error
approaches reviewed so far suffer an equivalent loss of accu-
racy at larger scales. Referring back to the synthetic example
presented in Equation (1), the estimator defined by Equa-
tion (2) would be perceived to be twice as accurate as the
one detailed in Equation (3) by the δ̄-based loss functions
(MASPE included) despite consistently failing to capture the
peak values of the intermittent signal. Therefore, an extension
of the metrics explored so far that considers the behaviour of
the loss as a function of both y and ŷ is required.

Even if a system’s dynamics are unknown, its domain can
often be either characterized or empirically determined from
data and thus be exploited to equalize measurable outputs
reliably. Looking at the MASPE as a bidimensional function
of y and ŷ, let [y−, y+] ⊂ R be a real, finite interval bounding
the target signal; i.e., −∞ < y− ≤ yi ≤ y+ < ∞ ∀i. Then,
loss symmetry is enforced w.r.t. these bounds as

SMASPE (y, ŷ) =MASPE
(
y − y−, ŷ − y−

)
+MASPE

(
y+ − y, y+ − ŷ

)
,

(7)

Figure 4: 2D behaviour of the SMASPE (isocontours) and its negative
gradient w.r.t. ŷ. The colour scale is a logarithmic function of
the magnitudes, where the yellow regions surrounding the user-set
bounds ({y−, y+} = {0, 1}) indicate a larger gradient magnitude
and the blue ones denote zones with a vanishing gradient.

thus defining the SMASPE. Since this modification is merely
the sum of two smooth functions evaluated on shifted (in-
verted) versions of the original signals y and ŷ, the differentia-
bility is preserved.

The second term of the above equation inverts the signal
w.r.t. y+ so that large-scale dynamics are perceived as small-
scale ones and vice versa. This effectively yields a numerically
stable loss function within the user-defined interval, as illus-
trated by Figure 4, preventing the vanishing error gradients
towards the upper bound of the modelled signal.

The [y−, y+] interval can be loosened as

[y−loose, y
+
loose] = [y− − γ∆y, y

+ + γ∆y], (8)

where ∆y := y+ − y− and γ is a relaxation coefficient. This
mitigates SMASPE’s asymptotic behaviour near the symme-
try bounds, further increasing the robustness of the approach.
However, if overdone, the function may lose track of the differ-
ence in scale over the signal range, forfeiting the advantages
of the relative-error approach. As evidenced by the vector
field intensity in Figure 4, the trade-off SMASPE makes for
its stability and domain coverage is its reliance on carefully
defined bounds, which should follow a user-defined heuristic.

4 Applications

This section showcases the performance and versatility of the
SMASPE with two real-life datasets. In Section 4.1, a com-
parative study for the real-life application presented in [Kim
and Kim, 2016], Stock-Keeping Unit (SKU)-demand forecast-
ing, is performed to illustrate the characteristics of SMASPE
w.r.t. the State-of-the-Art (SotA). Then, in Section 4.2, a Deep
Neural Network (DNN) is trained to forecast PV-generation
using the SMASPE to highlight the advantages of the pro-
posed loss function in backpropagation. In both experiments,
the SMASPE is tested using tight and loose bounds (γ = 0.1,
sensitivity analysis in complementary material).

The experiments were implemented in Python using the
Jax [Bradbury et al., 2018] and Keras 3 [Chollet and others,
2015] stacks for ML model construction and training.
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Figure 5: Intermittent demand patterns of four SKUs.

4.1 BFGS Optimization: Stock-Level Next-Sample
Forecasting

As the first experiment, the performance of the loss functions
proposed in this paper was tested for the same use-case studied
in [Kim and Kim, 2016]. The experiments in this section
were carried out using a Kaggle dataset [Veera, 2020] which,
to the authors’ knowledge, is the only open-access dataset
sampled with the same frequency (i.e., weekly) and containing
approximately the same number of samples per sequence as
the one used for the original MAAPE paper.

The dataset comprises 6000 time series, each containing
103 samples, representing the weekly sales volume per prod-
uct across five retail stores, with one example from each of
them being shown in Figure 5. Although not confirmed by the
dataset description, it is reasonable to infer that the two sales
peaks, approximately one year apart from each other, corre-
spond to the sales near the holiday season, which explains
the signal synchronization. Following the methodology of the
MAAPE proposers [Kim and Kim, 2016], the first 95 samples
were used to fit the models and the remaining 8 to evaluate
their out-of-sample performance.

The considered models were the worst and best perform-
ers in [Kim and Kim, 2016]; namely, non-seasonal Auto-
Regressive Integrated Moving Average (ARIMA) and Holt-
Winters (HW) additive method (Triple Exponential Smooth-
ing), respectively. Considering the length of the dataset, and
since the authors did not provide the model parameters, a
(4, 1, 4) order ARIMA and a HW with seasonality 4 were
fitted separately to each time series, initializing the ARIMA
model weights to 0 and the convex sum coefficients of the HW
method to 0.5. These weights were adjusted by minimizing the
MSE, MAAPE, MASPE, and SMASPE1. The performance of
the fitted models was evaluated using all loss functions tested,
the MAE, and their median convergence time (measured in
iterations) in all sequences.

Table 1 contains the numerical results of the described exper-
imental pipeline evaluated over the saturated model outputs,
since negative demand values are not valid. From these results,
the following can be stated:

• Despite the HW model converging generally faster than
the ARIMA due to its lower parameter count (3 for HW
vs. 10 for ARIMA), the previously worst-performing

1Tight bounds set to each sequence’s extrema.

(a) ARIMA model.

(b) HW model.

Figure 6: SKU demand model error distribution boxplots.

architecture ends up being the most accurate according
to all error metrics when fitted using the SMASPE with
moderately loose bounds. This, however, comes at an
evident cost in convergence speed, requiring the most
iterations out of all evaluated model-loss configurations.

• Figure 6 provides some insight on MAAPE’s poor per-
formance for training the HW models. Indeed, despite
all loss functions producing a similar distribution box,
the MAAPE yields significantly more outliers of larger
magnitude than the MSE or the loose SMASPE, explain-
ing the difference in order of magnitude for the metrics
in Table 1. This phenomenon could remain hidden for a
small sample size, which might explain why the results
in this paper contradict those of [Kim and Kim, 2016].

• Finally, even when performing numerically similar (on
average) to its loose counterpart while converging sig-
nificantly faster, the worst-case scenarios in Figure 7
illustrate how tight bounds for the SMASPE often lead
to unstable model weights. This pathological behaviour
makes itself numerically evident through the MAE and
MSE metrics for the HW model.

4.2 Backpropagation: PV Generation 3-Day-Ahead
Forecasting

The second dataset is the PV energy generation. It comprises
821 full days (after clean-up) of hourly-sampled floating-point
data including timestamps, weather measurements, and aver-
age generated power in kilowatts. Furthermore, the output
signal was normalized from 0 to ∼ 1 by dividing each daily
curve over the median peak of the 15 preceding days to avoid
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Model Loss
Function

Median
Iteration
Number

Error Metrics (Out-of-Sample)

MAE MSE MAAPE MASPE SMASPE
(tight)

SMASPE
(loose)

ARIMA

MSE 23 4.32× 107 6.70× 1018 0.648 0.554 1.07 0.653

MAAPE 5 3.19× 108 2.79× 1018 0.638 0.562 1.13 0.700

MASPE 28 4.66× 103 9.43× 1010 0.575 0.486 1.03 0.630

SMASPE
(tight) 9 3.09× 102 1.62× 107 0.608 0.527 1.07 0.657

SMASPE
(loose) 43 2.08× 102 2.25× 105 0.528 0.429 0.934 0.553

HW

MSE 2 2.31× 102 2.35× 105 0.614 0.522 1.00 0.636

MAAPE 3 8.12× 104 2.97× 1013 0.638 0.543 1.03 0.712

MASPE 5 8.78× 103 6.93× 1011 0.620 0.519 1.00 0.688

SMASPE
(tight) 4 1.79× 105 2.68× 1014 0.637 0.543 1.03 0.716

SMASPE
(loose) 4 2.32× 102 2.53× 105 0.558 0.441 0.912 0.614

Table 1: SKU forecasting numerical results (the best performer per metric is highlighted).

(a) ARIMA model. (b) HW model.

Figure 7: SKU forecasts for the best (top) and worst (bottom) case scenarios for both architectures according to the out-of-sample Integral
Absolute Error (IAE). The vertical red line divides the in-sample and out-of-sample regions of the time series.

numerically neglecting generation values during low-sunlight
seasons such as winter and prolonged storms, thus setting a
heuristic for the SMASPE bounds.

Missing samples in the dataset impose a natural division
that was used to determine the training, validation, and test
partitions, resulting in a 59.1/29.7/11.2% scheme. In addi-

tion to the historical PV generation signal, global radiation
and air temperature measurements were used as exogenous
features, the forecasts of which can be retrieved during deploy-
ment and used as additional inputs. Since only the historical
measurements of weather variables were logged, forecast un-
certainty was simulated by introducing additive noise with
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Figure 8: Best (top) and Worst (bottom) Case PV-generation fore-
casts.

exponentially increasing variance; namely,

x̃[n] = x[n] + ϵx[n],

ϵx ∼ N (0, ς2e2βnσ2
x),

n ∈ N0,

(9)

where σx denotes the variance of the original variable x, ς
represents the standard deviation of the white noise for the first
sample over the prediction horizon, and β sets the exponential
growth factor of the noise variance as a function of the sample
index over the prediction horizon. These parameters were
calibrated to ensure that the noise had a standard deviation of
0.1% of each feature’s standard deviation at the beginning of
the forecast horizon and increased tenfold by the end of the
forecast window (i.e. β = ln 10

71 ).
The chosen architecture was an encoder/decoder Recursive

Neural Network (RNN) with Gated-Recurrent Unit (GRU)
layers similar to the scheme proposed by [Cho, 2014] with
its hyperparameters fixed (1737 weights in total) for 72-hour
context and forecast windows. The weights were randomly ini-
tialized five times and used as common starting points for all
loss functions considered in Section 4.1, keeping the weights
that achieved the median validation loss. These were mini-
mized using the Adam optimizer (Learning Rate of 5× 10−4,
64 sequences per batch) for a maximum of 2000 epochs (500
patience epochs). Finally, rather than the actual extrema of
the training partition, the expected [0, 1] interval was used to
define the tight bounds.

Table 2 contains the numerical results of the described ex-
perimental pipeline evaluated on the saturated model out-
puts, since negative generation values are not possible in this
scenario. Figure 8 showcases the best and worst-case PV-
generation forecasts based on the IAE for the displayed pre-

(a) Loss history for the training partition (unsaturated output signal
to avoid gradient clipping).

(b) Loss history for the validation partition (saturated output signal).

Figure 9: PV-generation model loss values during training normal-
ized w.r.t. their a-priori value for the best trials.

Figure 10: PV-generation model error distribution boxplots.

diction horizon. From these, the following can be stated:

• Despite the MSE and MAAPE converging the fastest out
of all considered loss functions, Figure 9b reveals that
this is due to the divergence of the validation loss. Since
the MASPE history does not exhibit the same behaviour,
it can be inferred that this issue stems from model overfit-
ting and gradients around zero-relative-error respectively.
This makes the models trained using the fast-converging
loss functions perform significantly worse than the pro-
posed ones for all error metrics evaluated over the test
partition, as illustrated by Figure 8.

• On the opposite end of the spectrum, and as shown in
Figure 9, MASPE models take the longest to converge
due to the vanishing gradients brought up in Section 2.
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Loss Function Median Epoch
Number

Error Metrics (Testing Partition)

MAE MSE MAAPE MASPE SMASPE (tight) SMASPE
(loose)

MSE 774∗ 0.179 0.143 1.13 1.15 1.28 0.649

MAAPE 855 0.185 0.132 0.901 0.866 1.02 0.550

MASPE 1050 0.123 0.121 0.726 0.655 0.786 0.243

SMASPE (tight) 974 0.109 9.79× 10−2 0.729 0.661 0.779 0.223

SMASPE
(loose) 904 0.107 9.25× 10−2 0.715 0.641 0.756 0.215

Table 2: PV Generation Forecast numerical results (the best performer per metric is highlighted).

Figure 11: PV-generation signed-error heatmaps for the MAAPE
(top) and the loose SMASPE (bottom) as a function of their position
within the prediction horizon.

Furthermore, Figure 10 reveals all proposed loss func-
tions converge towards similar error distributions, yet
the loose SMASPE remains the clear winner in terms of
convergence speed and stability.

• The numerical results in Table 2 validate the increase in
accuracy achieved by SMASPE, yielding relative im-
provements of 42% and 13% in terms of MAE w.r.t.
MAAPE and MASPE-trained models respectively. More-
over, Figure 11 provides further insight into the signed-
error behaviour: while the MAAPE-trained model fails
at capturing PV-generation peaks, the relaxed SMASPE-
trained one achieves a near-symmetrical distribution at
these critical points over the prediction horizon.

5 Conclusion
We have proposed the Mean Arctangent Squared Percentage
Error (MASPE) as an improvement over MAAPE to prevent
the asymptotic behaviour of the gradient at zero relative error.
Moreover, we have proposed a novel loss function, the Sym-
metric Mean Average Squared Percentage Error (SMASPE),
using the MASPE as a building block to exploit a priori knowl-
edge on the bounds of the target signal and capture its dy-
namics across all numerical scales. An analysis of the mathe-
matical properties that render these metrics more suitable as
loss functions for gradient-based optimization was laid out,
followed by a numerical validation of the theorized advantages
for both deterministic and stochastic optimization applications.
The results not only show that a SMASPE with properly cal-
ibrated bounds surpasses both the ubiquitous MSE and the
SotA MAAPE for deterministic optimization in terms of ac-
curacy, but it also significantly outperforms the latter when
targetted by stochastic optimization algorithms (e.g., ADAM).
As possible extensions, we propose multiple symmetry inter-
vals for scalar output models and the generalization of the
SMASPE to vectorial outputs, either using hypercubes for in-
dependent dimensions or hyperspheres for vectors with known
magnitude bounds.
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Courcier, 1806.

[Liano, 1996] Kadir Liano. Robust error measure for super-
vised neural network learning with outliers. IEEE Transac-
tions on Neural Networks, 7(1):246–250, 1996.

[Steinhauser, 2016] Martin Steinhauser. Computational mul-
tiscale modeling of fluids and solids. Springer, Berlin,
Germany, 2 edition, December 2016.

[Vanegas Arias, 2025] Sergio Mauricio Vanegas Arias. A
symmetric relative-error loss function for intermittent mul-
tiscale signal modelling (github repository). https://github.
com/sergiovaneg/SMASPE, 2025. Accessed: 2025-05-29.

[Veera, 2020] Pearl Veera. Weekly sku level product sales
transactions. https://www.kaggle.com/datasets/pearlveera/
weekly-sku-level-product-sales-transactions, 2020.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://keras.io
https://github.com/sergiovaneg/SMASPE
https://github.com/sergiovaneg/SMASPE
https://www.kaggle.com/datasets/pearlveera/weekly-sku-level-product-sales-transactions
https://www.kaggle.com/datasets/pearlveera/weekly-sku-level-product-sales-transactions

