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Abstract
Multi-agent reinforcement learning (MARL) has
demonstrated remarkable success in collaborative
tasks, yet faces significant challenges in scaling to
complex scenarios requiring sustained planning and
coordination across long horizons. While hierarchi-
cal approaches help decompose these tasks, they
typically rely on hand-crafted subtasks and domain-
specific knowledge, limiting their generalizability.
We present L2M2, a novel hierarchical framework
that leverages large language models (LLMs) for
high-level strategic planning and MARL for low-
level execution. L2M2 enables zero-shot planning
that supports both end-to-end training and direct
integration with pre-trained MARL models. Experi-
ments in the VMAS environment demonstrate that
L2M2’s LLM-guided MARL achieves superior per-
formance while requiring less than 20% of the train-
ing samples compared to baseline methods. In the
MOSMAC environment, L2M2 demonstrates strong
performance with pre-defined subgoals and main-
tains substantial effectiveness without subgoals -
scenarios where baseline methods consistently fail.
Analysis through kernel density estimation reveals
L2M2’s ability to automatically generate appropri-
ate navigation plans, demonstrating its potential for
addressing complex multi-agent coordination tasks.

1 Introduction
Multi-agent reinforcement learning (MARL) has emerged
as a powerful framework for coordinating autonomous sys-
tems, demonstrating remarkable success in both real-world
applications, such as urban traffic control [Zhang et al.,
2019] and multi-robot navigation [Oroojlooy and Hajinezhad,
2023], and complex simulated environments such as StarCraft
II [Vinyals et al., 2017; Samvelyan et al., 2019]. Recent stud-
ies have advanced MARL towards increasingly challenging
problems, including environments with rich stochasticity [El-
lis et al., 2023], human-agent collaboration [Li et al., 2023b;

∗Corresponding authors.

Liu et al., 2024a], and long-horizon sequential planning [Geng
et al., 2024a]. These complex domains intensify challenges
for MARL, such as sample efficiency, temporal credit as-
signment, exploration in large state-action spaces, and non-
stationarity [Hernandez-Leal et al., 2019].

Hierarchical multi-agent architectures [Ahilan and Dayan,
2019; Geng et al., 2024b] attempt to address these challenges
through multi-level control structures that decompose com-
plex tasks into manageable subtasks. These methods typically
employ a centralized high-level planner agent for subtask al-
location and multiple low-level executor agents for subtask
accomplishment. However, existing methods rely heavily on
domain knowledge for subtask definition and assignment, re-
sulting in task-specific policies with limited transferability
across tasks. This dependency on domain knowledge and the
costly retraining in new scenarios presents a critical bottleneck
in scaling MARL to diverse real-world applications.

Recent research has explored integrating large language
models (LLMs) into multi-agent systems [Li et al., 2023b],
leveraging their pre-trained capabilities in contextual inference
and natural language understanding. As existing approaches
primarily focus on pure multi-LLM-agent systems, they gen-
erally face scalability challenges with large agent popula-
tions. To address these challenges, we propose L2M2 (Large
Language Model and Multi-agent Reinforcement Learning),
a hierarchical framework that integrates LLMs with mul-
tiple reinforcement learning agents. Following the LLM-
as-policy paradigm [Carta et al., 2023; Szot et al., 2024;
Zhou et al., 2024], L2M2 introduces an LLM agent that
leverages a large language model as its decision-making
policy for task decomposition and allocation, while rein-
forcement learning agents execute the resulting subtasks
through direct environmental interactions. L2M2 enables
zero-shot planning [Dalal et al., 2023] to guide RL agents
directly with pre-trained LLMs. This approach significantly
reduces the computational overhead of developing policies
for high-level controllers from scratch [Agarwal et al., 2023;
Blumenkamp et al., 2024; Geng et al., 2024b] while enhancing
the generalizability of L2M2 across different scenarios.

To validate our approach, we conduct comprehensive
experiments across progressively challenging scenarios in
VMAS [Bettini et al., 2022] and MOSMAC [Geng et al.,
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2024a; Geng et al., 2025] environments, ranging from basic
particle navigation to strategic navigation through obstacle-
rich terrains in StarCraft II maps. Our evaluation com-
pares L2M2 against various baselines including classic non-
hierarchical MARL algorithms and hierarchical frameworks,
such as HiSOMA [Geng et al., 2024b] and MOSMAC’s multi-
agent model with rule-based controller (RBC). The results
demonstrate L2M2’s significant advantages across multiple
dimensions. In VMAS scenarios, L2M2 achieves comparable
performance to baseline methods while using only 15-20%
of training samples, demonstrating remarkable sample effi-
ciency. On complex MOSMAC scenarios with the default
pre-defined subgoals, L2M2 achieves a 98.75% success rate,
outperforming both RBC (83.13%) and HiSOMA (94.38%).
Most notably, while baseline methods struggle in the challeng-
ing MOSMAC scenarios without pre-defined subgoals, L2M2
maintains a 68.13% success rate through effective zero-shot
planning [Dalal et al., 2023] and policy transfer using pre-
trained MARL models from the MOSMAC complex scenario
with subgoals. Analysis using kernel density estimation re-
veals that L2M2’s LLM agent consistently generates strategic
navigation paths that avoid challenging areas, demonstrating
effective high-level planning without domain expertise. These
results highlight L2M2’s potential as a generalizable frame-
work for scaling up multi-agent systems towards long-horizon
cooperative multi-agent navigation problems. The main con-
tributions of this work are summarized as follows:

1. We propose L2M2, a novel hierarchical framework in-
tegrating LLM-based high-level planning with MARL-
based execution, where an environment translator enables
robust LLM-MARL coordination.

2. We introduce a zero-shot planning approach where pre-
trained LLMs directly guide MARL agents, supporting
both end-to-end training and integration with existing
MARL policies while reducing the cost of repetitively
training high-level controllers for different tasks.

3. Experimental results on VMAS and MOSMAC demon-
strate L2M2’s effectiveness, achieving superior perfor-
mance with only 15-20% of baseline training samples and
maintaining high success rates (98.75% with pre-defined
waypoints, 68.13% without) where baseline methods fail.

The rest of this paper is organized as follows. In Section
2, we discuss the relevant literature in the field. The L2M2
framework is detailed in Section 3. Section 4 presents the
VMAS and MOSMAC benchmark environments. Section 5
discusses the experimental results. Section 6 concludes with a
discussion of our findings and future work.

2 Related Work
2.1 LLM in Multi-agent Frameworks
Recent studies have demonstrated two primary approaches for
integrating LLMs into multi-agent systems: LLM-as-policy
and LLM-as-enhancement. The LLM-as-policy approach em-
ploys LLMs as decision-making policies for LLM agents , sim-
ilar to neural networks in deep reinforcement learning agents.
This approach leverages natural language as a communication
protocol, enabling agents to incorporate perception, memory,

and execution modules [Zhang et al., 2023]. In contrast, the
LLM-as-enhancement approach uses LLMs to generate sup-
plementary signals such as rewards that influence the agents’
decision-making process. For a comprehensive review of this
approach, we refer interested readers to a recent survey by Cao
et al. [2024]. Multi-agent architectures on the LLM-as-policy
approach have evolved along two main paths: the pure multi-
LLM-agent paradigm [Li et al., 2023a; Zhang et al., 2023;
Liu et al., 2024b; Mandi et al., 2024; Huang et al., 2025]
and the mixed multi-LLM/RL-agent paradigm [Li et al., 2023b;
Liu et al., 2024a]. While pure systems focus on interactions be-
tween multiple LLM agents, mixed systems explore how rein-
forcement learning [Li et al., 2023b] or executable scripts [Yu
et al., 2023] can complement LLM capabilities. This work
introduces a novel perspective by investigating how language
models can enhance the capabilities of low-level MARL agents
through a mixed multi-LLM/RL framework, where the LLM
agent follows the LLM-as-policy approach.

2.2 LLM-guided Reinforcement Learning
The mixed multi-LLM/RL-agent paradigm encompasses two
complementary research directions. The first focuses on en-
hancing LLM agents through learned execution policies for
plans and subtasks, while the second aims to improve the effi-
ciency of reinforcement learning through LLM-guided policy
learning. While substantial research has focused on the for-
mer, emerging studies investigate how LLMs can strengthen
existing MARL algorithms. In the single-RL-agent domain,
Dalal et al. [2023] showed the potential of using LLMs as
high-level task planners to guide low-level policy training for
robotic tasks. However, the extension to multi-agent scenarios
remains largely unexplored. Specifically, L2M2 addresses the
unexplored challenge of using LLMs to coordinate multiple
reinforcement learning agents in complex navigation tasks,
thereby filling a significant gap in the current literature on
LLM-MARL integration.

2.3 MARL and Hierarchical Multi-agent
Frameworks

MARL has made substantial progress in both on-policy and
off-policy algorithms in recent years. Representative on-policy
methods such as COMA [Foerster et al., 2018], MAA2C [Pa-
poudakis et al., 2021], and MAPPO [Yu et al., 2022], along
with off-policy methods including MADDPG [Lowe et al.,
2017], VDN [Sunehag et al., 2018], QMIX [Rashid et al.,
2018], QTRAN [Son et al., 2019], and MAVEN [Mahajan
et al., 2019], have demonstrated strong performance on co-
operative tasks. Building on these foundations, recent re-
search has focused on scaling multi-agent systems to address
long-horizon tasks. This progression, while promising, has
intensified several key challenges, particularly temporal credit
assignment [Jiang and Agarwal, 2018] and catastrophic forget-
ting [Elsayed and Mahmood, 2023]. Consequently, while ex-
isting MARL algorithms perform effectively in short-horizon
scenarios such as SMAC [Samvelyan et al., 2019], they may
face significant challenges when dealing with extended opera-
tion horizons that require sustained coordination and planning.

Hierarchical approaches have emerged as a promising di-
rection for addressing these challenges. Methods such as
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Feudal Multiagent Hierarchies (FMH) [Ahilan and Dayan,
2019] and HAMMER [Gupta et al., 2023] demonstrate how
task decomposition can enhance multi-agent capabilities. Hi-
SOMA [Geng et al., 2024b] recently advances this approach
by implementing a three-level control hierarchy that integrates
multiple groups of RL agents trained through centralized
MARL algorithms. This hierarchical framework has success-
fully tackled challenging long-horizon navigation problems
that proved difficult for non-hierarchical approaches, highlight-
ing the potential of hierarchical control structures to improve
sample efficiency in policy learning for low-level RL agents.

3 The L2M2 Framework
We present L2M2, a hierarchical multi-agent framework that
integrates large language models (LLMs) for high-level strate-
gic planning with multi-agent reinforcement learning (MARL)
for low-level execution. Our framework addresses the chal-
lenges of long-horizon task decomposition and coordination
without requiring domain-specific heuristics or pre-defined
subtasks. The framework consists of two primary components:
(1) a high-level LLM agent that generates strategic plans and
subtask allocations, and (2) multiple low-level RL agents that
execute primitive actions to accomplish these subtasks. The
system leverages pre-trained LLMs [Llama Team, 2024] for
zero-shot planning while enabling both end-to-end training
and direct integration with existing MARL policies.

3.1 Framework Overview
L2M2 implements a two-level hierarchy where a single LLM
agent coordinates multiple RL agents through temporally ex-
tended [Vezhnevets et al., 2017] macro-actions. For the high-
level component, we employ the representative Llama 3.1-8B
model [Llama Team, 2024], though our framework remains
compatible with other LLMs. The low-level agents utilize
state-of-the-art centralized training decentralized execution
(CTDE) MARL algorithms, representatively QMIX [Rashid
et al., 2018]. To facilitate efficient interaction between compo-
nents, we implement a generalizable communication protocol
comprising an environment translator ω and a subtask allo-
cation mechanism. This modular design ensures flexibility,
allowing each component to be implemented using any suit-
able model within its respective domain.

3.2 The Large Language Model Agent
The LLM agent serves as a high-level planner that performs
zero-shot [Dalal et al., 2023] strategic planning by process-
ing global environmental states sLLM and generating coordi-
nated task allocations aLLM for subordinate RL agents. We
adopt the LLM-as-policy [Carta et al., 2023; Szot et al., 2024;
Zhou et al., 2024] approach, utilizing LLMs as policy net-
works πLLM that receive input states and produce output
actions in textual forms. The LLM agent operates at a lower
frequency than RL agents, which execute primitive actions at
each timestep. Figure 1 illustrates this control process.

State Representation
Let ω : SEnv → PLLM be the environment translator
function that maps environmental states into environmental
prompts, where SEnv and PLLM are the environmental state

space and the environmental prompt space respectively. At
time t, the environmental state sEnv

t ∈ SEnv is defined as:

sEnv
t = (ct, bt, gt, dt, dt+1) (1)

where:
• ct is the current coordinates of n RL agents
• bt indicates obstacles in eight directions
• gt represents available movement subtasks
• dt denotes the current distances to the final target
• dt+1 indicates predicted distances after taking each po-

tential subtask
The ω converts sEnv

t into an environmental prompt:
pLLM
t = (cLLM

t , bLLM
t , gLLM

t , dLLM
t , dLLM

t+1 , f) (2)
where cLLM

t , bLLM
t , gLLM

t , dLLM
t , dLLM

t+1 represent the natu-
ral language descriptions of their corresponding elements in
sEnv
t , and f specifies the format of LLM’s response.

Action Space and Decision Making
The LLM agent generates temporally abstracted movement
actions as subtasks for RL agents, illustrated in Figure 2.

The action aLLM
t at time t is defined as:

aLLM
t = {git+1 ∈ G | i ∈ {1, . . . , n}} (3)

where G is the discrete set of available subtasks for the next
timestep t+ 1 and n is the number of RL agents. To reduce
computational overhead, L2M2 generates a joint plan for all
RL agents in a single prompting round.

Feedback Mechanism
We implement a negative-feedback-only mechanism enabling
the LLM agent to perform in-context learning. The verification
process on aLLM is a two-step procedure that includes:

1. Hard verification: Checks output format compliance as
specified by f in the prompt pLLM

2. Soft verification: Ensures selected actions in aLLM are
within the available action space, reducing hallucinations

When verification fails, a self-correction procedure initiates
another action selection round with error descriptions pErr

incorporated into the environment prompt pLLM , allowing the
LLM agent to reflect and correct its mistakes.

3.3 The Reinforcement Learning Agents
RL agents execute primitive actions that directly interact with
the environment based on subtasks g assigned by the LLM
agent. They maintain information-receiving channels in their
observation space to process incoming communicative infor-
mation from the high-level agent.

Observation and Action Spaces
At timestep t, RL agent i receives a partial observation:

oit = (oe,it , og,it ) (4)

where oe,it represents general environment information,
and og,it encapsulates subtask-related information from the
information-receiving channel. A translation module ωRL :
Gi → Og,i maps subtask information regarding git+1 into the
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Figure 1: The L2M2 framework exemplified with one LLM agent and four RL agents on the MOSMAC complex scenario.

RL agents’ observation space, ensuring effective communica-
tion of high-level strategic decisions.

The action space of RL agents remains identical to non-
hierarchical MARL algorithms on the benchmark environ-
ments. For example, actions in the MOSMAC environment
include no-op, move to four directions and stop.

Figure 2: LLM agent’s action space for controlling a single unit.
Yellow circles represent selectable movement subtasks in eight di-
rections. North and south directions are blocked by obstacles. Red
circles indicate locations where RL agents sense terrain information.
The red arrow illustrates the distance of a single RL unit movement.

Reward Structure

The reward function for RL agent i at timestep t combines
environmental and subtask-related rewards:

rit = re,it + rg,it (5)
where re,it is the environmental reward and rg,it is the subtask-
related reward. This composite reward structure encourages
RL agents to balance immediate environmental feedback with
progress towards their assigned subtasks.

4 Benchmark Domains

To demonstrate the effectiveness of L2M2, this work compares
L2M2 against baseline methods on two popular multi-agent
environments, including VMAS [Bettini et al., 2022], a vector-
ized 2D physics environment that simulates the movements of
multiple particles, and StarCraft II [Vinyals et al., 2017], a pop-
ular real-time strategy (RTS) game environment where agents
need to learn to move and attack enemy units. For each envi-
ronment, we adopt two tasks closely related to the multi-agent
navigation problem. For the VMAS environment, we adopt
the navigation and passage scenarios. For the StarCraft II en-
vironment, we adopt two long-horizon multi-agent navigation
scenarios with complex terrain from MOSMAC [Geng et al.,
2025], which provides a more realistic and challenging setting.
In both environments, agents share the same goal and need
to reach the goal collaboratively. The following subsections
detail the specific characteristics of each environment.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

(a) Navigation (b) Passage

Figure 3: The VMAS navigation and passage scenarios implemented
in this study. In the navigation scenario, four agents collaborate
to reach a shared goal. The passage scenario features five agents
pursuing a shared goal, with the map bisected by a barrier contain-
ing a single randomly-positioned passage. Hierarchical multi-agent
frameworks select intermediate subgoals (grey spheres) to guide RL
agents toward the goal through sequential navigation instructions.

(a) Complex w. subgoals (b) Complex w/o subgoals

Figure 4: Long-horizon multi-agent MOSMAC scenarios imple-
mented in this study. In each scenario, four units spawn in the
bottom-left region and navigate to the goal location (denoted by a
building) in the upper-right region of a 128×128 map. For the sce-
nario with subgoals, white spheres indicate pre-defined intermediary
waypoints, with connecting lines representing traversable paths.

4.1 The VMAS Environment
VMAS (Vectorized Multi-Agent Simulator) [Bettini et al.,
2022] provides a two-dimensional physics-based platform for
simulating multi-agent interactions through particle-based dy-
namics. Among its scenarios, the navigation and passage
scenarios (Figure 3) are particularly relevant for evaluating
multi-agent navigation problems. The navigation scenario
presents an obstacle-free environment where agents must co-
operatively reach a shared goal position, while the passage
scenario extends this by introducing a barrier that divides the
map into two sections, with agents starting in the lower section
and targeting a randomly placed goal in the upper section.

4.2 The MOSMAC Environment
The MOSMAC (Multi-Objective SMAC) benchmark [Geng
et al., 2024a; Geng et al., 2025] (Figure 4) extends the
StarCraft II Multi-Agent Challenge (SMAC) [Samvelyan et
al., 2019] towards long-horizon and multi-objective prob-
lems. Our study focuses on MOSMAC scenarios featuring
long-horizon multi-agent navigation: 4t_vs_0t_large_flat and
4t_vs_0t_large_complex (referred to as ‘flat’ and ‘complex’
hereafter), where four siege tank units navigate on a 128×128

map. Complex terrain scenarios incorporate challenging fea-
tures such as high/low-ground elevation changes, ramps, cliffs,
and dead-end corners that test agents’ navigation capabili-
ties in difficult areas. In addition to the original pre-defined
scenario-specific subtasks, we also evaluate scenarios without
these subgoals to create a more challenging environment that
better reflects real-world applications.

5 Experiments and Results
We evaluate L2M2 against state-of-the-art baselines across
progressively challenging scenarios in VMAS and MOSMAC
environments, ranging from basic particle navigation to strate-
gic navigation through obstacle-rich environments. The bench-
mark scenarios can be categorized based on whether agents
should follow pre-defined subtasks, which influence the action
space available to high-level controllers.

5.1 Baselines
For all baseline methods and L2M2, we employ
QMIX [Rashid et al., 2018] as the base algorithm. QMIX is
a state-of-the-art off-policy MARL algorithm that combines
individual agent Q-values into a global Q-value through a
mixing network. QMIX inspired several advanced algorithms
including QTRAN [Son et al., 2019] and MAVEN [Mahajan
et al., 2019], and has demonstrated superior performance on
MOSMAC scenarios [Geng et al., 2024a]. While on-policy
algorithms like MAA2C [Papoudakis et al., 2021] and
MAPPO [Yu et al., 2022] could also be used for end-to-end
training, their lower sample efficiency requires parallel
training, which significantly increases computational costs for
parallel LLM inference. Therefore, for on-policy algorithms,
we focus on direct integration (DI) results where pre-trained
MARL policies are combined with high-level controllers
without additional training. All evaluations on L2M2 use
Llama 3.1-8B [Llama Team, 2024] as the policy for its
high-level controller. We set the temperature to 0 and limited
the output to 150 tokens to ensure consistency.

We adopt HiSOMA [Geng et al., 2024b] as our primary hier-
archical baseline. HiSOMA implements a multi-level control
hierarchy where Fusion Architecture for Learning, Cognition,
and Navigation (FALCON) [Tan, 2007] functions as a cen-
tral higher-level controller that coordinates multiple groups of
MARL agents. FALCON is based on the three-channel Fusion
Adaptive Resonance Theory model, a type of self-organizing
neural network (SONN) that learns state-action-reward asso-
ciations for optimal control. Although HiSOMA was origi-
nally evaluated on MOSMAC with multiple groups of agents,
we adapted it to our study by configuring a single FALCON
controller to guide one group of RL agents through various
navigation tasks, as a fair baseline for L2M2.

Scenarios without Pre-defined Subgoals
For scenarios without pre-defined subgoals, we evaluate
L2M2 against both hierarchical and non-hierarchical methods
through two approaches: end-to-end training of all methods,
and direct integration of high-level controllers with MARL
policies trained in a non-hierarchical manner. To ensure a
fair comparison, all high-level controllers are configured with

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

(a) Averaged Win Rates (b) Averaged Returns

Figure 5: Results of the evaluated methods including MARL (QMIX), HiSOMA (FALCON+QMIX), and the proposed L2M2 (Llama 3.1 8B)
on the VMAS navigation scenario. The direct integration results for HiSOMA and L2M2 are represented as horizontal dotted lines.

Figure 6: The averaged win rates for L2M2, non-hierarchical MARL
(QMIX) and HiSOMA on the VMAS passage scenario.

enhanced environmental interaction capabilities, with observa-
tion and action ranges set to eight times those of low-level RL
agents (Figure 2). Following Geng et al. [2024b], we train Hi-
SOMA’s FALCON controller across four simulated scenarios
that mirror the tasks for high-level controllers in VMAS and
MOSMAC scenarios before integrating with MARL.

Scenarios with Subgoals
Scenarios with subgoals present a distinct evaluation setting,
as they require agents to complete pre-defined subtasks in
sequence. The MOSMAC benchmark provides a baseline
method known as RBC-MARL, which employs a randomized
path selector to guide units through strategic points toward
their final goal (Figure 4b). This built-in method is essentially
a hierarchical end-to-end training method where a path selector
coordinates MARL agents through sequential subtask alloca-
tions. Given that pre-defined subtask selection is inherently a
hierarchical control problem, we focus our evaluation on com-
paring L2M2 against other hierarchical approaches - specif-
ically HiSOMA and the RBC-MARL baseline. We further
demonstrate L2M2’s effectiveness by showing it can directly
utilize MARL policies trained with RBC without fine-tuning.
This highlights its zero-shot adaptation capabilities.

5.2 Evaluation Protocols
We conduct comprehensive evaluations comparing L2M2
against established baselines while maintaining consistent

hyperparameter settings across MARL algorithms. For non-
hierarchical baselines and HiSOMA’s end-to-end training, we
allocate 1 million steps for VMAS navigation, 1.5 million
steps for VMAS passage, and 20 million steps for MOSMAC
complex terrain scenarios. Given L2M2’s superior sample
efficiency, we restrict its MARL training to fewer steps: 200k
for VMAS navigation, 400k for VMAS passage, and 100k
timesteps for MOSMAC scenarios, which reduces computa-
tional costs associated with LLM inference while maintaining
performance. For end-to-end training evaluation, we assess all
methods across 32 episodes at fixed intervals throughout the
training process. For hierarchical methods using pre-trained
MARL policies, we conduct five independent evaluations,
each utilizing a MARL model trained with a different seed.
Performance assessment relies on two standard MARL met-
rics: averaged win rates [Samvelyan et al., 2019] and averaged
episode returns [Papoudakis et al., 2021], providing a compre-
hensive view of both task completion and reward optimization.

5.3 Results on the VMAS Scenarios
Figure 5 presents the results of L2M2 and the baseline meth-
ods on the VMAS navigation scenario. The non-hierarchical
QMIX baseline achieves a 95.63% win rate within 1M steps.
When integrated as the low-level controllers in hierarchical
frameworks, it enables both HiSOMA and L2M2 to maintain
comparable performance (96.25% and 95.00% win rates, re-
spectively), demonstrating effective planning capabilities of
both FALCON and Llama 3.1-8B controllers.

Notable differences emerge in end-to-end training.
FALCON-guided training converges to an 84.38% win rate,
suggesting a potential difficulty of policy learning under the
commands of HiSOMA. In contrast, L2M2-guided training
achieves a 94.79% win rate, suggesting more consistent and
learnable guidance from the LLM controller. Most signifi-
cantly, L2M2 demonstrates superior sample efficiency, con-
verging to QMIX-level performance within 200k steps - only
one-fifth of the samples required by non-hierarchical MARL.

These benefits become more pronounced in the more chal-
lenging VMAS passage scenario, where agents must learn
sequential navigation through a passage to reach their goals
(Figure 3b). As shown in Figure 6, L2M2 on average achieves
an 8.75% win rate within 200k steps, while non-hierarchical
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Metrics Rule-based Control HiSOMA (DI) L2M2 (DI)

RBC w. QMIX FALCON w. QMIX Llama 3.1 8B w. QMIX

Avg. Win Rates (%)
(mean and std) 83.13 ± 10.96 94.38 ± 1.40 98.75 ± 2.80

Avg. Returns
(mean and std) 9.45 ± 0.85 10.82 ± 0.13 9.92 ± 0.21

Table 1: The results of the L2M2 and two baseline methods on
the MOSMAC complex scenario with subgoals. The rule-based
controller (RBC) is the default target selector of MOSMAC, which
randomly selects one of three paths for each episode.

Metrics End-to-End Policy Transfer

MARL HiSOMA (DI) L2M2 (DI)

Avg. Win Rates (%)
(mean and std) 0.00 ± 0.00 14.68 ± 14.14 68.13 ± 25.14

Avg. Returns
(mean and std) 0.73 ± 0.09 7.65 ± 2.49 9.39 ± 2.06

Table 2: Performance comparison on the MOSMAC complex sce-
nario without subgoals. Both HiSOMA and L2M2 utilize a policy
transfer approach, leveraging pre-trained MARL models from the
MOSMAC complex scenario with subgoals and integrating them
with their respective high-level controllers.

MARL requires 1.5M steps to reach a lower 6.25% win rate.
While HiSOMA encounters significant challenges in sim-
to-real policy transfer, L2M2 achieves robust performance
through its zero-shot planning [Dalal et al., 2023] capabilities,
demonstrating its ability to effectively coordinate and guide
multi-agent learning on complex tasks.

5.4 Results on the MOSMAC Scenarios
We first evaluate L2M2 on the default complex scenario with
pre-defined subgoals, where a rule-based controller (RBC)
selects from three pre-defined paths connecting start and goal
locations. As presented in Table 1, end-to-end training with
RBC-controlled QMIX agents achieves an average win rate
of 83.13%. When integrating the trained QMIX policies with
high-level controllers, both HiSOMA and L2M2 demonstrate
significant improvements, achieving win rates of 94.38% and
98.75% respectively. These improvements can be attributed
to enhanced planning capabilities that help agents avoid local
optima and challenging terrain features that often trap RBC-
controlled agents. Notably, L2M2 exhibits enhanced planning
capabilities compared to HiSOMA’s pre-trained controller,
demonstrating its efficient zero-shot planning ability.

We further evaluate L2M2 on a more challenging vari-
ant without pre-defined subgoals. In this scenario, non-
hierarchical MARL algorithms struggle to learn effective nav-
igation behaviour, resulting in poor performance of low-level
controllers that preclude direct integration with high-level con-
trollers. To address this limitation, we adopt a policy transfer
approach, leveraging MARL models pre-trained in scenarios
with subgoals. While both scenarios share identical terrains,
they present distinct hidden environment transition functions
and state distributions, creating a challenging zero-shot trans-
fer setting. As presented in Table 2, L2M2 achieves a win rate
of 68.13%, substantially outperforming HiSOMA, suggest-

Figure 7: Target locations and example actions (denoted by arrows)
selected by the LLM agent in the MOSMAC Complex scenario
without pre-defined subgoals. Regions with warmer colours denote
higher frequencies that were selected by the LLM agent.

ing the efficiency of combining generalizable subtask-based
MARL policies with LLMs in zero-shot settings.

5.5 Analysis on LLM Agent’s Actions in L2M2
To further evaluate L2M2’s capabilities, we analyzed the spa-
tial distribution of the LLM agent’s action selections using
kernel-density estimation (KDE) with Gaussian kernels on the
MOSMAC complex scenario without pre-defined subgoals, as
illustrated in Figure 7. Notably, the LLM agent consistently
generates navigation commands that avoid challenging terrain
features such as cliffs, ramps, and elevation changes, which
would otherwise trap the RL agents. Instead, it guides agents
through the terrain’s central region - a path that experienced
human players would recognize as optimal for this navigation
task. This spatial analysis demonstrates the LLM agent’s abil-
ity to generate contextually appropriate subtask signals for the
RL agents without requiring domain-specific training.

6 Conclusion and Future Work
This paper introduces L2M2, a novel hierarchical multi-agent
framework that integrates LLMs with MARL to address com-
plex, long-horizon multi-agent tasks. Our approach demon-
strates superior performance and sample efficiency, requiring
only 15-20% of the training samples needed by baseline meth-
ods while achieving comparable results. The effectiveness of
L2M2 stems from its zero-shot planning mechanism, which
enables an LLM agent to generate contextually appropriate
subtasks for MARL agents without repetitive retraining.

While demonstrating strong performance, L2M2 faces
several limitations, including computational overhead from
LLM and constraints on the LLM agent’s discrete action
space. Looking forward, several promising research direc-
tions emerge from this work. These include exploring LLMs’
environmental perception for automatic target identification,
incorporating feedback mechanisms for LLM fine-tuning, and
scaling to larger multi-agent systems through more sophisti-
cated coordination protocols. These advancements could sig-
nificantly expand the capabilities of integrated LLM-MARL
systems while maintaining the sample efficiency and general-
ization benefits demonstrated in this work.
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