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Abstract

Deep reinforcement learning (DRL) has achieved
remarkable success in dynamic decision-making
tasks. However, its inherent opacity and cold
start problem hinder transparency and training ef-
ficiency. To address these challenges, we pro-
pose HRL-ID, a neural-symbolic framework that
combines automated rule discovery with logical
reasoning within a hierarchical DRL structure.
HRL-ID dynamically extracts first-order logic rules
from environmental interactions, iteratively refines
them through success-based updates, and leverages
these rules to guide action execution during train-
ing. Extensive experiments on Atari benchmarks
demonstrate that HRL-ID outperforms state-of-the-
art methods in training efficiency and interpretabil-
ity, achieving higher reward rates and successful
knowledge transfer between domains.

1 Introduction
In recent years, deep reinforcement learning (DRL) [Mnih
et al., 2015] has gained widespread popularity due to its
successful implementation in a variety of dynamic decision-
making tasks [Zhang et al., 2022; Vinyals et al., 2019;
Kulkarni et al., 2016; Wang et al., 2016]. This shift in
paradigm is largely fueled by the capability of deep models
to autonomously acquire sophisticated behaviors and strate-
gies through interaction with complex environments. How-
ever, one of the major limitations of DRL is its lack of inter-
pretability, which creates substantial barriers to understand-
ing and explaining how these models make decisions. In-
terpretability plays a crucial role in decision-making sys-
tems, serving as a bridge between the model’s underlying me-
chanics and human cognitive processes [Gilpin et al., 2018;
Ibarz et al., 2018]. Without interpretability, the models be-
come opaque, limiting their transparency, accountability, and
user trust. This lack of clarity makes it challenging to trace
the model’s decision-making process or enhance it with more
interpretable knowledge. The issue is particularly problem-
atic during the early training phases, where models tend to
perform poorly and learn inefficiently, a situation commonly
referred to as the ”cold start” problem [Mnih et al., 2015].

There have been many attempts to imbue DRL with inter-
pretability. Some of them provide manually designed rules
for high-level planning with pre-defined subtasks. For in-
stance, SDRL [Lyu et al., 2019] employs hierarchical rein-
forcement learning with two layers, namely, the high-level
and low-level layers. The high-level layer distributes pre-
defined subtasks, while the low-level layer interacts with the
environment according to the high-level tasks. Hierarchical
reinforcement learning is particularly effective for learning
environments with sparse rewards, where higher layers can
provide intrinsic rewards based on task completion. Another
related work SORL [Jin et al., 2022] require manual provi-
sion of more complex action model. Some other work utilizes
symbolic knowledge as a post-hoc explanation for the trained
DRL models, aimed at unveiling the reasoning behind DRL
decisions [Ma et al., 2021]. For instance, NSRL [Ma et al.,
2021] provides a automated symbolic knowledge discovery
for DRL. The method generates chained first-order logic rules
without the need for manually designing templates, thereby
improving flexibility and saving manpower. While efforts
have been made to improve the interpretability of DRL mod-
els, the post-hoc explanation is only helpful for understand-
ing the trained deep models, without further utilizing the ex-
tracted knowledge for better decision making.

The above existing attempts to imbue DRL with inter-
pretability either integrates symbolic discovery as an explana-
tory tool post-hoc, or involves manually injecting symbolic
knowledge into DRL models. The former fails to integrate
the extracted knowledge into the decision process, and the
latter demands considerable human effort and limits the flex-
ibility of the DRL system to adapt and generalize to diverse
environments. In this paper, we argue that the knowledge dis-
covery and reasoning can be combined and integrated into
the process of the DRL training. With the explorations and
interactions between the agent and the environment, useful
high-level knowledge is extracted and subsequently utilized
to make a potentially better decision. With iterative explo-
ration and training, the extracted knowledge becomes more
accurate, and meanwhile the deep model achieves better per-
formance in decision making. To achieve that, we propose in
this paper a novel neural-symbolic framework that leverages
ad-hoc knowledge discovery and reasoning for interpretable
deep reinforcement learning. Our work begins to utilize rules
in the process of rule generation to accelerate the learning
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process of the model itself. In addition, we hope that the
rules generated with a specific domain can be generalized and
transferred to other domains. To this end, we construct new
algorithms that provide the agent with potentially generally
applicable rules from the beginning and apply these rules ap-
propriately, which our research shows can speed up learning.

We highlight our contributions in the following areas.
1. We introduce a novel neural-symbolic framework, Hi-

erarchical Reinforcement Learning with Automated
Knowledge Induction and Deduction (HRL-ID1), which
integrates symbolic knowledge representation and rea-
soning into hierarchical deep reinforcement learning.

2. Our approach combines knowledge discovery and rea-
soning to provide interpretable deep reinforcement
learning. The symbolic knowledge extracted by HRL-
ID not only offers a clear explanation for DRL but also
enhances learning efficiency during training.

3. We conduct a series of experiments that show HRL-ID
outperforms existing state-of-the-art methods in both in-
terpretability and learning efficiency.

2 Related Work
Deep reinforcement learning (DRL) has made significant ad-
vancements in a variety of applications, with widely used
algorithms such as DQN, Dueling DQN, and Double DQN
[Mnih et al., 2013; Wang et al., 2016; van Hasselt et al., 2016]
gaining broad recognition. Despite this success, concerns
about the interpretability and data efficiency of deep learning
models in the realm of DRL have surfaced. To address these
concerns, recent research endeavors have been dedicated to
enhancing the interpretability of DRL models.

Numerous strategies have emerged to bolster the inter-
pretability of DRL. This terrain can be broadly classified
into two overarching approaches: self-explanation and post-
interpretation. The self-explanation approach centers on im-
buing the model with self-awareness and the capacity to elu-
cidate its own behavior. As illustrated by the aforementioned
SDRL method, this approach incorporates a self-contained
transformation model interpretation strategy. In tandem, a
separate line of investigation revolves around the acquisition
of strategies through imitation learning. Scholars have dili-
gently explored techniques for cultivating interpretable strate-
gies [Verma et al., 2019; Bastani et al., 2018].

Conversely, post-hoc interpretation methods rely on aux-
iliary models or techniques to facilitate the interpretation of
trained DRL models [Juozapaitis et al., 2019; Madumal et
al., 2020; Rusu et al., 2016; Hayes and Shah, 2017]. This
paradigm aims to unveil the decision-making processes un-
derpinning the model’s behavior. Illustrative instances of
these methods encompass the utilization of saliency maps and
proxies for DRL interpretation [Puri et al., 2020; Zahavy et
al., 2016; Greydanus et al., 2018]. Typically, these techniques
engender visualizations or evaluate the significance of diverse
input features to unravel the model’s conduct.

Furthermore, there exists a category of methods that har-
ness rule-assisted models, exemplified by HIRL [Gao et al.,

1https://github.com/ResearchGroupHdZhang/HRL-ID

2020; Saunders et al., 2018]. In this context, pre-defined
human-crafted rules are seamlessly integrated to steer the
learning trajectory. Nonetheless, these methodologies often
necessitate human intervention and manual rule stipulation to
attain interpretability.

While these endeavors have made noteworthy strides in
augmenting the interpretability of DRL and HRL, they of-
ten do not fully exploit the potential of extracted models to
augment training efficiency. Our work exploits extracted ex-
planations to speed up training and facilitate rule generaliza-
tion in various contexts of the same game as well as different
games.

3 Method
We formally introduce our method, Hierarchical Reinforce-
ment Learning with automated knowledge Induction and De-
duction (HRL-ID). Figure 1 illustrates the comprehensive
framework of HRL-ID, highlighting the integration of rule
induction and reasoning within a hierarchical reinforcement
learning structure.

HRL-ID synergizes hierarchical reinforcement learning
with neural-symbolic reasoning to enhance both interpretabil-
ity and learning efficiency. The system comprises three core
components:

1. Rule Generation and Update: Facilitates the induc-
tion of logical rules from environmental interactions and
their continual refinement.

2. Rule Matching and Reasoning: Utilizes the induced
rules to guide decision-making through rule-based pol-
icy generation.

3. Knowledge Generalization and Grounding: Ensures
the transferability and generalization of rules across dif-
ferent environments.

3.1 Rule Generation and Update
The Rule Generation and Update process is a fundamental
component of HRL-ID, facilitating the dynamic creation and
refinement of logical rules based on interactions within the
environment. This process is divided into three key submod-
ules: the Attention Submodule, the Integration Submodule,
and the Policy Submodule.

Attention Submodule
The Attention Submodule leverages a hierarchical trans-
former architecture to dynamically compute attention scores
for predicates and relational paths. By employing the Multi-
Head Dot-Product Attention mechanism [Vaswani, 2017], it
processes the symbolic state tensor X ∈ [0, 1]|B|×|B|×N ,
where B represents the entity set and N represents the predi-
cate set.

Predicate Attention This module generates the attention
score Aα of the predicate at the time step. The symbolic
state tensor X is reshaped into a matrix Xr ∈ [0, 1]|B|2×N ,
where each row corresponds to the embedding of a predicate.
The attention mechanism is applied iteratively as follows:

Q(k),K(k), V (k) = FFN(k)(V (k−1)),
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Figure 1: The framework of HRL-ID

S
(k)
λ , V (k+1) = MHDPA(Q(k),K(k), V (k)),

where FFN(k) represents the feedforward network at time
step k, and S

(k)
λ are the attention weights for predicates at

step k.
Path Attention The Path Attention Submodule is respon-
sible for computing attention scores Sθ for logical rules of
various lengths, aggregating information across steps:

Qθ,Kθ, Vθ = FFN(Vλ),

Sθ,V
′
θ = MHDPA(Qθ,Kθ, Vθ),

where Vλ = [V (0), V (1), . . . , V (T )] concatenates the out-
puts from all steps.

Integration Submodule
The Integration Submodule is inspired by multi-hop reason-
ing mechanisms in knowledge graphs, enabling the agent to
infer complex relationships via sequential predicate applica-
tions. In a knowledge graph, entities are represented as nodes,
while predicates serve as edges. The multi-hop process seeks
to uncover chain-like logical rules expressed as:

query(a, a′)← R1(a, b1) ∧R2(b1, b2) ∧ . . . ∧Rn(bn−1, a
′)

In this setup, Ri denotes predicates that define relation-
ships between entities. The relationship between predicates
is represented as successive matrix multiplications, where
each predicate Pk is modeled as a binary matrix Mk ∈
{0, 1}|A|×|A|, with Mk(i, j) = 1 indicating the presence of
the predicate Pk between entities ai and aj .

The multi-hop reasoning is computed as:

v(0) = va,

v(t) = M(t)v(t−1),

score(a, a′) = (va)
T

(
T∏

t=1

M(t)

)
va′ .

To incorporate attention over different predicates and
paths, the final score is refined using soft attention:

score(a, a′) = vTa κ(Sθ,Sλ)va′ ,

where κ(Sθ,Sλ) represents the combined attention scores
for predicates and paths generated by the Attention Submod-
ule.

Policy Submodule
The Policy Submodule determines the actionable strategy
within the hierarchical reinforcement learning framework
based on the outputs of the Integration Submodule. The pred-
icate set Q includes both state predicates Qs and action pred-
icates Qa. Each action predicate Actq(a, a′) ∈ Qa corre-
sponds to a potential action.

For each action predicate Actq , a Multi-Layer Perceptron
(MLP) MLPq is used to compute the state-action value:

Q(S,Actq(a, a′)) = vTa MLPq (κ(Sθ,Sλ)) va′ .

Rule Update To ensure the relevance and accuracy of the
induced rules, HRL-ID employs a success rate-based refine-
ment mechanism. The success rate of each rule’s correspond-
ing sub-goal is tracked, and significant deviations in success
rates trigger rule updates:

∆sr = current success rate− previous success rate
If |∆sr| > δupdate, where δupdate is a predefined threshold,

the rule set R is updated by extracting new rules from the
accumulated game states S:

Rextracted = ExtractRules(S)
R← Rextracted

This dynamic rule update ensures that the rule set remains
aligned with the agent’s evolving understanding of the envi-
ronment, thereby enhancing learning efficiency and decision-
making accuracy.
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Algorithm 1 HRL-ID Algorithm
Input: General knowledge base Rin (could be empty), rule
update threshold δupdate, number of episodes T

1: Initialize:
2: Rule set R← Rin (if provided)
3: Game state set S ← ∅
4: Abstract rule mapping set Am ← ∅
5: Model parameters θ
6: Success rate list sr ← ∅
7: if Rin is not empty then
8: Rgrd = RuleGrounding(Rin, Am)
9: R← R ∪Rgrd

10: end if
11: for each episode = 1 to T do
12: Initialize game environment, obtain initial state S0

13: Initialize success rates for sub-goals
14: while game not terminated do
15: Receive current state St

16: Rule Matching:
17: for each rule Rulei in R do
18: Compute Pi(St)
19: end for
20: if any Pi(St) = 1 then
21: Select action πt = Actj for the first satisfied rule

Rulej
22: else

23: Select action πt =

{
πh, if r ≤ 1− pf
rand, otherwise

24: end if
25: The chosen strategy interacts with the environment
26: end while
27: Rule Update:
28: if |∆sr| > δupdate then
29: Rextracted = ExtractRules(S)
30: R← Rextracted
31: Rabs = AbstractRules(R,Am)
32: Store Rabs for future rule grounding
33: end if
34: end for

3.2 Rule Matching and Reasoning
The rule matching and reasoning plays a pivotal role in HRL-
ID, as it involves utilizing the rule set to guide the decision-
making process. Before passing the policy from the upper
layer to the lower layer, the policy undergoes evaluation using
the rule set.

For each rule i in the rule set R, we evaluate the satisfac-
tion of the rule’s preconditions. Let Pi represent the set of
preconditions for rule i. The evaluation of preconditions can
be expressed as:

Pi(St)→ {0, 1}
Here, Pi(St) is a function that assesses the preconditions Pi

based on the symbolic representation St, and {0, 1} indicates
whether the preconditions are satisfied (1) or not (0) for rule i
at time t. If there exists a rule j in R whose preconditions are
satisfied (i.e., Pj(St) = 1), we execute the policy induction
suggested by rule j. Let Aj represent the action suggested by

rule j. The rule application can be represented as:

πt =

{
Aj , Pj(St) = 1

∅, otherwise

Here, πt denotes the policy or action to be executed at time t.
When the current state does not meet the prerequisites of any
rule, the High-Level strategy comes into play. In the absence
of applicable rules (i.e., if all Pi(St) = 0), we execute the
original high-level strategy πh with a certain probability 1
- pf . This probability reflects the likelihood of executing a
high-level strategy, enabling the model to balance exploration
and exploitation during the learning process. This process can
be expressed as:

πt =

{
πh, 1− pf
rand, pf

Here, rand signifies random exploration, and pf is a proba-
bility value between 0 and 1. Each underlying reinforcement
learning strategy has a probability value for random explo-
ration, which gradually decreases as the number of choices
increases.

The rule matching and reasoning process ensures that the
model leverages rule-based strategies and logical decision-
making, enhancing interpretability while preserving the hier-
archical nature of the reinforcement learning framework. By
combining rule-based decisions with the original high-level
strategy, the HRL-ID framework achieves a more adaptive
and efficient decision-making process.

3.3 Knowledge Generalization and Grounding
Knowledge generalization and grounding enables the model
to repurpose the extracted knowledge for different domains.
This intricate process entails the adaptation of these rules to
align with the idiosyncrasies of the new environment, thus
augmenting the model’s adaptability and efficiency. Upon the
extraction of a rule from a specific game environment, direct
integration into the current environment is possible without
necessitating any alterations. However, when the model seeks
to employ rules from a distinct game environment within a
new setting, adjustments become imperative. This process of
adaptation is referred to as rule transfer. The model abstracts
the rules extracted in a certain environment to a higher di-
mension, transforming them into more generic concepts. For
example, the model might abstract the Key in the rules re-
lated to key collection in Montezuma’s Revenge as the more
abstract concept Collection, representing items that need to
be collected. The rule abstraction process can be defined as:

Rabs = AbstractRules(R,Am)

where AbstractRules is a function that generates an abstract
rule set Rabs based on the original rule set R and the mapping
set Am, which stores the mapping relationships. This abstract
rule set is designed to be universally applicable across differ-
ent environments.

In the context of invoking these abstract rules within a
fresh environment, the model scrutinizes the presence of in-
put rules from disparate game environments. In the event of
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(a) Montezuma’s Revenge (b) Kangaroo (c) Adventure

Figure 2: Model training environment

(a) Result of Montezuma’s Revenge (b) Result of Kangaroo (c) Result of Adventure

Figure 3: Performance comparison on learning efficiency

such rules existing, the model undertakes a reverse abstrac-
tion to yield finely tuned rules germane to the new environ-
ment. Within a novel Kangaroo game environment, the model
might correspondingly associate the concept of a Collection
with an Apple, as the apple functions as a collection item
within that contextual backdrop. The knowledge grounding
and abstraction process empowers the model to harness its
accrued reservoir of knowledge, adeptly generalizing across
diverse game environments. By harmonizing the rules with
the unique traits of the new environment, the model amplifies
its efficacy in the learning process and subsequently, its over-
all performance. It’s crucial to emphasize that the selection of
rules for abstracting subgoals demands meticulous delibera-
tion. This facet warrants further investigation in subsequent
research endeavors. Our present methodology centers around
the abstraction of the Collection element, considering it to be
most conducive to generalization across disparate game envi-
ronments. Nevertheless, the approach employed in our model
presents a promising pathway for potential enhancements in
the future.

4 Experiment
We evaluate our approach by applying it to the games Mon-
tezuma’s Revenge, Kangaroo, and Adventure [Mnih et al.,
2015]. The evaluation focuses on the average reward of
the model in the scene and its generalization ability to other
scenes. We commence our evaluation by focusing on Mon-

tezuma’s Revenge, a quintessential Atari game characterized
by intricate levels and multifaceted challenges. In this game,
the agent undertakes a sequence of actions to secure rewards,
which are notably sparse. This environment often poses a sig-
nificant challenge for traditional algorithms like DQN, which
frequently yield mere 0-point outcomes [Mnih et al., 2015].
Our experimentation begins with the selection of the game’s
initial setting, wherein tasks are meticulously designed to ex-
plore the agent’s performance. As depicted in Figure 2(a), we
frame the task as the agent’s quest to acquire a key from the
starting point and successfully return with it. The reward of
+100 is designated for the accomplishment of obtaining the
key. Subsequently, we extend our evaluation to the Kangaroo
game (depicted in Figure 2(b)), an Atari game akin to Mon-
tezuma’s Revenge. In this game, the agent confronts the chal-
lenge of evading enemy attacks while ascending to higher lev-
els. In contrast to Montezuma’s Revenge, the Kangaroo game
features a more frequent reward distribution. The agent’s task
is to collect three specific items within the environment, each
of which provides a reward of +100 points. We also evaluated
our model in the Adventure game (illustrated in Figure 2(c)).
In this Atari game, the objective is for the agent to gather cer-
tain items and proceed through multiple levels. Specifically,
in the Adventure game, the condition for entering the next
level is that the agent needs to find the key and open the door.
The agent earns +100 points for acquiring the key and +300
points for unlocking the door, which in turn enables progress
to the subsequent level.
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(a) New game scenes (b) New game scenes

(c) Knowledge transfer in Montezuma’s Revenge (d) Knowledge transfer in Kangaroo

Figure 4: Knowledge transfer in new game scenes

4.1 Experiment Setup
A variety of models were selected as the baseline model in
the experiment, including traditional algorithms such as DQN
and A2C [Keng and Graesser, 2017]. Furthermore, we intro-
duce NSRL as a baseline, leveraging the identical parame-
ter configurations as the original NSRL implementation [Ma
et al., 2021]. We also incorporate hierarchical reinforce-
ment learning HDQN models [Kulkarni et al., 2016] into the
comparative spectrum. Pertaining to specific parameter set-
tings, exploration phases are halted upon exceeding 500 steps
within each round. The training reward function is structured
as follows: the agent receives a certain negative reward (e.g. -
0.1) at each time step, and receives +10 points for completing
a specified goal (e.g. reaching a subgoal). Conversely, losing
a life or failing the game results in a penalty of -5. Further-
more, the meta-controller is assigned a penalty of -0.5 after
each decision. At the base level, the DDQN algorithm [van
Hasselt et al., 2016] is employed.

4.2 Comparison with SOTA Baselines
Our evaluation involves an assortment of approaches that
serve as baselines. The key criterion for comparison cen-

ters on the average reward garnered by the agent during the
game. Specifically, the agent’s proficiency in key acquisi-
tion is treated as the primary assessment parameter. A higher
evaluation reward, given the same number of steps, signifies
swifter learning.

Within the initial Montezuma’s Revenge environment, the
outcomes of our experiments are depicted in Figure 3(a). Ev-
idently, the introduction of extracted rules notably enhances
training efficiency in terms of average reward. During the ini-
tial exploratory phase (first 0.2 million steps), all methodolo-
gies exhibit near-zero rewards due to ongoing environmen-
tal exploration. Nevertheless, as the step count surpasses 0.2
million, our approach surpasses NSRL methodologies and hi-
erarchical reinforcement learning methods like HDQN in ef-
fectively uncovering rewards. This superiority stems from the
guidance provided by previously extracted rules, steering the
model toward optimal decision-making. In contrast, conven-
tional methods such as DQN and A2C exhibit minimal ad-
vancement due to the inherent challenge of sparse rewards in
orchestrating a series of decision-driven actions. Moreover,
rule-based techniques offer streamlined training processes, as
models assimilate knowledge from the extracted rules, culmi-
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Domain FOL rules

Montezuma’s Revenge Move(agent,key)←WithoutObject(agent,key)
Initial Environment Move(agent,skull)← ActorOnSpot(agent,rightLadder) ∧ PathExist(rightLadder,skull)

Move(agent,leftLadder)← ActorWithObject(agent,key) ∧ PathExist(key,leftLadder)

Montezuma’s Revenge Move(agent,key)← PathExist(agent,key)
Middle Environment Move(agent,key)←WithoutObject(agent,key)

Move(agent,ladder)← PathExist(agent,key) ∧ PathExist(key,ladder)

Kangaroo Environment Move(kangaroo,lowApple)← PathExist(kangaroo,lowLadder) ∧ PathExist(lowLadder,lowApple)
Move(kangaroo,lowApple)←WithoutObject(kangaroo,lowApple)
Move(kangaroo,middleApple)←WithObject(kangaroo,lowLadder)

∧ PathExist(lowLadder,middleLadder)

Table 1: FOL rules extracted from Montezuma’s Revenge and Kangaroo

nating in superior performance within the same time frame.
The results of our experiments in the Kangaroo environ-

ment are presented in Figure 3(b). From the figure, it is
evident that our approach outperforms the baseline models
HDQN and NSRL right from the start of the training phase.
This initial superiority can be attributed to our method’s adept
utilization of rules, furnishing early-stage guidance and direc-
tion for the agent’s learning trajectory. While DQN and A2C
initially exhibit better performance, this is likely due to our
method’s emphasis on item collection, eschewing other ex-
ploratory actions such as attacking enemies. The acquisition
of items necessitates gradual learning in subsequent explo-
ration phases. The learning curves elucidate that both our
model and the NSRL model experience swift advancement,
commencing around 200,000 steps. However, our method’s
curve ascension is more pronounced due to the rule-based ap-
proach employed in item collection. Explicit rules empower
the agent to grasp the significance of collecting items, en-
abling enhanced environmental navigation and commensu-
rately higher rewards. In contrast, the performance enhance-
ment of the HDQN method is comparatively gradual. DQN
and A2C are caught in a period of volatility. In addition, we
use HDQN and NSRL as benchmarks to evaluate the effec-
tiveness of our method in the Adventure game. Although Our
method and the baseline have similar training curves, but ours
performs better in the early stages.

4.3 Knowledge Transferability
In addition to leveraging rules during rule generation to en-
hance model training, we also develop rule transfer algo-
rithms. This algorithm makes the rules extracted from one
game environment applicable to other game environments to
a certain extent, thus facilitating cross-environment learning.
In this section, we extract the rules from the initial game envi-
ronment of Montezuma’s Revenge and transfer some of them
to another game environment of the Montezuma’s Revenge
game (Figure 4(a)) and the kangaroo game (Figure 4(b)). For
another game environment of Montezuma’s Revenge, this is
a simpler game environment, we want the agent to get the
key and go to the bottom ladder, the reward of the key is also
+100. We then evaluate the effectiveness of these transfer
rules in these two environments. Finally, we extracted some
of the rules in Montezuma’s Revenge and Kangaroo during

the experiment and presented them in Table 1 to illustrate the
interpretability of the model. We compare with NSRL as the
baseline. For the rule migration process, we prioritize the
rules that are most likely to be effective, paying special atten-
tion to those that lead to direct score acquisition. For exam-
ple, we extracted rules related to obtaining keys in the game
Montezuma’s Revenge, which may also work in other similar
environments. Applying a rule transfer algorithm, we adapt
these high-level abstract rules to new game environments.

Figures 4(c) and Figure 4(d) show the results of the exper-
iments. We examine the training curves for the transferred
rules in the middle section of Montezuma’s Revenge and the
Kangaroo game. Initially, the training curves are nearly iden-
tical, suggesting that our model has not yet fully identified
the potential value of the transferred rules. However, as the
training progresses, the curves begin to diverge, and the rules
of migration start to come into play, particularly when items
need to be collected. In the case of the middle part of Mon-
tezuma’s Revenge game, the transferred rules show a posi-
tive impact on the agent’s performance. These transferred
rules provide valuable guidance, leading to more effective
decision-making in collecting items within the new environ-
ment. Similarly, in the kangaroo game, the transferred rules
also demonstrate a degree of effectiveness, aiding the agent
in achieving its objectives more efficiently.

5 Conclusion
We propose HRL-ID, a neural-symbolic method that lever-
ages automated knowledge discovery and reasoning for in-
terpretable deep reinforcement learning. The proposal har-
nesses the potential of symbolic knowledge discovery and in-
corporating the discovered knowledge into the DRL frame-
work for training acceleration. The knowledge abstraction
and grounding in HRL-ID enables the agent to transfer exist-
ing knowledge and experience into new domains. The exper-
imental results shows that HRL-ID outperforms SOTA base-
lines and successfully improves the learning efficiency and
interpretability of DRL models. By providing transparent
rule-based decision traces, HRL-ID bridges the gap between
opaque DRL models and human-understandable reasoning,
offering a robust solution for interpretable and efficient rein-
forcement learning.
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ciech M Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H Choi, Richard Powell, Timo
Ewalds, Petko Georgiev, et al. Grandmaster level in star-
craft ii using multi-agent reinforcement learning. Nature,
575(7782):350–354, 2019.

[Wang et al., 2016] Ziyu Wang, Tom Schaul, Matteo Hessel,
Hado Hasselt, Marc Lanctot, and Nando Freitas. Duel-
ing network architectures for deep reinforcement learning.
In International conference on machine learning, pages
1995–2003. PMLR, 2016.

[Zahavy et al., 2016] Tom Zahavy, Nir Ben-Zrihem, and
Shie Mannor. Graying the black box: Understanding dqns.
In Maria-Florina Balcan and Kilian Q. Weinberger, edi-
tors, Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016, volume 48 of JMLR Workshop and Con-
ference Proceedings, pages 1899–1908. JMLR.org, 2016.

[Zhang et al., 2022] Haodi Zhang, Zhichao Zeng, Keting Lu,
Kaishun Wu, and Shiqi Zhang. Efficient dialog policy
learning by reasoning with contextual knowledge. In
Thirty-Sixth AAAI Conference on Artificial Intelligence,
AAAI 2022, Thirty-Fourth Conference on Innovative Ap-
plications of Artificial Intelligence, IAAI 2022, The Twel-
veth Symposium on Educational Advances in Artificial In-
telligence, EAAI 2022 Virtual Event, February 22 - March
1, 2022, pages 11667–11675. AAAI Press, 2022.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


