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Abstract
Multiple agents operating in a shared environment
can interfere with each other’s ability to reach their
goals. One of the approaches to address this is-
sue is enacting a social law – a set of rules that
restricts some possible behaviors of the agents. A
social law is considered robust if it guarantees that
each agent can achieve its goal independently of the
actions of other agents. Recent work has shown
how to verify that a given social law, encoded in
an MA-STRIPS formalism, is robust by compilation
to classical planning. Follow-up work presented
an extended compilation which can handle numeric
multi-agent planning. In this paper, we present a
new compilation, which can handle both classical
and numeric multi-agent planning formalisms, as
well as any other multi-agent planning formalism
with instantaneous actions, in which action precon-
ditions can be negated using first-order logic with
equality. This opens the door to using social laws
in even richer planning formalisms. Our empirical
evaluation shows that the added expressivity of the
new compilation does not hurt its performance, and
it achieves comparable performance to the previous
state-of-the-art compilations.

1 Introduction
Autonomous agents and multi-agent systems have been ex-
tensively studied across different sub-fields of AI. A core
challenge in complex, multi-agent environments is that in or-
der for an agent to choose a course of action, it must account
for both its own actions and those of the other agents. We con-
sider a setting in which non-collaborative agents operate in a
shared environment, particularly where self-interested agents
risk unintentionally disrupting each other’s activities. In such
cases, a centralized planning algorithm that designs and coor-
dinates individual plans is impractical.

The social law approach [Tenneholtz and Moses, 1989;
Shoham and Tennenholtz, 1992] offers a means of imposing
implicit coordination, and enables each agent to plan indepen-
dently, while the system design aims to minimizes conflicts
between the different plans. Social laws (SL) restrict permis-
sible behaviors, akin to real-world traffic laws, where drivers

follow rules to maintain collective safety. These laws, despite
being restrictive, still permit every driver to reach their des-
ignated locations, i.e., these laws are robust. Generally, a SL
is robust if it prevents conflicts among agents, ensuring each
can reach its goal.

While the concept of SLs is general, it does not always
specify how each agent chooses its actions. We are concerned
with planning-based SLs – that is, applying SL to systems
in which agents must choose a long-term course of action
– agents must plan. Previous work on planning-based SLs
[Karpas et al., 2017] demonstrated that verifying the robust-
ness of a SL in multi-agent (classical) planning can be re-
duced to a classical planning problem – the robustness veri-
fication problem. The objective of the robustness verification
problem is to find a counterexample: if the compiled problem
is unsolvable, then the SL is robust. Later work [Nir et al.,
2023] extended this approach to numeric planning, introduc-
ing a modified compilation to numeric planning that accounts
for violations of numeric action preconditions.

In this paper, we propose a new compilation for verify-
ing the robustness of a SL in a multi-agent planning system.
Our approach is more general than previous methods, as it
treats interference details between actions as independent of
the compilation, determined by an external procedure. Thus,
our new compilation can handle both numeric and classical
planning formalisms, as well as any new formalism – pro-
vided (a) actions are instantaneous, and (b) we can efficiently
compute the negation of the preconditions of every action.
Note that our compilation uses the same features as the multi-
agent (input) problem. That is, if the multi-agent problem has
numeric variables, the compiled problem will have numeric
variables as well. However, if the original problem only has
classical preconditions/effects, the compiled problem will be
classical.

A more general compilation might lead to a performance
drop; however, our empirical evaluation demonstrates that
solving the robustness verification problem from our new
compilation is comparable to that of previous methods, main-
taining state-of-the-art performance. Moreover, treating ac-
tion preconditions as general logical formulas is a first step to-
wards the integration of planning-based SLs with research on
social norms [Ågotnes et al., 2010; Ågotnes and Wooldridge,
2010; Ågotnes et al., 2012], which explores a modal logic of
norm compliance.
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IB

GR

IR

GB

(a) Setting (b) Plan 1 (c) Plan 2

Figure 1: Illustrative Example

2 Preliminaries
Deterministic Multi-Agent Problem Formalism In this
work we deal with problems represented in a formalism in-
spired by the work of Brafman and Domshlak ı̈s more gen-
eral, than previous methodsbrafman-domshlak:icaps-2008, in
which each agent has its own goal [Karpas et al., 2017]. Such
a problem is given by Π = ⟨V , {Ai}ni=1, I, {Gi}ni=1⟩, where
V is the set of variables (boolean, finite-domain or numeric),
{Ai} is the set of actions available to agent i (each agent is
numbered from [n] := {1, . . . , n}). The set of states S is a
full assignment on the variables in V . A computable boolean
formula f over the variables in V is called a condition, and
it can be either true or false. We say that a state s ∈ S sat-
isfies the conditions f , s |= f , if the formula f is true under
the assignment of the values of s to f . For a set of condi-
tions F , we say that s |= F if s |= f for each f ∈ F .
Each action is a tuple ⟨pre(a), eff(a)⟩, where pre(a) is a set
of computable boolean formulas over V , and eff(a) is a set of
changes (modeled as assignments to state variables) the ac-
tion a applies to the values of s. We say that a is applicable in
s if s |= pre(a). We also assume that the changes introduced
by a to s are well-defined, i.e., eff(a) affects each variable
at most once and the resulting value lies within the domain
of the variable, while variables that are not affected by eff(a)
keep their values. We assume that both preconditions and
effects are computable in polynomial time. The result of ap-
plying an (applicable) action a to the state s is denoted by
sJaK. The initial state I is a state. Agent i ∈ [n] has its own
goal Gi, a set of conditions on V .

For a single agent i, a planning task is given as a tuple
Πi := ⟨V ,Ai, I, Gi⟩. In the literature these are often called
simply planning tasks. In what follows such tasks are rep-
resented with a single set of actions and goals. The result
of sequentially applying (if possible) the sequence of ac-
tions π to the state s is denoted by sJπK. The sequence of
actions πi = ⟨a1, . . . , am⟩ is called an individual plan if
IJπiK |= Gi and aj ∈ Ai for each j ∈ [m]. πi is also
a plan for the planning task ⟨V ,Ai, I, Gi⟩. A joint plan is
a consecutively applicable sequence of actions π such that
IJπK |=

⋃n
i=1 Gi. Consequently, π is a plan for the task

Πc := ⟨V ,
⋃n

i=1Ai, I,
⋃n

i=1 Gi⟩.
Running Example Consider an example with 2 agents
(solid red and dashed blue, denoted R and B, respectively) in
a 2x3 grid (cells are denoted NW, NE, CW, CE, SW, SE for
north-west, north-east, central-west, central-east, south-west,
south-east, respectively). Initially R is at NE and B is at SW.

Their goals are to reach CW and CE, respectively. This is de-
picted in Figure 1a, where initial positions are depicted with
IR, IB and goals with GR, GB .

We encode this problem in our formalism using 2 fi-
nite domain variables: V = {loc(R), loc(B)}, which
denote the locations of each agent. Both variables
share a domain, dom(loc(B)) = dom(loc(R)) =
{NW,NE,CW,CE, SW, SE}. In the initial state I we have
loc(B) = SW and loc(R) = NE, while the goals are
GB = {loc(B) == CE} and GR = {loc(R) == CW}.

Each agent has 14 move actions corresponding to pos-
sible moves from each of the 6 different locations – 2
from each corner, 3 from the center positions. The ac-
tion for moving agent i from location l1 to adjacent loca-
tion l2 is denoted move(i, l1, l2) where i ∈ {R,B}, l1 ∈
{NW,NE,CW,CE, SW, SE}, and l2 iterates over the adja-
cent locations to l1 (for example, if l1 = NW, l2 iterates
over NE and SW). The action preconditions check that agent
i is indeed at location l1, and that the other agent (denoted
−i) is not at l2, so as not to crash into it. This is given
by pre(move(i, l1, l2)) = {loc(i) == l1, loc(−i) ̸= l2}.
The effects of move(i, l1, l2)) change the location of agent
i to l2, that is, eff(move(i, l1, l2)) = {loc(i) ← l2}. Thus,
the actions of agent i are Ai = {move(i, l1, l2) | l1 ∈
{NW,NE,CW,CE, SW, SE}, l2 adjacent to l1}.

Social Laws In multi-agent systems, a common issue arises
when agents’ individual plans conflict. For instance, two
agents may need the same unique tool for their tasks. If the
first agent uses the tool and fails to return it to the toolbox,
this prevents the second agent from completing its task.

Returning to our running example, the two in-
dividual plans depicted in Figure 1b (consisting of
πB = ⟨move(B, SW,CW),move(B,CW,CE)⟩ and
πR = ⟨move(R,NE,CE),move(R,CE,CW)⟩) conflict,
as the two agents might collide, that is, one of the pre-
conditions of one of the actions will be violated. The
exact action that will fail depends on the timing – when
each action is executed. For example, if the joint plan is
⟨move(B, SW,CW), move(B,CW,CE), move(R,NE,CE),
move(R,CE,CW)⟩ then move(R,NE,CE) will fail as its
precondition loc(B) ̸= CE is false when it is executed.

To address such conflicts, previous work [Tenneholtz and
Moses, 1989] proposed the concept of SL – a set of restric-
tions designed to improve coordination among agents. SLs
can be applied to multi-agent planning problem [Karpas et al.,
2017], where a SL modifies a multi-agent planning setting Π,
yielding a new setting Π̃. This modification may involve re-
moving certain actions [Nir et al., 2020] or adding auxiliary
facts that aid in managing agents’ behaviors through book-
keeping [Tuisov and Karpas, 2020; Tuisov et al., 2024]. SLs
can also implement more complex restrictions using a waitfor
mechanism, which holds an agent inactive until a condition f
is satisfied before it executes its next action. We denote the
waitfor condition of action a by prew(a), while the remainder
of the condition of a is denoted by pref (a) (for failure).

To illustrate the concept of waitfor, consider our running
example. It makes sense for an agent that is trying to move to
some location l2 to wait until l2 is clear before it moves into it.
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Thus, we can write prew(move(i, l1, l2))) = {loc(−i) ̸= l2},
meaning that the agent will not move into an occupied cell,
but instead wait for the cell to become clear before moving.
Note that the plans depicted in Figure 1b may now result in a
deadlock, as each agent will wait for the other agent to move.
Again, the exact position of the deadlock will depend on the
timing of the actions.

A key property to evaluate for any SL is its robust-
ness, which ensures it effectively prevents conflicts between
agents, regardless of the plans they choose to execute.

Robustness We say that a planning task is robust if every
agent can choose any individual plan, when it plans as if it
was the only agent acting in the world, and be guaranteed it
will achieve its goal. To formalize this notion we must first
define the execution model of our multi-agent setting.

Let {πi}ni=1 be a set of individual plans. The set of possible
executions for these plans is defined by considering (a) the
state of the world and (b) the position of each agent within its
individual plan. The initial state of execution is ⟨I, 1, . . . 1⟩,
indicating that the state of the world is I , and all of the agents
are at the beginning of their individual plans. We define four
special terminal states of execution: Success: all agents have
executed their plans, ending in a goal state for each agent;
Failure at execution: an agent tried to execute an action with
non-waitfor preconditions that are not satisfied; Deadlock:
none of the agents in the system can act; and Goal miss: all
agents have executed their plans, ending in a non-goal state
for some agent.

The possible transitions from a state of execution
⟨s, j1, . . . , jn⟩ are defined by the set of agents which can act
at state s, by looking at their waitfor conditions. Denote the
next action of agent i by πi[ji] (that is, the action in position
ji in plan πi, where we assume πi[ji] = ⊥ if agent i has com-
pleted its plan), and denote the set of agents which can act by
C = {i | πi[ji] ̸= ⊥, s |= prew(πi[ji])}, that is, agents for
which the current state of the world satisfies the waitfor con-
dition of their next action. Note that the set of transitions only
looks at waitfor conditions, and not at the full preconditions
of the actions.

If there are no agents that can act, meaning C = ∅, we
have two subcases. If s |=

∧n
i=1 Gi, there is a single tran-

sition to Success, indicating that all agents have successfully
completed their plans and achieved their goals. Otherwise,
if s ̸|=

∧n
i=1 Gi, there is either a single transition to Dead-

lock, as no agents can act, or Goal miss as all agent finished
executing their plans.

If agents can still act, there are several possible transitions,
one for each agent i ∈ C. Again, we have two subcases.
If s ̸|= pre(πi[ji]), meaning the current state of the world
does not satisfy the preconditions of the next action of agent
i, the resulting state from applying the action of agent i is
Failure. Conversely, if s |= pre(πi[ji]), the action is success-
fully applied, and the resulting state from applying the action
of agent i is the execution state ⟨sJπi[ji]K, j1, . . . , ji−1, ji +
1, ji+1, . . . , jn⟩, meaning the state of the world is updated,
and the position in πi is incremented by 1.

We can now define robustness: a SL is robust for Π iff
for every set of individual plans {πi}ni=1, every possible ex-

ecution of these plans results in Success. Coming back to
our running example, consider a social law in which (a) an
agent does not move into an occupied location (formulated
using a waitfor condition, as described above), and (b) agents
are only allowed to move in a counter-clockwise direction,
formulated by removing the actions which move clockwise
from the action sets AR and AB . Figure 1c shows the result-
ing plans under this SL, and indeed it is possible to show that
this SL is robust.

Previous work [Karpas et al., 2017] has shown how to ver-
ify whether a given SL in an MA-STRIPS setting is robust.
However, it cannot be directly applied to our running exam-
ple, as (a) it uses finite domain variables, and (b) it employs
negation in preconditions. In the next section, we describe a
general computational technique for checking the robustness
of any SL in any multi-agent setting, which can be directly
applied to our running example, and many others.

3 Generalized Compilation
We now describe our contribution – a new technique for ver-
ifying the robustness of a given social law. Similarly to pre-
vious work [Karpas et al., 2017] this technique relies on cre-
ating a planning problem whose objective is to find a coun-
terexample to robustness (that is, a trajectory in the execu-
tion model which leads to Failure, Deadlock, or Goal miss).
However, the previous work relied on the planning problem
being formulated in MA-STRIPS or numeric MA-STRIPS [Nir
et al., 2023], while the compilation we present here is directly
applicable with instantaneous actions, and for which we can
compute the negation of a condition efficiently. Thus, the
new compilation is directly applicable to our running exam-
ple, without having to translate it to MA-STRIPS.

Similarly to the original compilation [Karpas et al., 2017],
the new compilation generates n + 1 copies of each variable
from the original problem. We label copies 1 through n as
local copies (one per agent), while the final copy, denoted by
g, is the global copy. The global copy emulates joint execu-
tion, whereas the local copies assures that each agent indeed
independently plans toward its own goal.

Our compilation operates in two stages. In stage 1, we
simulate the execution process, where each agent applies its
actions in an order chosen by the planner while respecting
waitfor conditions. In other words, stage 1 accounts for the
actions actually executed. Once stage 1 terminates, we move
to stage 2, which handles bookkeeping – ensuring that the
actions executed by each agent in stage 1 form a prefix of an
individual plan for that agent (otherwise, agents could execute
actions that do not lead to a goal).

In stage 1, an action ai may succeed, fail, or result in a
deadlock (waiting forever), which is represented by having 3
different versions of ai applicable in stage 1: asi (success),
afi (failure), and awi (wait). Applying asi is possible when the
global state satisfies pre(ai), updates the global state with the
effects of ai and keeps the compilation in stage 1. Applying
afi is possible when the global state does not satisfy pre(ai)
but does satisfy prew(ai), raises the precondition violation
(PrV) flag, and moves the compilation to stage 2. Following
this, the compilation ensures that each agent can reach its goal
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in its local copy of the state by applying a fourth version of
each action, ali, which only updates the local copy of agent i.

Applying the wait action awi is only possible when the
global state does not satisfy prew(ai), signaling a potential
Deadlock. This means that, from this point onward, agent
i cannot execute any action except ai until ai is executed.
Executing awi sets a flag that allows agent i to execute only
ai, encoded by the condition RAi ∧ allow(ai), but does not
update the global state with the effects of ai. After this flag
is raised, agent i has two options: either execute ai in both
its local and global copies or execute the deadlock action
deadlock-ai. If all agents are either in a deadlock state or have
completed their plans, stage 1 ends, transitioning the compi-
lation to stage 2. Then, as with afi , the local copies are used
for each agent to achieve its goal separately.

We also allow the search to continue to stage 2 once all
agents have achieved their goals. The goal of the compi-
lation is a fact conflict which signals that either a deadlock
or a precondition violation occurred. This is achieved by
declare-deadlock, which checks that a deadlock occurred or
declare-fail, which checks that a precondition violation oc-
curred by execution of some afi . Finally, it may be the case
that all agents have finished their respective individual plans
with no interruption, but the goal of some of them is not
achieved at the end of the execution. We check for this con-
dition using the goals-not-achieved action, which performs a
straightforward check. The goal flag conflict is achieved only
by these three actions. We now describe the full details of our
compilation, and then proceed with proving its correctness.

3.1 Full Compilation
We define Π′ = ⟨V ′, A′, I ′, G′⟩ to be the compiled planning
problem. A solution for Π′ represents a conflict in the multi-
agent problem Π. We start with defining Vi = {vi | v ∈ V}
to be the variables of each local copy i ∈ [n], and Vg =
{vg | v ∈ V} to be the variables of the global copy, with
dom(vi) = dom(vg) = dom(v). In addition, we define the
following set of auxiliary flags, each with a Boolean domain:

Aux = {conflict, stage1, stage2,PrV,PoD}
∪ {allow(a) | a ∈ ∪ni=1A} ∪ {RAi, fini | i ∈ [n]}.

Using this notation we define the variables of Π′ to be V ′ =
Aux∪Vg ∪

⋃
i∈[n] Vi. Also to ease the notation, for each flag

flag we use the following shorthand: flag = ⊤ is replaced
with flag and flag = ⊥ with ¬flag, this holds for both
assignments and equalities. Since all the conditions in the
set must hold true, each set of conditions can be written as
X =

∧
f∈X f , using the same notation ¬X =

∨
f∈X ¬f .

We continue with the actions of Π′. For each set of for-
mulas X over the variables in V , we denote by Xi and Xg

the same set of formulas but written over the variables in the
copies Vi and Vg , respectively. This applies to both sets of
conditions such as pre(ai) or Gi are mapped into conditions
prei(ai) and preg(ai) and Gi

i and Gg
i , respectively. The goal

of the global copy is denoted Gg :=
∧n

i=1 G
g
i . Note that each

agent i affects only its copy i, the global copy g or both. The
same notation also applies to the effects of each action ai,

which are applied to the the copy of the agent i and global
copy g. For each action in Ai we define five distinct copies:

A′
i = {asi , a

f
i , a

w
i , a

l
i, deadlock-ai | ai ∈ Ai}.

Of these, three change the local copy of the agent – asi , a
f
i , a

l
i.

These actions also do the following: asi is the successful ac-
tion that changes the global copy where all agents act in stage
1, afi indicates failure due to precondition violation and stops
the execution in the global copy ending stage 1 and indicat-
ing failure, and the action ali that assures that each agent still
achieves its goal in its local copy. Formally they are defined
as follows:

• pre(asi ) = stage1 ∧ (allow(ai) ∨ ¬RAi) ∧ prei(ai) ∧
preg(ai),
eff(asi ) = effi(ai) ∪ effg(ai) ∪

⋃
ai∈Ai

{allow(ai)},
• pre(afi ) = stage1 ∧ (allow(ai) ∨ ¬RAi) ∧ prei(ai) ∧
pregw(a) ∧ ¬pre

g
f (ai),

eff(afi ) = {PrV, stage2,¬stage1} ∪ effi(ai),
• pre(ali) = stage2 ∧ (allow(ai) ∨ ¬RAi) ∧ prei(ai),
add(ali) = effi(ai) ∪ {allowai

,¬RAi};
The actions awi and deadlock-ai are actions that manage

waiting, where the first action indicates that agent i is waiting
to execute action ai, and the second indicates that a potential
deadlock has occurred. Formally:

• pre(awi ) = stage1 ∧ allow(ai) ∧ prei(ai) ∧ ¬preiw(ai),
eff(awi ) =

⋃
a∈Ai\{ai}{¬allow(a)} ∪ {RAi};

• pre(deadlock-ai) = allow(ai) ∧ ¬pregw(ai) ∧ RAi,
eff(deadlock-ai) = {fini, PoD,¬stage1};

We also have auxiliary actions: end-successi is applica-
ble if the agent achieves its goal in both the local and global
copies. Another action initiates stage 2, where each agent
pursues its goal in the local copy. Three additional actions
conclude the plan with failure.

A′ = {start-stage2} ∪
n⋃

i=1

(A′
i ∪ {end-successi})∪

{declare-deadlock, declare-fail, goals-not-achieved}.
Below we present these actions in detail:
• pre(end-successi) = Gg

i ,
eff(end-successi) = {fini,¬stage1};

• pre(start-stage2) =
∧

i∈[n] fini,
eff(start-stage2) = {stage2,¬stage1};

• pre(goals-not-achieved) = stage2 ∧ ¬Gg ∧
∧n

i=1 G
i,

eff(goals-not-achieved) = {conflict};
• pre(declare-deadlock) = stage2 ∧ PoD ∧

∧n
i=1 G

i,
eff(declare-deadlock) = {conflict}; and

• pre(declare-fail) = stage2 ∧ PrV ∧
∧n

i=1 G
i,

eff(declare-fail) = {conflict}.
In the initial state we set all the copies to emulate the initial
state of Π and declare that the agents currently in stage 1:

I ′ ={stage1} ∪ {I[vi] = I[v] | v ∈ V , i ∈ [n]}
∪ {I[vg] = I[v] | v ∈ V},

all flags other than stage1 are set to false. The goal is to
achieve conflict, i.e., G′ = {conflict}.
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Compilation Example To better understand the compila-
tion, we present the solution to the compilation in our run-
ning example under several different possible social laws.
For the original setting without any social laws, recall the
agents can crash into each other. One possible solution
for the compilation (the same one explained above) is:
⟨move(B, SW,CW)s,move(B,CW,CE)s,
move(R,NE,CE)f ,move(R,CE,CW)l, declare-fail⟩. Note
that the third action in this solution is the one in which R
moves into a cell already occupied by B, violating one of the
preconditions, which is why we can use the the af version of
the action.

Now consider the social law where we turn this vi-
olated precondition into a waitfor condition, meaning
that an agent will wait rather than moving into an
occupied cell. In this case, we can get a differ-
ent solution to the compilation resulting in a deadlock:
⟨move(B, SW,CW)s,move(B,CW,CE)s,
move(R,NE,CE)w, deadlock-move(R,NE,CE)w,
move(R,CE,CW)l, declare-deadlock⟩. Finally, if we also
add the restriction of only moving counter-clockwise (mean-
ing the above solution is no longer possible, as B and R move
clockwise in it), our compilation yields an unsolvable plan-
ning problem – proving that this social law is robust.

3.2 Proof of Correctness
We formally prove the correctness of our compilation in three
steps. First, we establish a correspondence between execu-
tions in the original task and plans that solve the compiled
task. Second, we demonstrate that if the compiled problem
is solvable, the underlying problem is not robust. Finally, we
prove the converse: if the underlying problem is not robust,
then the compiled task is indeed solvable.

Let Π = ⟨V , {Ai}ni=1, I, {Gi}ni=1⟩ denote the original
problem, and let Π′ = ⟨V ′,A′, I ′, G′⟩ be the compiled prob-
lem as described in Section 3.1. We use a prime notation
when referring to elements of Π′ if the context might be am-
biguous; for instance, π′ denotes a plan that solves Π′.

Our goal is to provide the connection between the inter-
leavings of agents’ individual plans in Π and the plans of the
compiled problem Π′.
Observation 1. Every plan π′ solving Π′ must end with ei-
ther goals-not-achieved, declare-deadlock or declare-fail ac-
tions. All of these have stage2 as their preconditions and
no action deletes stage2. Moreover, the initial state I ′ in-
cludes stage1, no action adds stage1, and every action that
adds stage2 deletes stage1 (but not vise versa, some actions
delete stage1 without adding stage2). Thus any π′ will in-
clude a unique action a′i deleting stage1, a unique a′j that
adds stage2 and it is guaranteed that i ≤ j. This means, it is
always possible to split π′ into a prefix pref(π′), a (possibly
empty) infix inf(π′), and a suffix suf(π′), where the prefix
ends with a′i (ending stage1), and the suffix starts with a′j+1
(starting stage2).

We establish a correspondence between executions in Π
and plans for Π′.
Definition 1 (Equivalent sequence and execution). Let π′ be
a plan for the compiled problem Π′. Define π[n] to be an

equivalent execution of π′ as a restriction of pref(π′) to the
variables in Vg = {vg | v ∈ V}. Note that since awi does not
affect Vg it can be safely removed from consideration.

Let π[n] = (a1, . . . , am−1, am) be an execution of the
individual plans {πi}ni=1 in the multi-agent task Π. De-
fine eq(π[n]) an equivalent sequence of π[n] in the compi-
lation Π′ to be (as1, . . . , a

s
(m−1)) if execution fails, otherwise

(as1, . . . , a
s
m).

The equivalent sequence of a valid execution is always se-
quentially applicable in Π′, since Vg and every Vi = {vi |
v ∈ V } are copies of V , effects of any action a on V are
identical to effects of as on Vg , and the effects of any ai are
identical to the effects of asi on Vi. This means that the state
of V and every Πi after executing some π[n] is identical to the
state Vg and every Vi respectively after executing eq(π[n]).

Our goal it to show that for every failed execution π[n] in
Π there is a plan π′ for Π′, and vice versa. More formally:

Theorem 1 (The correctness of the compilation). Given a
multi-agent task Π = ⟨V , {Ai}ni=1, I, {Gi}ni=1⟩ and the com-
plied single agent task Π′ = ⟨V ′,A′, I ′, G′⟩, Π′ is solvable if
and only if Π is not robust.

Proof is by the combining the following two lemmas.

Lemma 1. π[n] is a failed execution =⇒ Π′ is solvable.

Proof. Assume π[n] is a failed execution. We want to con-
struct a corresponding plan π′ for Π′. This means that π is ap-
plicable in the initial state I ′ and achieves G′ = {conflict}.
To construct π′, it is sufficient to specify pref(π′), inf(π′),
and suf(π′).

By construction of V ′, eq(π[n]) is consecutively applicable
in Π′. Since pref(π′) includes all actions in π′ executed in
stage1, we have that eq(π[n]) is a prefix of pref(π′). Failed
execution π[n] implies that individual plans {πi}ni=1 ended
either with Missing the goal

∧n
i=1 Gi, in a Failure, or in a

Deadlock. For each agent i, either πi is a subsequence of
π[n], which means i had finished its execution by the end of
π[n], or πi is not a subsequence of π[n].

Denote the set of all agents that finished their execution
as FINISHED(π[n]) and define NOT-FINISHED(π[n]) := [n] \
FINISHED(π[n]). In a case when NOT-FINISHED(π[n]) ̸= ∅,
we call the suffix of πi that does not appear in π[n] an unexe-
cuted suffix of i. By γl we denote some arbitrary interleaving
of unfinished suffixes for all i ∈ NOT-FINISHED(π[n]). Note
that γl are executed in local copies of the appropriate agents
and therefore the order of agents is not important. The se-
quence of actions γl is the part of suf(π′)

We aim at reconstructing a plan π′, such that eq(π[n]) is
the prefix of π′. We also introduce the following notation for
plan reconstruction purposes: x ∥ y stands for concatenation
of action sequences x and y. Consider three cases:
Case 1 (Goal miss):

∧n
i=1 Gi is not achieved after executing

π[n] and neither failure nor deadlock occurred. Since eq(π[n])
is the equivalent sequence of π[n] the global copy variables
in the states in Π′ correspond to the states of Π, we know
that after the execution of π[n], the condition

∧
i∈[n] G

g
i =

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

∧
i∈[n]

∧
f∈Gi

fg was not achieved. And since all agents have
finished their executions the local copy goals Gi

i :=
∧

f∈Gi
fi

were achieved for each i.
Hence, the plan π′ looks as follows: pref(π′) = eq(π[n]),

inf(π′) =
(∥∥

i∈[n]
end-successi

)
∥ start-phase-2, suf(π′) =

goals-not-achieved. Note that the application of the actions
end-successi can be done in any order, thus any predefined
order will do. π′ is valid since the actions are consecutively
applicable, and conflict is true in the final state.
Case 2 (Failure): π[n] ends in a failure. Denote the ac-
tion failing as aα. The full plan π′ will look as follows:
pref(π′) = eq(π[n]) ∥ aα, inf(π′) = ∅, suf(π′) =
γl ∥ declare-fail. This plan is valid because after apply-
ing eq(π[n]), global preconditions of aα are not satisfied by
equivalence of eq(π[n]). Local preconditions of aα, however,
are satisfied because otherwise aα could not be picked to be
the next action performed in Π. At the end of eq(π[n]) the
local executions continue. The local actions are executable
in arbitrary order since the local copies have no effect on
each other, and after their execution it necessarily holds that
Gi

i :=
∧

f∈Gi
fi is satisfied for each i, otherwise πi would

not be a plan in Πi.
Case 3 (Deadlock): π[n] ends in a deadlock. This means, ev-
ery agent had either finished its execution or waiting for some
waitfor precondition to become true. Then π′ will look
as follows: pref(π′) = eq(π[n]) ∥

(∥∥
i∈NOT-FINISHED(π[n])

awi

)
where ai is the first action in the unexecuted suffix for each i;

inf(π′) =
(∥∥

i∈NOT-FINISHED(π[n])
deadlock-ai

)
∥(∥∥

i∈FINISHED(π[n])
end-successi

)
∥ start-phase-2;

and suf(π′) = γl ∥ declare-deadlock, where all the actions
end-successi and deadlock-ai are executed in arbitrary order.

This plan is valid because after executing π[n], we know
that every i ∈ NOT-FINISHED(π[n]) was waiting for some
waitfor precondition to become true. Thus, after applying
eq(π[n]), for each i ∈ NOT-FINISHED(π[n]) there will be
such an ai that its regular preconditions are met, but wait-
for preconditions are not. Thus, awi are applicable, and can
be applied in arbitrary order since they have no effect on each
others preconditions. After that, deadlock-ai actions become
applicable. As soon as one is applied, stage1 is deleted, and
no actions but the deadlock-ai, end-successi, and start-stage2
are applicable. To achieve fini for all i ∈ [n], deadlock-ai
is performed for waiting agents, and end-successi is per-
formed for finished agents, again in arbitrary order. After
that, start-stage2, and, subsequently local actions become ap-
plicable. The local actions are executable in arbitrary order
since they have no effect on each other, and after their ex-
ecution it is necessary that

∧
f∈Gi

fi is satisfied for each i,
otherwise, πi would not be a plan in Πi.

Lemma 2. Π′ is solvable =⇒ there is failed execution π[n].

Proof. Let π′ be a plan for Π′. We need to show that there is
a set of individual plans {πi}ni=1 such that their interleaving

execution π[n] is not a joint plan. In other words, π[n] ends in
either Goal miss, Failure, or Deadlock.

The plan π′ restricted to local copies of each agent vari-
ables Vi = {vi | v ∈ V}. The only actions that have effect on
local copy i are asi , a

f
i and ali, thus to reconstruct individual

plan for agent i every other action can be safely removed from
consideration. The remaining actions corresponds to some in-
dividual plan πi, since the plan π′ should achieve local goals
of each agent to achieve the conflict goal in Π′.

Note that π′ defines the waitfor-respecting order of execu-
tion of the individual plans {πi}ni=1. Define π[n] to be the
stage1 subsequence of actions in π′ restricted to the original
actions that correspond to asi and afi . Note that we ignore
the waiting actions of the form awi since these actions change
only the flags, but not the copies of the original variables.

From Observation 1 we know that π′ includes either
goals-not-achieved, declare-fail or declare-deadlock actions.
We distinguish between these cases, since they define the na-
ture of the executions failure:
Case 1 (Goal miss): π′ includes goals-not-achieved. By
construction, this means that a goals-not-achieved flag was
raised. This is only possible if every fini was raised, but
some goal was not achieved in the global copy. By equiva-
lence of π′ and π[n], at the end of π[n] some global goal will
not be achieved as well.
Case 2 (Failure): π′ includes declare-fail. By construction,
the precondition-violation flag was raised, thus some action
afi was applied, and it was the last action in pref(π′) since
every afi deletes stage1 flag. By equivalence of π′ and π[n],
at the last step of the execution action ai was not applicable,
thus its application would result in a failure. Moreover, every
ai is performed in an individual plan πi. Such πi is a sub-
sequence of π′ restricted to agent i, where each ai ∈ πi has
its source in asi , a

f
i or ali, respectively. It is guaranteed that

such πi exists because π′ has to achieve
∧n

i=1 Gi in the local
copies to apply declare-fail.
Case 3 (Deadlock): π′ includes declare-deadlock. By con-
struction, the possible-deadlock flag was raised, thus at least
one action deadlock-ai was applied. This means that action
start-stage2 was applied, because deadlock-ai and afj for any
agent i, j are mutually exclusive, since both require and re-
move the stage1 flag. The start-stage2 action requires per-
forming either end-successi or deadlock-ai for each i. Since
there are no failures, either end-successi or deadlock-ai were
used. This means no agent i can apply a successful action,
because it either has achieved its goal or is in a deadlock.
The action end-successi requires

∧
f∈Gi

fi, which means in
the equivalent π[n] agent i has achieved its goal and stopped
the execution. The action deadlock-ai requires both RAi and
∧
∨

f∈prew(ai)
¬fg . The first requirement means that the pre-

vious action of agent i was awi since otherwise actions in
Ai \ {ai} would not be disallowed. The second requirement
ensures that no action of the type as, not even asi can be per-
formed. Hence, during π[n] agent i waits for some precondi-
tion to become true. Thus, every agent i is either finished or
waiting, meaning that π[n] results in a deadlock.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Old New
Domain Coverage Time Coverage Time

CLASSICAL WITH SL
GRID 6 5.04 6 6.23
ZENOTRAVEL 8 268.16 10 272.93

CLASSICAL NO SL
BLOCKSWORLD 20 3.74 20 19.76
DRIVERLOG 20 3.94 19 7.2
GRID 20 6.09 20 20.58
ZENOTRAVEL 20 9.46 20 15.26

NUMERIC WITH SL
GRID - - 4 18.21
EXPEDITION - - 1 65.89
ZENOTRAVEL - - 9 4.52

NUMERIC NO SL
GRID - - 20 9.56
MARKET - - 4 82.2
EXPEDITION - - 4 10.89
ZENOTRAVEL - - 4 85.2

Table 1: Coverage (number of problems solved) and geometric
mean of runtime for domains with and without SL.

4 Experimental Evaluation
The compilation presented above is more general than the ear-
lier approaches [Karpas et al., 2017; Nir et al., 2023], but this
increased generality might lead to more challenging planning
problems. To evaluate this trade-off, we conducted an empir-
ical study, comparing the solving times for problems gener-
ated by our compilation (new) and the previous one (old). We
do not employ the numeric compilation by Nir et al. [2023],
since it requires manual problem adjustment.

Both compilations were implemented1 on top of the Uni-
fied Planning Framework [upf, 2025], and all of our bench-
marks were encoded in this framework. Classical prob-
lems were grounded using the Fast-Downward grounder
[Helmert, 2006]; the planner used for both compilations was
the LAMA-first planner since it is the baseline/winner of the
last IPC 2023 Agile Track [Taitler et al., 2024]. Numeric
problems were solved by ENHSP-20 [Scala et al., 2020]. The
planners had a time limit of 30 minutes on an Intel i7-6700k
CPU, and a memory limit of 8GB for Fast Downward and
16GB for ENHSP. We measure the time it takes to solve the
resulting planning problems from both compilations.

We performed the comparison on a set of benchmarks
adapted from the first Competition of Distributed and Mul-
tiagent Planners [Stolba et al., 2015] and from the Numeric
track of IPC 2023 [Taitler et al., 2024] described below:
GRID: each agent starts at a randomly assigned point and
navigates toward a designated finish point to exit the map.
The experiments examine movement with and without a so-
cial law. Under the social law, agents follow directional rules:
they move in a circular pattern along grid borders and alter-
nate upward and downward in inner columns, similar to a
warehouse layout. The law prevents collisions by requiring
agents to wait for spaces to be clear before entering them.
There are both classical and numeric versions of this domain.

1Code available at https://github.com/
TechnionCognitiveRoboticsLab/up social laws ijcai2025

ZENOTRAVEL: aircraft transport individuals between cities,
consuming varying fuel amounts and with the option to re-
fuel, where each aircraft acts as an agent. Individuals board
and disembark from aircraft to reach their destinations. A
robust social law assigns individuals to the aircraft that is re-
sponsible for delivering them to their destinations. here is
both classical and numeric version of this domain.
BLOCKSWORLD: robotic arms act as individual agents that
pick up and stack blocks. While agents can independently
reach their own goals, cooperation is needed for collective
objectives. For instance, if agent 1’s goal is ON(A,B) and
agent 2’s goal is ON(B,C), they need a three-block tower to
satisfy both goals, requiring coordination beyond individual
efforts. An effective social law to ensure such cooperation is
yet to be identified.
DRIVERLOG: Drivers travel on foot or by truck, loading or
unloading packages to reach targets. Each driver manages
specific packages and, at most, one truck. A robust SL is
unworkable because truckless drivers depend on borrowing
and returning trucks, creating dependencies that prevent fully
independent problem-solving.
MARKET TRADER: In this trading scenario, agents (camels)
travel between markets to buy and sell goods, balancing costs,
availability, and capacity. Actions include traveling, purchas-
ing, upgrading capacity, and selling for profit. The goal is
to maximize cash through strategic resource allocation. In-
stances were adjusted by reducing the number of goods to
ensure solvability by existing planners.
EXPEDITION: In this domain, agents (sleds) navigate be-
tween waypoints in a network. Sleds consume supplies to
travel between adjacent waypoints. Supplies can be stored
at or retrieved from waypoints, constrained by sled capacity.
The objective is to manage supplies efficiently while travers-
ing the network.

Table 1 shows results for each domain without the SL, and
with the SL when one is available. new denotes the compila-
tion in this paper, while old is a compilation for MA-STRIPS
presented by [Karpas et al., 2017]. The table presents cover-
age and the geometric mean of running time (in seconds) for
the problems that were solved both by old and new compila-
tions. For numeric multiagent domains we present the (geo-
metric) mean time of the problems solved by the new compi-
lation. The tables also show that while the new compilation
is slightly slower, it is able to verify two more instances with
SL in the classical ZENOTRAVEL, and finds one less counter
example in DRIVERLOG. Exact runtimes for each problem
are available in the supplementary material.

5 Conclusions
We introduced a novel compilation for verifying the ro-
bustness of social laws in multi-agent planning scenarios,
which is more general than previous methods, accommodat-
ing both classical and numeric planning formalisms. Despite
its broader applicability, the proposed method demonstrates
state-of-the-art performance.This advancement not only en-
hances the verification process but also lays the groundwork
for integrating social laws into richer planning frameworks,
opening new possibilities for research in multi-agent systems.
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