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Abstract

We study a budget aggregation setting where voters
express their preferred allocation of a fixed bud-
get over a set of alternatives, and a mechanism
aggregates these preferences into a single output
allocation. Motivated by scenarios in which the
budget is not perfectly divisible, we depart from
the prevailing literature by restricting the mech-
anism to output allocations that assign integral
amounts. This seemingly minor deviation has sig-
nificant implications for the existence of truthful
mechanisms. Specifically, when voters can pro-
pose fractional allocations, we demonstrate that the
Gibbard—Satterthwaite theorem can be extended
to our setting. In contrast, when voters are re-
stricted to integral ballots, we identify a class of
truthful mechanisms by adapting moving-phantom
mechanisms to our context. Moreover, we show
that while a weak form of proportionality can be
achieved alongside truthfulness, (stronger) propor-
tionality notions derived from approval-based com-
mittee voting are incompatible with truthfulness.

1 Introduction

The summer break is approaching, and you are looking for-
ward to hosting a workshop at your university with partic-
ipants from around the world. As the organizer, you need
to determine how to allocate the workshop time among pa-
per presentations, poster sessions, and social activities. Natu-
rally, the participants have varying preferences regarding how
the time should be divided. How should you combine these
preferences into the actual allocation?

The problem of aggregating individual preferences on
how a budget should be distributed among a set of alterna-
tives is known as budget aggregation or portioning [Free-
man et al., 2021; Elkind et al., 2023; Brandt et al., 2024;
Caragiannis et al., 2024; de Berg et al., 2024; Freeman and
Schmidt-Kraepelin, 2024]. In addition to time, the budget can
also represent financial resources, such as when a city coun-
cil is tasked with allocating its annual funds across different
projects. Several budget aggregation mechanisms have been
proposed and investigated in the literature. An example is the
average mechanism, which simply returns the average of the

preferences of all voters. Despite its simplicity, this mech-
anism is susceptible to manipulation: if a voter can guess
the outcome of the mechanism, she can usually misreport her
preference and bring the average closer to her true preference.
In light of this, a number of authors have focused on design-
ing truthful mechanisms, i.e., mechanisms for which it is al-
ways in the best interest of the voters to report their true pref-
erences. Notably, Freeman er al. [2021] introduced the class
of moving-phantom mechanisms and demonstrated that every
mechanism in this class is truthful. In addition, a specific
moving-phantom mechanism called the independent markets
mechanism is (single-minded) proportional—this means that
when every voter is single-minded (i.e., would like the entire
budget to be spent on a single alternative), the output of the
mechanism coincides with the average of all votes.

As far as we are aware, all prior work on budget aggre-
gation allows a mechanism to output any distribution of the
budget.1 Howeyver, this can result in “fractional” distributions,
which may be difficult or even impractical to implement in
certain applications. For instance, a distribution that allots
6.37 hours from the 10 available hours at a workshop to paper
presentations might be infeasible due to scheduling consider-
ations or the inability to utilize such precise time increments.?
Likewise, when allocating funds, it is often more convenient
to work with round numbers. In this paper, we study discrete
budget aggregation, where an integral budget must be dis-
tributed among a set of alternatives in such a way that every
alternative receives an integral amount of the budget. Beyond
the allocation of time and money, discrete budget aggregation
is generally applicable when the “budget” comprises indivis-
ible items, for example, in the distribution of faculty hiring
slots among university departments.

1.1 Our Contributions

We study two variants of our model: In the integral setting,
the voter ballots and the output allocation must be integral,
while in the fractional-input setting, the voter ballots are al-
lowed to be fractional. For both settings, we establish inter-
esting connections to several social choice frameworks.

"Lindner [2011] considered rules that take integral distributions
as their input, but did not place any requirement on the output.

Note that such a distribution can be output, e.g., by the average
mechanism, even if all participants submit preferences consisting
only of integral numbers of hours.
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Integral Mechanisms: Truthfulness. We explore two ap-
proaches for adapting truthful mechanisms from the frac-
tional setting to our integral setting. Firstly, we round the out-
put of fractional mechanisms using apportionment methods.
We show that combining a well-known fractional mechanism
with several standard apportionment methods fails truthful-
ness. Secondly, we translate the idea behind moving-phantom
mechanisms directly into our setting. Specifically, we define
the class of integral moving-phantom mechanisms, and prove
that every mechanism in this class is truthful.

Integral Mechanisms: Proportionality. We show that
there exist truthful mechanisms (from our class of integral
moving-phantom mechanisms) that satisfy single-minded
quota-proportionality. While this property is rather weak,
we derive stronger proportionality notions for our setting by
viewing it as a subdomain of approval-based committee elec-
tions. However, using a computer-aided approach, we show
that even the weakest of these notions (called JR) is incom-
patible with truthfulness.

Fractional-Input Mechanisms. Allowing voters to cast
fractional ballots has major implications on the space of truth-
ful mechanisms. Building upon the literature on dictatorial
domains, we show that any fractional-input mechanism that
is truthful and onto must be dictatorial. This can be viewed
as a variant of the Gibbard—Satterthwaite theorem.

All omitted material can be found in the full version of our
paper [Schmidt-Kraepelin et al., 2025].

1.2 Related Work

The analysis of aggregating individual distributions into a
collective distribution dates back to the work of Intriliga-
tor [1973]. However, Intriligator did not assume that agents
possess utility functions and, as a result, did not address the
aspect of truthfulness. Most of the work on truthful budget
aggregation thus far assumes that agents are endowed with
{1 utilities. Under this assumption, Lindner er al. [2008] and
Goel et al. [2019] showed that the mechanism that optimizes
utilitarian social welfare (with a certain tie-breaking rule) is
truthful. After Freeman et al. [2021] proposed the class of
moving-phantom mechanisms, Caragiannis et al. [2024] and
Freeman and Schmidt-Kraepelin [2024] investigated them
with respect to the distances of their output from the average
distribution, while de Berg er al. [2024] presented truthful
mechanisms outside this class. Brandt er al. [2024] proved
that truthfulness is incompatible with single-minded propor-
tionality and an efficiency notion called Pareto optimality un-
der /7 utilities, but these properties are compatible under a
different utility model. Elkind et al. [2023] conducted an ax-
iomatic study of various budget aggregation mechanisms.
Given the integral nature of the output distribution, discrete
budget aggregation bears a resemblance to the long-standing
problem of apportionment [Balinski and Young, 1982]. The
main difference is that, in apportionment, the input can be
viewed as a single distribution (representing the fractions of
voters who support different alternatives) rather than a collec-
tion of distributions. Brill et al. [2024] studied an approval-
based generalization of apportionment, where each voter is
allowed to approve multiple alternatives instead of only one.

Delemazure er al. [2023] established the incompatibility be-
tween truthfulness and representation notions in that setting.

2 Model and Preliminaries

For any z € N, let [z] denote {1,...,2} and [z]p denote
{0,1,...,2}. In the setting of budget aggregation, we have
a set [n] of n voters deciding how to distribute a budget
of b € N over a set [m] of m > 2 alternatives. We write

Syt ={v € [0,0™ [ [[v]lL = b}

for the set of vectors distributing a budget b over a number of
alternatives m € N, i.e., SJ"is an (m — 1)-simplex. Similarly,

I ={v e ([plo)™ [ [[vlli = b} € S5

denotes the set of vectors integrally distributing the bud-
get b over m alternatives. We sometimes refer to an ele-
ment of S or I}" as an allocation or a distribution. We
denote by S, mp = (S§*)" the set of all fractional pro-
files with n voters, m alternatives, and a budget of b, and by
Zn,mp = (I;")™ the set of all integral profiles with the same
parameters. For each voter 7, let p; € S} denote her vote,
where p; = (pi1,- -+ Pi,m)-

Budget-Aggregation Mechanisms. We will consider three
types of budget-aggregation mechanisms (or mechanisms for
short). Generally, a mechanism is a family of functions
Ay m.p, one for every triple n,m,b € N with m > 2. We
distinguish three types of mechanisms by the type of input
and output space of the corresponding functions.

* An integral mechanism maps any integral profile to an
integral aggregate, i.e., An mp : Znmp — 1"

* A fractional mechanism maps any fractional profile to
a fractional aggregate, i.e., Ap m.b : Spmp — S

* A fractional-input mechanism maps any fractional pro-
file to an integral aggregate, i.e., Ay m b : Snomp — I3

Since n, m, and b are often clear from context, we slightly
abuse notation and write A instead of A,, ,,, 5. While our pri-
mary focus is on integral and fractional-input mechanisms,
we will build upon fractional mechanisms from the literature.
We define the disutility of voter ¢ with truthful vote p; €
Sp,m,b towards aggregate a € Sy, ;b (Or @ € Iy, 1, p) as the
¢1-distance between p; and a, denoted by ||p; — al|1.

Truthfulness. A mechanism A is fruthful if for any
n,m,b € N with m > 2 and any profile P = (p1,...,Pn)s
voter ¢ € [n], and misreport p}, the following holds for profile

P* = (pla'"7pi—17p;api+la"'apn):
Ipi — A(P)[|1 < [lpi = AP |-

For fractional(-input) mechanisms, both the true profile P and
the misreport P* belong to S, ,, 5, while for integral mecha-
nisms these profiles must be from Z,, ., 5.

2.1 Moving-Phantom Mechanisms

Freeman et al. [2021] introduced a class of truthful fractional
mechanisms, which we summarize below.
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Moving-Phantom Mechanisms [Freeman ef al., 2021].
For fixed n, m, b, a phantom system F,, is a collection of n+1
continuous, non-decreasing functions f : [0,1] — [0,9],
with fx(0) = 0 and fi(1) > b- 2=£ for k € [n]o. We
refer to these functions as phantom votes (or just phantoms)
and to their input as time. Any collection of phantom systems
F= {fn}}neN induces a fractional budget aggregation mech-
anism A7, called a moving-phantom mechanism. Namely,
for a profile P = (p1,...,pn) € Spm.p. an alternative
j € [m], and time ¢ € [0, 1], we denote by med (P, F, j,t) :=
med(p1,j,- -5 Pn,js Jo(t), ..., fn(t)) the median of all votes
on alternative j and all phantom votes (from F,,) at time t.
Let ¢t* be a time such that Zje[m] med(P, F,j,t*) = b; then,
the moving-phantom mechanism A7 returns the allocation
A7 (P) = a with a; = med(P,F,j,t*) for all j € [m].
Such t* is guaranteed to exist’, and while it may not be
unique, the resulting allocation A” (P) is.

We recap two prominent moving-phantom mechanisms
from the literature that we will build upon later.

INDEPENDENTMARKETS [Freeman et al.,, 2021]. The
INDEPENDENTMARKETS mechanism is induced by the
phantom system with

fe(t) =min(b- (n — k) - t,b)
for k € [n]p and n € N. This corresponds to the phantoms
moving towards b simultaneously, while being equally spaced
(before they get capped at b).
UTILITARIAN [Lindner et al., 2008; Goel et al., 2019;
Freeman et al., 2021]. The UTILITARIAN mechanism is in-
duced by the phantom system with
0 ift <%,
b(tn — k) if £ <¢ < BEL
b if Bl < ¢

fe(t) =

for k € [n]op and n € N. This corresponds to all phantoms
moving towards b one after another (except f,, which stays at
0). UTILITARIAN maximizes utilitarian social welfare (i.e.,
minimizes the sum of the voters’ disutilities).

3 Integral Mechanisms: Truthfulness

We embark on our search for integral mechanisms that are
truthful. If one of the truthful fractional mechanisms from
Section 2.1 were guaranteed to output an integral distribution
for any integral profile, then this mechanism would directly
yield a truthful integral mechanism. However, no moving-
phantom mechanism satisfies this property—e.g., for the pro-
file ((1,0), (0,1)), every anonymous and neutral mechanism,
and thus every moving-phantom mechanism, must return
(1/2,1/2). In this section, we discuss two approaches for
discretizing moving-phantom mechanisms, and exhibit their
differing levels of success in achieving truthfulness.

3We slightly deviate from the definition by Freeman ez al. [2021]
by requiring the sum of medians to reach b instead of 1. Since we
also require phantoms to reach at least b - ”T_k instead of "%k, this
is merely a matter of scaling. Freeman et al. [2021, Proposition 3]
showed that requiring fi(1) > 2= forall k € [n]o implies that the
sum of medians at ¢ = 1 is at least 1, thus normalization occurs.

3.1 Rounding Fractional Mechanisms

Our first approach is to take a fractional mechanism and round
its output into an integral output, i.e., we need to map any
element of S7" to an element of I;". In fact, this is a well-
studied task in the apportionment literature [Balinski and
Young, 19821]; an apportionment method is a family of func-
tions (for any m, b € N) such that M, , : S;" — IJ". Given
a fractional mechanism A and an apportionment method M,
we call M o A the integral mechanism that is composed of
A and M. Commonly studied apportionment methods in-
clude stationary divisor methods, Hamilton’s method, and the
quota method. Stationary divisor methods are parameterized
by A € [0, 1], where A = 1 corresponds to the Jefferson (or
d’Hondt) method and A = 1/2 corresponds to the Webster
(or Sainte-Lagué) method. However, applying any of these
methods to the outcome of INDEPENDENTMARKETS does
not yield a truthful mechanism.

Theorem 1. The composition of INDEPENDENTMARKETS
and the following apportionment methods is not truthful:

e Hamilton’s method
* Quota method

e Any stationary divisor method for which A > 0 and
2
AN

* Any stationary divisor method for which A > 0 and
% € N, if we assume that tie-breaking is in favor of
alternatives with higher amounts in the input allocation

The proof of Theorem 1, along with all other omitted
proofs, can be found in the full version of our paper [Schmidt-
Kraepelin et al., 2025]. Clearly, this theorem does not rule
out the possibility that combining a different fractional mech-
anism with an apportionment method gives rise to a truthful
integral mechanism; in fact, we will show that this is pos-
sible for the UTILITARIAN mechanism. However, the the-
orem implies that this combination approach does not pre-
serve truthfulness in general. In the following section, we
show that by embedding the rounding within the definition of
the moving-phantom mechanism itself, we obtain a general
recipe for constructing truthful mechanisms.

3.2 Integral Moving-Phantom Mechanisms

The reason why moving-phantom mechanisms can produce
non-integral outputs, even when all votes are integral, is
that the sum of medians can normalize when phantom votes
(which are continuous functions) occupy non-integral posi-
tions. We will adjust the phantom systems to the integral set-
ting by modifying them in two ways. First, to guarantee inte-
gral medians, we let phantom votes increase in discrete steps
rather than continuously. Second, to guarantee normalization,
we define phantom votes for each alternative separately; this
also reflects the inherent necessity for non-neutrality.

For n,m,b € N, an integral phantom system
Do mp = {dn; | k € [no, j € [m]}
is a set of (n + 1) - m non-decreasing functions
(bk,j :NU {O} — [b]()

with the following properties, where z := b-m - (n + 1):
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Figure 1: Example of an integral moving-phantom mechanism with
n = 2 voters, m = 3 alternatives, and a budget of b = 4. The votes
on each alternative are marked by (black) solid lines. The phantom
positions are shown as (orange) dashed lines. The median vote on
each alternative is marked by a rectangle. There are two voters with
reports (4, 0,0) and (3, 1,0). The figure shows the positions of the
phantoms at a time where normalization is reached, i.e., the sum of
the median votes is 4. The returned budget distribution is (2, 1, 1).

1. ¢%,5(0) = 0 and ¢y () > [Lk - b] holds for every
alternative j € [m] and every k € [n]o, and

2. 3 o ity (Phi(T) =@k, (T—1)) < 1forall T € [2].

The idea is that we have n + 1 phantom votes on each alter-
native j € [m], all starting at position 0 at time 7 = 0. In
each time step 7 — 7 + 1 at most one of the phantom votes
increases its posmon bZ 1, until eventually all phantom votes
reach the position | or higher. (We will discuss later
why this lower bound is useful.)

A family of integral phantom systems ® = {®,, ., |
n,m,b € N} defines the integral moving-phantom mecha-
nism A®. For a given profile P = (p1,...,Pn) € Zn.m.bs
and a time 7 € [z]o, we are interested in the median of the
votes and the phantom votes on each alternative j, denoted as

med(P7 q)vja T) » med(¢0,j(T)7 LR ¢n,j(T)ap1,j7 s

The integral moving-phantom mechanism A® finds 7% €
[z]o such that >, med(P, ®,j,7*) = b, and returns

A?(P) = a with a; = med(P, ®, j, 7*) for each alterna-
tive j € [m]. We remark that 7* necessarily exists, because
by Condition 1 of an integral phantom system it holds that
> jerm med(P, @,5,0) = 0and 3,1, med(P, @, 7, 2) >
b, and by Condition 2 it holds that thls sum increases by at
most 1 in each time step.* While 7* is not necessarily unique,
the outcome A® (P) is. We illustrate an example in Figure 1.
We show in the full version of our paper that any inte-
gral phantom system leads to a truthful mechanism. The
proof closely follows the proof of truthfulness for fractional
moving-phantom mechanisms by Freeman et al. [2021].

Theorem 2. Any integral moving-phantom mechanism is
truthful.

*The statement > jem med(P, @, j,z) > b follows from the

fact that moving-phantom mechanisms are guaranteed to reach nor-
malization when every phantom k reaches ”T*k - b (see Footnote 3).

apn,j)'

Rounding Phantom Systems. We can construct integral
moving-phantom mechanisms by rounding phantom systems.
Let F,, = {fo(:),-.., fn(-)} be a phantom system and [-] be
a rounding function.’> Then, we first track the point in (frac-
tional) time ¢ € [0, 1] at which [f;(¢)] changes for some k.
We construct an integral phantom system by iterating over
these points in time and moving the phantoms ¢y, 1, ..., $rm
up by 1, one after another. We have to be careful when [ fx(¢)]
changes for the same ¢ and more than one k; in this case, we
first move the phantoms with lower k. Formally, this leads to
the following procedure (see also Figure 2):

e Let0 < t; <to < --- <ty <1 be all points in time
such that for some k € [n]o there is a change in [ f4(+)].
* Let ¢, ;(0) =0forj € [m], k € [n]o. Let 7 = 0.

» Fort; € {t1,...,te}, iterate over all k € [n]o such that
[fx(-)] changes at ¢; and, starting with the lowest such
k, do the following for j € [m] one after another:

B ¢k,j(7 +1) = ¢k,j( T)+
= Grr (T + 1) = by 5 (7 ) for all (5’
— increase T by 1.

k') # (3. k),

Two integral moving-phantom mechanisms that will be of
particular interest are the combination of a variant of IN-
DEPENDENTMARKETS and the floor rounding function (re-
ferred to as FLOORIM), and the combination of UTILITAR-
IAN and the floor rounding function (referred to as FLOORU-
TIL). We show that FLOORUTIL is equivalent to the mecha-
nism induced by combining UTILITARIAN with Hamilton’s
apportionment method via the process described in Sec-
tion 3.1. In particular, this shows that the approach from Sec-
tion 3.1 can lead to truthful mechanisms.

Proposition 1. The composition of UTILITARIAN and
Hamilton’s method (with tie-breaking by indices of alterna-
tives) is equivalent to FLOORUTIL.

In the following section, we show that FLOORIM offers a
desirable property beyond truthfulness.

4 Integral Mechanisms: Proportionality

Having established the existence of truthful mechanisms in
the integral setting, we next examine how well these mecha-
nisms perform with respect to other properties. We focus on
proportionality, i.e., we want a mechanism to reflect the pref-
erences of voter groups proportionally. There exists a pro-
portionality notion in the fractional setting, which requires
a mechanism to output the average distribution if all voters
are single-minded. A voter ¢ is said to be single-minded if
p;; = b for some alternative j (and therefore p; ;» = 0 for
all alternatives j' # j). We call a profile single-minded if all
voters are single-minded, and define the average allocation
u(P) where i(P); = + 37, pi,j for each j € [m].

3A rounding function maps any = € R to either |z] or [z] in
such a way that if it maps z to [z], then it also maps every number
between x and [z] to [z].
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Figure 2: Illustration showing how to construct the integral phantom system ® from a fractional phantom system F. In this example, we
have n = 2, m = 3, b = 4, the fractional phantom system is INDEPENDENTMARKETS, and rounding is done using the floor function. Each
fractional phantom f} is drawn as a (blue) line spanning all alternatives and each integral phantom ¢y, ; is drawn as an (orange) dashed line.
In the left figure (discrete time step 7), no fractional phantom is crossing an integer value and all integral phantoms correspond to a rounded
fractional phantom. As time progresses, the upper fractional phantom fo reaches 3, at which point the corresponding integral phantoms
should move from 2 to 3. To guarantee a time of normalization, they move one after another, as illustrated in the middle and right figures.

Single-Minded Proportionality® [Freeman et al., 2021].
A fractional budget-aggregation mechanism A is single-
minded proportional if for any n,m,b € N with m > 2 and
any single-minded profile P, it holds that A(P) = u(P).

Clearly, outputting exactly the average is not always pos-
sible in the integral setting. We therefore adapt the axiom to
make it satisfiable in our setting.

Single-Minded = Quota-Proportionality. An integral
budget-aggregation mechanism A is single-minded quota-
proportional if for any n,m,b € N with m > 2 and any
single-minded profile P, the output allocation a = A(P)
satisfies a; € {|u(P);], [u(P);]} forall j € [m].

We establish the existence of truthful, single-minded
quota-proportional mechanisms by adapting the fractional
phantom system of single-minded proportional moving-
phantom mechanisms and then translating them into integral
mechanisms as described in Section 3.2. For n,b € N, we
call a (fractional) phantom system F,, = { fo, ..., fn} upper-
quota capped if for all k € [n]o we have fi(1) = [b- 2=£].

Theorem 3. For any single-minded proportional and upper-
quota capped phantom system JF, the integral moving-
phantom mechanism induced by F and the floor function sat-
isfies single-minded quota-proportionality.

We can transform any phantom system F,, into an upper-
quota capped system F,: First extend F, to guarantee
fe@) > [b- "T’k] (if necessary), then set fi(t) =
min(fx(t), [b - “*]). Generally, A7 and A" need not
be equivalent, but in the case of the INDEPENDENTMAR-
KETS phantom system—call it G—they are. We define
FLOORIM as the integral moving-phantom mechanism in-
duced by G’ and the floor function. Theorem 3 then implies
that FLOORIM is single-minded quota-proportional. We re-
mark that the theorem does not hold if we use G’ (or G)
and the ceiling function. For example, consider the instance

SFreeman ez al. [2021] called this axiom proportionality; we de-
viate from this to distinguish it from other proportionality notions.

with n = 6, m = 4, and b = 4, where three voters vote
(4,0,0,0) and one voter each votes (0,4,0,0), (0,0,4,0),
and (0,0,0,4). The upper n phantoms are immediately
rounded to 1, leading to the output (1,1, 1, 1), which violates
single-minded quota-proportionality for the first alternative.

Single-minded quota-proportionality is a rather weak pro-
portionality notion, as it only applies to a highly restricted
subclass of profiles. Consider, for example, the non-single-
minded profile P = (py,ps) forn = 2, m = 4, and b = 2
with p; = (1,1,0,0) and po = (0,0,1,1). Clearly, a desir-
able outcome should allocate 1 to either alternative 1 or 2
and also 1 to either alternative 3 or 4, so that both voters
are equally represented. However, integral moving-phantom
mechanisms do not consider which of the votes on differ-
ent alternatives come from the same voter, and may there-
fore (depending on the tie-breaking) return an allocation like
(1,1,0,0).

In order to define notions that capture a wider range of sce-
narios, we interpret our setting as a subdomain of the well-
studied domain of approval-based committee voting [Lackner
and Skowron, 2023]. This allows us to import established ax-
ioms of proportional representation to our setting. We show
that the failure to satisfy these axioms is not a weakness of in-
tegral moving-phantom mechanisms per se, but rather stems
from more general limitations of truthful mechanisms.

Connection to Approval-Based Committee Voting. In
approval-based committee voting, we have a set of voters N,
a set of candidates M, and a committee size k € N. Each
voter i approves a subset of the candidates A; C M, and a
voting rule chooses a committee W C M of size |W| = k.
The satisfaction of a voter ¢ with a committee W is |A; N W|.

We can interpret any instance of our setting as an approval-
based committee election with an equivalent utility model
(see also Goel et al. [2019]). Let P = (p1,...,pn) be
a profile in the integral budget aggregation setting. We set
M = {cje | j € [m], £ € [b]} to be the set of candidates,
k= b, and A; = Ujepmicie | £ € [pij]}. Intuitively, for
each alternative we create b (ordered) candidates correspond-



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

4 _
C1,4 C2.4 C3,4
4 ai
= C1,3 C2.3 €3,3
0
'U —
=
M C1,2 C2,2 C3,2
4 ao
C1,1 C21 C3,1
0— as
Alternatives: 1 2 3
Figure 3: Example showing for m = 3 and b = 4 how a vote
pi € Ij" can be interpreted as an approval ballot, i.e., p; = (3,1, 0)
is translated to A; = {c1,1,¢1,2,¢1,3,¢2,1}. We apply a similar

translation when mapping an allocation a to a committee W.

ing to it, and a voter approves as many of these candidates (in
order) as the amount of budget that she would like to allocate
to that alternative. This translation is illustrated in Figure 3.
Any chosen allocation a € I;* can similarly be translated
into a committee W = ;¢ {cje | € € [a;]}. To see that
the (dis)satisfactions of the voters coincide in both models,
observe that for a voter 4 and allocation a € I}, the follow-
ing holds: ||p; —ally =2b =23, min(pi ;, a;). This is
equal to 2b — 2|A; N W/, so a voter ¢ prefers an allocation a
over another allocation a’ if and only if voter i prefers the
corresponding committee W over W',

Using this connection to approval-based committee voting,
we translate two representation axioms to our setting.

Justified Representation (JR) [Aziz et al., 2017]. For a
profile P = (p1,...,pn), We say that a voter group N’ C
[n] is cohesive if [N'| > % and, for some alternative j, it
holds that p; ; > 0 for all ¢ € N’. An allocation ¢ € I}
provides JR if for each cohesive group N’ C [n], there is
a voter i € N’ and an alternative j such that a; > 0 and
pi,; > 0. A mechanism provides JR if it always returns an

allocation providing JR.

Extended Justified Representation+ (EJR+) [Brill and Pe-
ters, 2023]. For a profile P = (p1,...,pxs), an allocation
a € I} provides EJR+ if there is no alternative j, integer
¢ € [b], and voter group N C [n] with [N'| > £ - % such
that p; j > a;j and 3~ ¢, min(p;,j, ajr) < £ for all voters
i € N’. A mechanism provides EJR+ if it always returns an
allocation providing EJR+.

We establish an impossibility result for each of these ax-
ioms. For the first impossibility, we need the additional ax-
iom anonymity, which disallows a mechanism from making
decisions based on the identity of the voters. (However, a
mechanism can still discriminate among the alternatives.)

Anonymity A mechanism A is anonymous if for any pro-
file (p1, ..., pn) and any permutation of voters o : [n] — [n],
it holds that A(pl, - ,pn) = A(pg(l), . ,pc,(n)).
Theorem 4. No integral mechanism satisfies anonymity,
truthfulness, and JR.

In order to prove Theorem 4, we use a computer-aided
approach similar to the ones used, e.g., by Peters [2018],

Brandl et al. [2021], and Delemazure et al. [2023]. For fixed
n,m, b, we translate the search for an anonymous, truthful,
and JR mechanism into a SAT formula, and use a SAT-solver
to check for satisfiability. Each satisfying assignment corre-
sponds to a mechanism A,, ,,,  satisfying these axioms. For
n =3, m = 4, and b = 3, the SAT formula is unsatisfiable,
which implies that no anonymous, truthful, and JR mecha-
nism exists. We explain how to encode these axioms into a
SAT problem and give a proof of Theorem 4 in the full version
of our paper. We extracted a proof that is human-readable,
but lengthy—it argues over 45 different profiles and applies
truthfulness 203 times. Therefore, we additionally present
a second result with a (much) shorter proof. For this result,
we consider the stronger proportionality notion EJR+ and add
range-respect to the list of axioms. In return, this impossibil-
ity does not require anonymity as one of the axioms.

Range-respect. A mechanism A is range-respecting if for
any n,m,b and any profile P = (p1,...,pn) € Ly mp, the
following holds for the allocation a = A(P):

min p; ; < a; < maxp; ; forall j € [m].
i€[n) i€[n]

Theorem 5. No integral mechanism satisfies truthfulness,
EJR+, and range-respect.

Proof sketch. Suppose for contradiction that there is a truth-
ful, EJR+, and range-respecting mechanism 4. Let n =
3, m = 4, and b = 3, and consider the profile P =
((1,2,0,0),(1,0,2,0),(1,0,0,2)). Range-respect requires
the first alternative to receive exactly 1, leaving alterna-
tive 2, 3, or 4 with zero budget. Assume without loss of
generality that A(P), = 0. Consider the profile P* =
((0,3,0,0),(1,0,2,0),(1,0,0,2)). One can argue that EJR+
implies that A(P*)2 > 1 and A(P*); > 1. However, this
contradicts truthfulness, as voter 1 from profile P can misre-
port (0, 3,0,0) to decrease her disutility. O

5 Fractional-Input Mechanisms

While both the integral and fractional budget aggregation
settings allow for truthful mechanisms, we demonstrate in
this section that truthful fractional-input mechanisms (i.e.,
those that map from Sy, ., 5 to I]") are significantly more re-
stricted. In particular, we prove that the only truthful and
onto fractional-input mechanisms are dictatorial. This stands
in contrast to the integral setting, where one can verify that,
e.g., FLOORIM is onto and non-dictatorial. Our result builds
upon the literature on dictatorial domains in ranked-choice
elections. Thus, before formalizing our result in Section 5.2,
we briefly introduce ranked-choice elections along with a re-
sult on dictatorial domains by Aswal et al. [2003].

5.1 Dictatorial Domains

Let A be a set of alternatives and £(A) be the set of all strict
rankings over A. We call D C L(A) a (sub)domain. In the
following, we state the concept of linkedness for subdomains,
as defined by Aswal et al. [2003].
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Linked Domains. LetD C £(A) be a subdomain.

* We call two alternatives a,a’ € A connected in D if
there exist strict rankings >, € D such that ¢ is ranked
first by > and second by i/, and vice versa for a’.

e We say that alternative a € A is linked to a subset
B C A if there exist distinct a’,a” € B such that a
is connected to both a’ and a” in D.

¢ We call the subdomain D linked if we can order the al-
ternatives in A into a vector (a! a'A‘) such that a!
is connected to a2 and, for all k E {3 , it holds
that a* is linked to {a!, ..., a*"1}

Informally, Aswal et al. [2003] have shown that the
Gibbard—Satterthwaite theorem [Gibbard, 1973; Satterth-
waite, 1975] holds for all linked domains. We state their theo-
rem below and defer the formal definitions of a social choice
function, unanimous, truthful, and dictatorial in the context
of ranked-choice voting to the full version of our paper.

Theorem 6 ([Aswal et al., 2003, Theorem 3.1]). For any set
of alternatives A with |A| > 3, the following holds: If a sub-
domain D C L(A) is linked, then any unanimous and truth-
ful social choice function on domain D is dictatorial for any
number of voters n € N.

For our proof, we need a stronger version of this theorem,
which works even for weak rankings that have no ties in the
two top ranks. We formalize this version and argue why it
holds in the full version of our paper.

5.2 Truthful Fractional-Input Mechanisms

There exists a direct connection between our model and that
of weak rankings. Namely, each vote p € S} induces a
weak ranking >, over the integral allocations in I} (i.e.,
rank points in I} by their ¢;-distance to p). At a high level,
our goal is therefore to show that these weak rankings form
a linked domain, which together with the stronger version of
Theorem 6 yields a similar result in our setting.

Before doing so, we return to the context of fractional-
input mechanisms and formalize the desired result.

Onto. A fractional-input mechanism A is onto if for any
n,m,b € N with m > 2 and any integral allocation a € I}",
there exists a profile P € S,, , » with A(P) = a.

Dictatorial. Given n,m,b € N with m > 2, voter ¢ € [n]
is a dictator for a fractional-input mechanism A for n, m,b
if for all profiles P = (p1, . .., py,) with parameters m and b,
it holds that A(P) has rank 1 (i.e., is most preferred) in >, .
The mechanism A is dictatorial for n, m, b if there exists a
voter that is a dictator for A for n, m, b.

Theorem 7. Any onto and truthful fractional-input mecha-
nism is dictatorial for any n, m,b with m > 3.

Proof sketch. We start by defining a set of weak rankings in-
duced by ST, namely,

={>,|p€ Sy and |r1 (>

p)l = [ra(Bp)l =1},

where >, is as defined at the beginning of Section 5.2, and
r1(>,) (resp., r2(B>,)) denotes the set of alternatives ranked
first (resp second) by >,. We prove that this domain is

linked, according to an adaptation of the definition of linked-
ness by Aswal et al. [2003] to weak rankings that have sin-
gleton top ranks. To this end, we carefully construct a rank-
ing of the elements in I;”* that witnesses the linkedness of
V. Assume for contradiction that there exists a fractional-
input mechanism 4 that is onto, truthful, and non-dictatorial
for some n € N. We show that this implies the existence of
a social choice function B on domain V that is unanimous,
truthful, and non-dictatorial for n voters, which contradicts
the strengthened version of Theorem 6. While proving una-
nimity and truthfulness for B is rather immediate, establish-
ing that 53 is non-dictatorial requires more effort, as .4 being
non-dictatorial on S, ,,, 5 does not directly imply that B is
non-dictatorial on V™. O

The sharp contrast between the fractional-input and inte-
gral settings in relation to truthfulness may seem surprising.
However, we remark that integral moving-phantom mecha-
nisms can be used to construct fractional mechanisms that
are approximately truthful, and the incentive to misreport di-
minishes as the budget increases. Specifically, we map each
vote p € S}" to a point in I]" closest to it (with ¢;-distance at
most %) and apply an integral moving-phantom mechanism.
By the trlangle inequality, the disutility decrease from mis-
reporting is bounded by 2 - % = m. Thus, for constant m,
(relative) misreporting 1ncent1ves vanish as b grows.

6 Conclusion and Future Work

In this paper, we have introduced the setting of discrete bud-
get aggregation, which reflects the integrality requirement on
the output often found in budget aggregation applications,
and studied it with respect to truthfulness and proportional-
ity axioms. Regarding truthfulness, we established a sharp
contrast between the integral and the fractional-input settings:
in the former, we presented a class of truthful mechanisms
by building upon the literature on fractional budget aggrega-
tion, while in the latter, we exhibited the limitations of truth-
ful mechanisms by leveraging existing results on dictatorial
domains. Regarding proportional representation, we inter-
preted our integral setting as a subdomain of approval-based
committee voting, and demonstrated that even basic represen-
tation guarantees from this literature are incompatible with
truthfulness. In contrast, we proved that proportionality can
be attained when voters are single-minded.

Our paper leaves several intriguing directions for future
work. First, it would be useful to characterize the class of
truthful integral mechanisms. For the fractional setting, de
Berg et al. [2024] have recently shown that there exist truthful
mechanisms beyond moving-phantom mechanisms. While
characterizing all truthful mechanisms appears to be difficult
in the fractional case given that some of these mechanisms
are arguably unnatural, the question may be easier to answer
in the integral case. Another interesting avenue is to further
explore the connections of budget aggregation to approval-
based committee voting, independently of truthfulness. For
example, which mechanisms do we obtain in the fractional
setting if we apply well-established committee rules, such as
the method of equal shares [Peters and Skowron, 20201, in
the integral setting and let the budget approach infinity?
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