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Abstract
Current general image forgery localization (GIFL)
methods confront two main challenges: decoder
overconfidence causing misidentification of the au-
thentic regions or incomplete predicted masks, and
limited accuracy in localizing forgery details. Re-
cently, diffusion models have excelled as dominant
approach for generative models, particularly effec-
tive in capturing complex scene details. However,
their potential for GIFL remains underexplored.
Therefore, we propose a GIFL framework named
ForgDiffuser with diffusion models. The core of
ForgDiffuser lies in leveraging diffusion models
conditioned on the forgery image to efficiently
generate the segmentation mask for tampered re-
gions. Specifically, we introduce the attention-
guided module (AGM) to aggregate and enhance
image feature representations. Meanwhile, we de-
sign the boundary-driven module (BDM) with edge
supervision to improve the localization accuracy
of boundary details. Additionally, the probabilis-
tic modeling and stochastic sampling mechanisms
of diffusion models effectively alleviate the over-
confidence issue commonly observed in traditional
decoders. Experiments on six benchmark datasets
demonstrate that ForgDiffuser outperforms existing
mainstream GIFL methods in both localization ac-
curacy and robustness, especially under challeng-
ing manipulation conditions.

1 Introduction
With the rapid development of AI and image generation tech-
niques, the public can easily and inexpensively fake high-
quality images. These images are almost indistinguishable
from real ones, and have greatly blurred the boundaries be-
tween reality and fiction, bringing unprecedented challenges
and crises to social order, information security, and even pub-
lic perception. Examples span fake news dissemination, ju-
dicial evidence falsification, insurance fraud, and academic
cheating. It makes the development of general image forgery
localization (GIFL) techniques an important issue in the field

∗Corresponding Author

Image GT CFL TA MFI Our

Figure 1: Current GIFL methods suffer from low segmentation ac-
curacy in edge details, as well as overconfident mispredictions and
incomplete segmentation masks. We utilize diffusion models to gen-
erate predicted masks and incorporate attention-guided feature rep-
resentation enhancement along with boundary supervision, signifi-
cantly improving the accuracy of predicted masks.

of computer vision and security, which aims at precisely
locating the tampered areas in the forgery image. Gener-
ally, image forgery techniques can be categorized into: tradi-
tional image forgery techniques (TIF) and AI-generated im-
age forgery techniques (AIGIF). TIF include: splicing [He
et al., 2012; Xiao et al., 2020], copy-move [Wu et al., 2018;
Chen et al., 2020] and removal [Chen et al., 2024; Feng et al.,
2022]. Splicing is copying and pasting specific content from
one image to another; copy-move is moving specific content
from one area to another area of the image; removal is delet-
ing specific content from the image; AIGIF is redrawing spe-
cific areas of an image with diffusion models, GAN, or other
generative techniques.

GIFL methods are usually achieved by capturing specific
forgery features to achieve accurate localization of the tam-
pered region. The diverse tampering types impose higher re-
quirements on the model’s ability to balance the differences
and commonalities of various forgery features, which makes
challenging for GIFL algorithms. Currently, numerous GIFL
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methods have been proposed. Examples include manipula-
tion tracing network (ManTra-Net) [Wu et al., 2019], multi-
view multi-scale supervision network (MVSS-Net) [Chen et
al., 2021], contrastive learning image forgery localization
network (CFL-Net) [Shi et al., 2023], transformer-auxiliary
neural network (TA-Net) [Niloy et al., 2023], multi-feature
fusion identification network (MFI-Net) [Ren et al., 2023],
and edge distribution guidance and contrastive learning net-
work (EC-Net) [Hao et al., 2024], etc. These methods usu-
ally learn the forgery clues left by the forgery manipulation
to identify the tampered region, which has made significant
progress in GIFL. However, current traditional frameworks
still suffer from the following problems: 1) The end-to-end
network design often leads to decoder overconfidence, result-
ing in inaccurate and incomplete predictions. 2) The high de-
gree of blending between forgery regions and the background
causes blurred and imprecise boundary localization. Exam-
ples of these issues are demonstrated in Figure 1.

To address the above challenges, we consider GIFL as a
mask generation task using diffusion models. The diffusion
model models the probability distribution of data through pro-
gressive denoising and incrementally refining the predicted
mask, effectively mitigates the detail localization ambiguity
problem. Meanwhile, random sampling generates multiple
predictions and evaluates the uncertainty of the predictions,
thus effectively mitigating the overconfidence of the decoder.
Therefore, we propose a diffusion model-based framework
ForgDiffuser, which aims to efficiently generate the tampered
region mask by leveraging the faked image as conditional in-
put. Specifically, in the training phase, first, we design the
attention-guided module (AGM) to aggregate multi-layer im-
age features efficiently to enhance the richness and contex-
tual expression of image features. Second, we devise the
boundary-driven module (BDM) to enhance the detail pro-
cessing capability of ForgDiffuser by incorporating edge su-
pervision. In the inference stage, We propose the global-
local consistency fusion (GLCF) strategy to enhance predic-
tion stability and reliability by fusing predicted masks from
multiple sampling steps.

Our main contributions are as follows:
1) We propose a diffusion model-based GIFL method

called ForgDiffuser. To improve tampered region prediction,
we design the attention-guided module within the conditional
network to extract more reliable image features.

2) We design the edge-driven module to further enhance
the detail perception capability of the ForgDiffuser.

3) We conduct extensive experiments on six benchmark
datasets, demonstrating that ForgDiffuser outperforms exist-
ing GIFL methods, especially in localization accuracy and
robustness.

2 Related Work
2.1 General Image Forgery Localization
The core issue of GIFL is commonly formulated as a binary
segmentation task, and it requires the methods capable of ac-
curately dividing the forgery image into two categories: the
untampered region and the tampered region. Earlier, GIFL
methods mainly depended on handcrafted features or specific

artifacts, such as JPEG artifacts [Amerini et al., 2017], noise
patterns [Zhou et al., 2018], and edge inconsistencies [Sal-
loum et al., 2018], etc. However, handcrafted features are
redundant and costly, limiting their prevalence in practical ap-
plications.

In response to the above, deep neural networks (DNN) can
automatically extract deep robust features due to their strong
feature learning capabilities [He and Xiao, 2023], which im-
proves the accuracy and generalization of the algorithms.
This effectively addresses the limitations of traditional meth-
ods and has been widely used in GIFL tasks. For example,
ManTra-Net [Wu et al., 2019] proposes an end-to-end net-
work and formulates the task as a local anomaly detection
problem. However, it struggles to effectively model global
contextual information and accurately capture tampering de-
tails. Therefore, recent research has focused on developing
more sophisticated and powerful feature extraction mecha-
nisms. Several approaches enhance feature learning by in-
corporating auxiliary information such as boundaries, texture,
and frequency cues. MVSS-Net [Chen et al., 2021] exploits
noise distribution and boundary artifacts around tampered re-
gions to facilitate more generalizable feature learning. TA-
Net [Shi et al., 2023] introduces the edge-assisted strategy
to further refine the boundary details of the predicted mask.
CFL-Net [Niloy et al., 2023] leverages noise information ex-
tracted by steganalysis rich model (SRM) filters and contrast
learning approach to improve the separability between au-
thentic and tampered regions. EC-Net [Hao et al., 2024] em-
ploys a two-stage localization strategy from coarse to fine that
significantly improves the localization accuracy. Despite the
significant progress achieved in GIFL, current methods still
suffer from decoder overconfidence that results in incorrect
and incomplete predictions, as well as imprecise boundary
localization in complex forgery scenarios.

2.2 Diffusion Models

Diffusion models are generative methods grounded in prob-
abilistic modeling[Ho et al., 2020], leveraging the Markov
chain to iteratively denoise random noise into high-quality
data. Diffusion models have recently achieved a wide range
of successful applications in computer vision, demonstrating
excellent scalability, stability, and strong capabilities in ad-
dressing complex visual tasks. For example, diffusion models
have shown remarkable performance in tasks such as seman-
tic segmentation [Wu et al., 2023], image super-resolution
[Gao et al., 2023], anomaly detection [Zhang et al., 2023],
object detection [Chen et al., 2023], and monocular depth es-
timation [Saxena et al., 2024]. Compared to the traditional
GIFL framework, the iterative denoising mechanism of dif-
fusion models offers significant advantages in handling com-
plex scenes and diverse objects, while also enabling more pre-
cise control over the generative process. In this research, we
use the conditional diffusion model framework for the GIFL
task, which significantly improves the localization accuracy
of tampered regions.
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Figure 2: The architecture of ForgDiffuser, the core modules include the attention-guided module (AGM) and the edge-driven module (BDM).
AGM is composed of the joint attention mechanism (JA) and the attention-guided feature fusion module (AGFM). In the training process, the
ground truth G0 is transformed into the noisy version Gt through the diffusion process. The conditional image features fm, edge information
e0, and the noisy mask Gt are then fed into the denoising network to generate the predicted mask Ĝ0. The model is trained by minimizing
the combined loss of the predicted mask and the predicted edge.

Figure 3: The inference architecture of ForgDiffuser, mainly com-
posed of the denoising network (DN) and the global-local consis-
tency fusion (GLCF) strategy.

3 Proposed Method
3.1 Overview
The overall architecture of ForgDiffuser is illustrated in Fig-
ure 2. In the training process (shown in the top-left of Fig-
ure 2), we first input the RGB image into the pre-trained
PVTv2 backbone [Wang et al., 2022] to extract the multi-
level features, denoted as f1, f2, f3, and f4. These fea-
tures are then processed by the proposed AGM to produce
the multi-level fused representation fm. Specifically, the fea-

tures f1, f2, f3, and f4 are passed through four receptive
field blocks (RFB), composed of inflated convolutions with
various kernel sizes, and then fused via the attention-guided
feature fusion module (AGFM) to obtain the fusion feature
fm. Next, we input the features f1 and f4 into the BDM to
generate the predicted edge map e and the edge feature rep-
resentation e0. Simultaneously, we add noise to the ground
truth mask G0 via the forward diffusion process to produce
the noisy mask Gt, which is then fed into the denoising net-
work to obtain the predicted mask Ĝ0. In ForgDiffuser, a
lightweight UNet-based architecture is adopted as the denois-
ing network. Specifically, The noisy mask Gt is first encoded
through a series of convolutional layers combined with down-
sampling operations. Following the encoding stage, the fm
output from the AGM is concatenated with the e0 from the
BDM to form the fusion feature representation gm. Subse-
quently, gm is passed through the decoder, which consists of
convolutional layers and upsampling operations, to produce
the predicted mask.

In the inference process, as illustrated in Figure 3, ForgDif-
fuser starts from a random noise image GT and progres-
sively generates predicted masks over T time steps, guided
by forgery features and edge information. To improve the
stability and reliability of the result, we introduce the GLCF
strategy to fuse T predictions and obtain the final mask Gf .
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3.2 Diffusion Model Process
The core idea of diffusion models is to progressively add
noise to the data in the forward process, driving it toward
randomness, and to learn the reverse denoising process that
gradually reconstructs the original data.
Forward process: The forward process is modeled as a
Markov chain that gradually adds Gaussian noise to the orig-
inal data G0 over T time steps, resulting in a noisy sample
GT . At each step, Gaussian noise is added according to the
following formulation:

q(Gt | Gt−1) = N (Gt;
√
1− βtGt−1, βtI), (1)

where βt denotes the noise variance at time step t, typically
increasing with t. The forward process from step 1 to t can
be equivalently described by the distribution:

q(Gt | G0) = N (Gt;
√
ᾱtG0, (1− ᾱt)I), (2)

where ᾱt =
∏t

i=1 αi, and αt = 1− βt.
Reverse process: The reverse process aims to recover the
original data G0 from the pure noise sample GT by iteratively
denoising. Assuming the forward noise schedule βt is known,
the reverse process is formulated as a conditional distribution:

pθ(Gt−1 | Gt) = N (Gt−1;µθ(Gt, t),Σθ(Gt, t)), (3)

where Σθ(Gt, t) =
1−ᾱt−1

1−ᾱt
βt, and µθ(Gt, t) is parameterized

by ForgDiffuser as:

µθ(Gt, t) =

√
αt(1− ᾱt−1)

1− ᾱt
Gt +

√
ᾱt−1βt

1− ᾱt
Ĝ0, (4)

where Ĝ0 is the predicted mask generated by ForgDiffuser.

3.3 Attention-guided Module
With the continued development of image forgery and gen-
eration techniques, forgery images have become increasingly
sophisticated and diverse. Effectively leveraging local arti-
facts and global semantic consistency is therefore critical for
GIFL. Shallow Transformer layers tend to retain more local
details, whereas deeper layers capture richer contextual rep-
resentations. To effectively combine these hierarchical rep-
resentations, the AGM is introduced. It consists of the joint
attention mechanism and the attention-guided feature fusion
module. The fused feature obtained from the AGM is utilized
as the additional condition to support the subsequent mask
prediction process.
Joint attention mechanism (JA): Inspired by [Woo et al.,
2018], we propose the JA that combines channel and spatial
attention, aiming to improve the ForgDiffuser’s ability to ex-
tract key features. For the channel attention component, as
shown in the bottom-left of Figure 2, the input feature x is
processed in parallel by two branches: one applies adaptive
average pooling (AAP), and the other applies adaptive max
pooling (AMP), both along the spatial dimensions. Then,
each obtained feature is independently passed through the
pointwise convolution (PWC), batch normalization (BN), and
ReLU. The two resulting feature maps are summed element-
wise and passed through the sigmoid function. The obtained

map is applied to the input via element-wise multiplication to
generate the channel-attention feature h.

For the spatial attention component, the channel-attended
feature h is taken as input to further emphasize salient spatial
information. Specifically, we compute the maximum (Max)
and average (Avg) values along the channel dimension. These
two resulting maps are concatenated and processed by a 3×3
convolution followed by the sigmoid function. The obtained
map is then multiplied element-wise with the feature h to pro-
duce the final output. The formulation of JA is given below:

h = Sigmoid(BN(PWC(BNR(PWC(AMP (x)))))

+BN(PWC(BNR(PWC(AAP (x))))))x, (5)
JA(x) = Sigmoid(C(Cat([Avg(h),Max(h)])))h, (6)

where BNR denotes BN and ReLU, and C is the convolution
operation.
Attention-guided feature fusion module (AGFM): The
AGFM is designed to aggregate the multi-layer feature as the
comprehensive guide for the subsequent mask prediction. As
illustrated on the right side of Figure 2, the inputs fa and
fb are first aligned in spatial dimensions by upsampling (Up)
fa via bilinear interpolation. Subsequently, both features are
then normalized with BN and activated by ReLU, resulting in
feature maps ha and hb. To enhance salient features, ha and
hb are concatenated and fed into the JA, which generates the
attention weight wa and its complementary weight wb. These
weights are then applied to ha and hb, respectively, through
element-wise multiplication. Finally, the weighted features
are summed and processed by a 3 × 3 convolution. The for-
mula for AGFM is as follows:

ha = R(BN(Up(fa))), hb = R(BN(fb)), (7)
wa = JA(Cat([ha, hb]), wb = 1− wa (8)
AGFM(fa, fb) = C(Cat([waha, wbhb])), (9)

where R stands for ReLu.

3.4 Boundary-driven Module
Currently, the transitions between tampered regions and their
backgrounds have become more visually consistent. There-
fore, accurately detecting the boundaries between forgery and
authentic regions is crucial for improving the performance of
GIFL methods. To address this, we propose the BDM de-
signed to enhance boundary representation and thus improve
localization accuracy.

As illustrated in the bottom-right of Figure 2, the input fea-
tures to BDM consist of two features: f1 and f4. Here, f1 is
the low-level feature map that preserves rich spatial details,
while f4 is the high-level semantic feature map capturing
abstract contextual information. In the BDM, f1 is upsam-
pled and then concatenated with f4 to form the fused feature
map f0, which integrates both fine-grained details and high-
level semantics. This fused feature is subsequently fed into a
lightweight encoder-decoder network to predict the edge map
e, which serves as a supervision signal to enhance boundary
localization during training. Then, we perform an element-
wise multiplication between the predicted edge map e and
the fused feature f0, yielding the edge-enhanced feature rep-
resentation e0. This representation is then used to guide the
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subsequent tampering mask prediction. The operations are
formally defined as:

f0 = Cat([C(f1), C(f4)]), (10)
BDM(f1, f4) = ED(f0)f0, (11)

where ED is the lightweight encoder-decoder network.

3.5 Loss Function
ForgDiffuser is designed to predict the forgery localization
mask directly. To ensure that the predicted mask generated
through the reverse diffusion process progressively approxi-
mates the ground truth, we adopt the Weighted Binary Cross-
Entropy (BCE) and Weighted Intersection over Union (IoU)
losses for mask supervision [Wei et al., 2020]. Addition-
ally, the Dice loss is employed to supervise the edge pre-
diction [Xie et al., 2020]. The overall training objective of
ForgDiffuser is defined as follows:

Loss = λ1LBCE+IoU (G0, Ĝ0) + λ2LDice(e, edge). (12)

3.6 Sampling Strategy
To mitigate overconfident incorrect segmentations in GIFL,
inspired by [Zhang et al., 2021], we employ time ensemble to
integrate predicted masks from T sampling steps. Then, we
design the global-local consistency fusion (GLCF) strategy to
enhance the stability and reliability of the predicted mask.

Specifically, let the predicted mask at time t be
Ĝt(x, y) and all predicted masks from sampling phase be{
Ĝt(x, y)

}T

t=1
. First, for each step, calculate the global vari-

ance of the sample to quantify the predictive stability.

σ2
g (x, y) =

1

T

T∑
t=1

(
Ĝt(x, y)− Ḡ(x, y)

)2

, (13)

where Ḡ(x, y) denotes the mean value of predicted masks
across all time steps. The global weights Wglobal(x, y) =

e−σ2
g (x,y) are constructed based on global variance, which

suppress low-quality sampling steps with large global vari-
ance and focus on stable predictions. Next, for the sampling
result at each time step, calculate the local variance in 5 × 5
neighborhood of each pixel, measuring the uncertainty of the
local prediction.

σ2
l,t(x, y) =

1

N

∑
(u,v)∈Nx,y

(
Ĝt(u, v)− Ḡl,t(x, y)

)2

, (14)

where Ḡl,t(x, y) is the neighborhood mean, Nx,y represents
the neighborhood window centered at (x, y), and N =

|Nx,y| = 25. The local weights Wlocal,t(x, y) = e−σ2
l,t(x,y)

are based on local variance, which can suppress the high-
frequency noise and clear the boundary of predicted mask.

Finally, multiply and normalize the global and local
weights, and perform weighted fusion on predictions at each
time step to obtain the final predicted mask Gf (x, y).

Wt(x, y) =
Wglobal(x, y) ·Wlocal,t(x, y)∑T

k=1 Wglobal(x, y) ·Wlocal,k(x, y) + ϵ
, (15)

Gf (x, y) =
T∑

t=1

Wt(x, y) · Ĝt(x, y), (16)

where Wt(x, y) denote the integration weights, and ϵ = 10−8

prevents division-by-zero errors.

4 Experiments
4.1 Datasets and Evaluation Metrics
ForgDiffuser is evaluated on widely used forgery image
datasets: CASIA1 [Dong et al., 2013], DID [Wu and
Zhou, 2021], IMD [Novozamsky et al., 2020], Auto [Jia et
al., 2023], BSN and RLS26K [Hao et al., 2024]. These
datasets encompass main types of current image forgery tech-
niques. CASIA1 contains 921 images, which includes both
splicing and copy-move, and uses image enhancement for
data post-processing. DID contains 10 different image in-
painting methodologies, including deep learning-based and
traditional-based methods, each method contributing 1,000
images, for a total of 10,000 images. IMD is the real manip-
ulation dataset with 2,010 forgery images. Auto is the AIGIF
dataset generated by the DALL-E2 model [Ramesh et al.,
2022]. BSN is an AIGIF dataset constructed with Brushnet
method [Ju et al., 2024] and contains 2500 images. RLS26K
is a large-scale TIF dataset containing splicing, copy-move,
and removal, which includes 26,000 images. We divide the
above datasets into train and test sets in the ratio of 9:1 for
experimentation.

In order to evaluate the performance of ForgDiffuser com-
prehensively, we adopt two evaluation metrics: F1-score (F1),
and Intersection over Union (IoU).

4.2 Implementation Details
We implemented ForgDiffuser based on the PyTorch with one
NVIDIA L20 with 48 GB memory for training and inference.
We trained 100 epochs with batch sizes of 16. AGM is ini-
tialized using PVTv2-B4, and the input images are resized to
352 × 352. The AdamW optimizer is employed, and the ini-
tial learning rate is set to 0.001. λ1 and λ2 in the loss function
of Equation 12 are set to 0.8 and 0.2, respectively. A higher
value of λ1 encourages the model to prioritize mask predic-
tion, while still maintaining a balanced emphasis on edge in-
formation. The time step T is set to 10 for sampling.

4.3 Comparison with State-of-the-arts
Quantitative comparisons: Table 1 demonstrates the quan-
titative results of ForgDiffuser with five baseline methods on
six benchmark datasets. It is obvious from experimental data
that ForgDiffuser achieves optimal results on five datasets,
which proves that ForgDiffuser can effectively detect splic-
ing, copy-move, real-world forgery, and AI forgery. Espe-
cially on IMD dataset, F1 of ForgDiffuser increases by 0.05
over the suboptimal baseline model EC-Net, and IOU in-
creases by 0.04. On the CASIA1 dataset, F1 of ForgDiffuser
only decreases by 0.008 compared to EC-Net, and the quan-
titative results outperformed EC-Net on the other five bench-
mark datasets. ForgDiffuser has superior performance in real-
world and complex forgery scenarios, primarily due to its in-
tegration of the diffusion models’ iterative denoising mecha-
nism with edge-enhanced supervision. In conclusion, the ex-
perimental results can demonstrate the superior performance
of ForgDiffuse in GIFL.
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Image Ground Truth ForgDiffuser MVSS-Net CFL-Net TA-Net MFI-Net EC-Net

Figure 4: Visual comparison of localization results with different methods.

Qualitative comparisons: In order to compare the results
of different methods more intuitively, we show the visualiza-
tion of the predicted masks of ForgDiffuse and other baseline
models on six benchmark datasets in Figure 4. From the vi-
sualization results, it is obvious that ForgDiffuser is able to
avoid overconfident incorrect segmentation and provide more
complete localization results (e.g., lines 1-2). In addition,
ForgDiffuser achieved greater accuracy in localizing edge de-
tails (e.g., lines 4-6), which proves the effectiveness of BDM.

4.4 Ablation Study
In this subsection, we conduct ablation experiments on the
proposed ForgDiffuser to verify the effectiveness of each de-
signed module. The experiments were conducted on CA-
SIA1, DID, IMD, and BSN datasets with the default settings
described in Section 4.2. Table 2 presents the results of abla-
tion experiments.

As shown in rows 2-3 of Table 2, the introduction of
AGM significantly improved the performance of ForgDif-
fuser. AGM adaptively extracts features from the conditioned

image through the attention mechanism and better combines
local information and global context. Specifically, compared
to the baseline, the F1 on CASIA1, DID, IMD, and BSN
datasets increase by 0.06, 0.02, 0.06, and 0.03, respectively.
Meanwhile, the experimental results in lines 3-4 indicate that
F1 and IoU show improvements on all datasets with the in-
troduction of BDM, further validating its effectiveness. In
addition, the results in lines 1-2 demonstrate the effectiveness
of the sampling strategy in the proposed method.

4.5 Robustness Evaluation
To evaluate the robustness of ForgDiffuser, we conducted ex-
periments on CASIA1 and IMD datasets using common im-
age attack methods, including Gaussian noise with standard
deviation of 0.02, 0.04, 0.06, 0.08 and 0.1; salt & pepper
noise with noise intensity of 0.02, 0.04, 0.06, 0.08 and 0.1.
Gaussian noise simulates continuous perturbations such as
sensor noise or transmission interference. In contrast, salt
& pepper noise represents discrete distortions like pixel-level
corruption or abrupt intensity changes. These attacks degrade
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Methods
Datasets

CASIA1 DID IMD Auto BSN RLS26K

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

MVSS-Net 0.6114 0.5323 0.9141 0.8615 0.3405 0.2533 0.9669 0.9382 0.5456 0.4466 0.3145 0.2523
CFL-Net 0.6148 0.5365 0.9313 0.8844 0.2842 0.2014 0.9682 0.9403 0.5531 0.4478 0.3531 0.2875
TA-Net 0.6325 0.5754 0.9706 0.9469 0.3961 0.3961 0.9761 0.9544 0.7881 0.7002 0.4594 0.3981
MFI-Net 0.7126 0.7126 0.9590 0.9268 0.4532 0.3634 0.9736 0.9498 0.8157 0.7220 0.5037 0.4697
EC-Net 0.8194 0.7676 0.9641 0.9350 0.5561 0.4765 0.9757 0.9537 0.8344 0.7506 0.5693 0.4997
ForgDiffuser 0.8113 0.7612 0.9645 0.9357 0.6076 0.5166 0.9768 0.9577 0.8358 0.7527 0.5708 0.5003

Table 1: Quantitative comparison of F1 and IoU on six benchmark datasets. The best results are in bold.

Methods
Datasets

CASIA1 DID IMD BSN

F1 IoU F1 IoU F1 IoU F1 IoU

base w/o sampling strategy 0.7447 0.6641 0.9340 0.8863 0.5272 0.4298 0.7672 0.6547

base 0.7479 0.6663 0.9340 0.8861 0.5312 0.4336 0.7703 0.6589

base+AGM 0.8048 0.7482 0.9530 0.9230 0.5963 0.5084 0.8044 0.7052

base+AGM+BDM 0.8113 0.7612 0.9645 0.9357 0.6076 0.5166 0.8358 0.7527

Table 2: Ablation study of module contributions in ForgDiffuser, evaluated based on F1 and IoU.

Figure 5: Experimental results of different methods on Gaussian
noise and salt & pepper noise. The experiments were performed
on CASIA1 and IMD datasets, using F1 as evaluation indicators.
ForgDiffuser has significant advantages in robustness.

edge and structural cues in tampered regions, making the tam-
pered areas harder to distinguish from authentic areas and
challenging the GIFL task in both localization accuracy and
robustness. The experimental results are shown in Figure 5.
The left column shows the results on CASIA1 dataset and the

right column presents the ones on IMD dataset. From the ex-
perimental results, it can be concluded that as the intensity of
Gaussian and salt & pepper noise increases, the tampering lo-
calization accuracy of all models exhibits a decreasing trend.
ForgDiffuser achieves the best performance under both im-
age attack types, significantly outperforming other methods
and demonstrating strong robustness.

5 Conclusion
In this paper, we propose ForgDiffuser, a GIFL framework
based on conditional diffusion models. The core of ForgDif-
fuser lies in predicting the tampered region mask through the
iterative generation mechanism of diffusion models. It effec-
tively alleviates decoder overconfidence through the iterative
sampling strategy. To further improve detection accuracy, we
design the AGM to deeply fuse the global semantic features
with the low-level detail features of the conditioned image,
providing more precise guidance for subsequent mask predic-
tion. In addition, the BDM is introduced to precisely capture
edge details between tampered regions and the background,
effectively enhancing the accuracy of boundary localization.
Experimental results on multiple benchmark datasets show
that ForgDiffuser achieves superior performance in detection
accuracy and robustness compared to existing mainstream
methods, demonstrating its strong potential in GIFL.
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