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Abstract
Cross-view geo-localization is a crucial task with
diverse applications, yet it remains challenging due
to the significant variations in viewpoints and visual
appearances between images from different per-
spectives. While recent advancements have been
made, existing methods often suffer from high
model complexity, excessive resource consump-
tion, and the impact of sample learning difficulty
on optimization. To overcome these limitations, we
optimize the Vision Mamba (Vim) model, built on
a State Space Model (SSM) architecture, by replac-
ing the traditional classification head with Chan-
nel Group Pooling (CGP) for efficient feature in-
tegration. This optimization reduces model pa-
rameters by 1.5% and computational complexity
by 0.4%. Additionally, we propose a novel Dy-
namic Weighted Batch-tuple Loss (DWBL) to dy-
namically adjust the weighting of negative sam-
ples, improving model performance. By combin-
ing CGP and DWBL, we develop an efficient end-
to-end network, VimGeo, which achieves state-of-
the-art performance with enhanced computational
efficiency. Specifically, VimGeo achieves a Re-
call@1 of 81.67% on the CVACT test dataset, out-
performing prior approaches. Extensive experi-
ments on CVUSA, CVACT, and VIGOR datasets
validate VimGeo’s effectiveness and competitive-
ness in cross-view geo-localization tasks, achiev-
ing the leading results among sequence modeling-
based methods. The implementation is available at:
https://github.com/VimGeoTeam/VimGeo.

1 Introduction
Cross-view geo-localization determines the geographic lo-
cation of a ground-level image (query image) by retrieving
the most visually similar geo-tagged aerial image (reference
image) and utilizing its location tag. This GPS-free task
is crucial in GPS-denied environments like urban canyons
and finds applications in autonomous driving [Fervers et al.,
2023], robot navigation [Fervers et al., 2023], and UAV

Figure 1: Comparison of R@1 accuracy on CVACT test. The bub-
ble size represents the number of trainable parameters. Our pro-
posed VimGeo method, based on the ViM architecture, integrates the
dynamic weight mechanism and CGP. This approach achieves com-
petitive R@1 accuracy while significantly reducing trainable param-
eters and GFLOPs.

[Zheng et al., 2020]. Challenges such as perspective and ap-
pearance differences between ground and aerial views neces-
sitate advanced methods to bridge these gaps effectively.

Recently, convolution-based methods have shown impres-
sive performance in cross-view image-matching tasks due to
their lightweight nature [Zhang and Zhu, 2024; Deuser et
al., 2023]. Meanwhile, Transformer-based architectures, with
their powerful global modeling capabilities and self-attention
mechanisms, have gained wide adoption in cross-view geo-
localization tasks [Yang et al., 2021; Zhu et al., 2022;
Zhang et al., 2023]. Despite their success, the recently pro-
posed Vision Mamba (Vim) [Zhu et al., 2024] offers distinct
advantages for cross-view geo-localization. By avoiding the
high computational cost of self-attention mechanisms, Vim
achieves sub-quadratic time complexity and linear memory
requirements. This results in faster inference and significantly
lower GPU memory usage, particularly for high-resolution
images. Compared to methods such as Sample4Geo and
L2LTR (see Figure 1), VimGeo achieves a superior trade-off
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between computational efficiency and retrieval accuracy.
Furthermore, Vim employs a pure SSM architecture to

model input images as sequential data without relying on 2D
convolution priors. This design provides robust visual repre-
sentations, making it suitable for diverse cross-view scenar-
ios. Notably, VimGeo surpasses sequence modeling-based
methods, highlighting its capability to generalize across com-
plex geometric layouts (Figure 1).

Based on the unique advantages of Vim, we have devel-
oped a cross-view geo-localization system architecture, Vim-
Geo, which leverages its strengths to achieve state-of-the-art
performance.

Aside from the choice of feature extraction architecture for
cross-view geo-localization, one of the primary challenges is
the significant viewpoint disparity between ground-view and
aerial-view images. The distinct imaging modalities of these
two views result in considerable differences in appearance,
resolution, and perspective, making geometric alignment be-
tween images highly challenging. Traditional methods have
employed various feature extraction strategies to address this
issue.

[Zhu et al., 2022] proposed TransGeo, a Transformer-
based framework for cross-view image geo-localization. This
framework extracts features using a classification head com-
bined with fully connected layers. However, when extracting
features of higher complexity, the fully connected layers in
this approach significantly increase the number of parame-
ters, resulting in higher model complexity and longer infer-
ence times. [Zhang and Zhu, 2024] introduced a Feature Re-
combination Module (FRM) to align geometric spatial lay-
outs between views. Their approach involves dividing fea-
ture maps into regions and applying spatial average pooling.
While this method is effective for CNN-based architectures
with downsampling, it divides each channel into four parts
for pooling, which can lead to excessive feature loss when
applied to Transformer-like modules.

In contrast to traditional strategies, our method leverages
global feature compression rather than relying solely on a
classification head. Specifically, we remove the classifica-
tion head and the final fully connected layer. Directly pool-
ing across all global feature channels can result in significant
feature loss. To address this, we propose the Channel Group
Pooling (CGP) module.

CGP partitions feature maps into distinct channel groups
as shown in Figure 2(b). Within each group, average pool-
ing is applied, and the resulting features are merged into a
compact representation. By adjusting the size of each chan-
nel group, CGP effectively controls the output feature dimen-
sions, similar to a fully connected layer. However, unlike
fully connected layers, CGP achieves this without increas-
ing the model’s parameter count or inference time, ensuring
greater efficiency and scalability.

We further investigated the loss function, which is one of
the critical components in cross-view geo-localization tasks.
[Zhu et al., 2022] normalized the embedded output features
using L2 normalization and employed the soft-margin triplet
loss as the training objective. [Zhang and Zhu, 2024] intro-
duced a novel weighted pB ` 1q-tuple loss (WBL) as the op-
timization objective, which allows joint comparison of mul-

tiple negative samples by incorporating a weighting factor
α. The proposed WBL significantly improved convergence
speed and final performance.

However, their designed loss function overlooks the impact
of sample difficulty on the optimization results. To address
this issue, we propose a novel dynamic weight-based triplet
loss, Dynamic Weighted Batch-tuple Loss (DWBL), as the op-
timization objective. This loss function enables the model
to pay more attention to the difficulty of learning samples.
The improved loss function effectively enhances the final per-
formance and demonstrates superior optimization capabilities
for cross-view geo-localization tasks.

Our work focuses on the following key innovations:

• Optimized Vim Architecture for Cross-View Feature
Matching. We adapted the Vim framework by removing
its classification head and incorporating Channel Group
Pooling (CGP) for global feature fusion. This design en-
hances the model’s ability to capture global image infor-
mation, improving localization accuracy while reducing
parameters for greater efficiency.

• Dynamic Weight Mechanism for Contrastive Learn-
ing. We proposed a novel loss function, Dynamic
Weighted Batch-tuple Loss (DWBL), which dynamically
adjusts negative sample weights to better handle hard
and easy negatives. By balancing the influence of neg-
atives with varying difficulty, DWBL enhances the ro-
bustness of optimization and improves the model’s abil-
ity to achieve consistent performance across tasks.

• Superior Computational Efficiency and Perfor-
mance. VimGeo achieves competitive or state-of-the-art
results on CVUSA, CVACT, and VIGOR datasets while
maintaining lower computational complexity, highlight-
ing its advantages in both efficiency and accuracy.

2 Related Work
We preliminary investigated the existing cross-view geo-
localization methods, focusing on feature extraction architec-
tures and feature optimization functions.

2.1 Feature Extraction Architectures for
Cross-View Geo-Localization

The choice of feature extraction architectures plays a pivotal
role in cross-view geo-localization. [Workman et al., 2015]
first introduced CNNs into cross-view matching tasks, in-
spired by the remarkable success of CNNs in computer vi-
sion tasks [Krizhevsky et al., 2012]. Subsequently, [Hu et al.,
2018] combined NetVlad [Arandjelovic et al., 2016] and a
dual-branch VGG architecture [Simonyan, 2014] to achieve
viewpoint-invariant image representations. [Shi et al., 2019]
proposed the SAFA method, which aligns aerial images geo-
metrically through polar coordinate transformations based on
the VGG architecture [Simonyan, 2014]. Building on this,
[Shi et al., 2020] introduced DSM, which incorporates a slid-
ing window approach for geolocating ground images with
limited fields of view, employing a two-stream convolutional
network architecture [Simonyan and Zisserman, 2014].
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Figure 2: (a) Architecture of the proposed VimGeo model. (b) Visualization of the Channel Group Pooling (CGP) module.

The CDE method, proposed by [Toker et al., 2021], inte-
grates GANs [Goodfellow et al., 2014] with SAFA for both
geo-localization and ground image synthesis. Meanwhile,
L2LTR [Yang et al., 2021], TransGeo [Zhu et al., 2022], and
GeoDTR [Zhang et al., 2023] all build upon the Vision Trans-
former (ViT) architecture [Dosovitskiy, 2020], with L2LTR
leveraging a hybrid design, TransGeo adopting a pure ViT-
based framework, and GeoDTR further introducing geomet-
ric layout descriptors and semantic data augmentation to en-
hance cross-view matching performance, especially on cross-
area benchmarks.

Furthermore, FRGeo [Zhang and Zhu, 2024] and Sam-
ple4Geo [Deuser et al., 2023] explicitly rely on the convo-
lutional techniques proposed by [Liu et al., 2022]. These
methods mitigate geometric misalignment issues through ex-
plicit geometric spatial layout alignment and data augmenta-
tion, highlighting the significance of convolutional methods
in cross-view geo-localization tasks.

2.2 Feature Optimization Functions for
Cross-View Geo-Localization

Feature optimization functions are crucial in cross-view geo-
localization tasks, focusing on improving the discriminative
power of extracted features and facilitating effective learning.
[Workman et al., 2015] pioneered the use of Euclidean Loss
for cross-view matching, directly measuring the similarity be-
tween image features. Building on this, [Hu et al., 2018]
introduced the Weighted Soft-Margin Triplet Loss [Arand-
jelovic et al., 2016], incorporating a weighting factor α to
enhance convergence speed. They further extended this to
the Weighted Quadruplet Loss, improving the distinction be-
tween positive and negative samples while avoiding the re-
liance on predefined margins.

[Toker et al., 2021] proposed the CDE method, introduc-
ing a Retrieval Loss that minimizes the Euclidean distance
of projected features for improved matching accuracy. In ad-
dition, [Yang et al., 2021] and [Zhu et al., 2022] employed
the Soft-Margin Triplet Loss in their L2LTR and TransGeo
frameworks, respectively. TransGeo further leveraged bidi-
rectional information flow to enhance cross-view matching.
[Zhang et al., 2023] introduced GeoDTR, which combines
Counterfactual Loss with Weighted Soft-Margin Triplet Loss,

offering improved robustness by contrasting hypothetical de-
scriptors and optimizing geometric layouts.

To address the challenge of utilizing diverse negative sam-
ples, [Zhang and Zhu, 2024] proposed a Weighted (B+1)-
Tuple Loss in the FRGeo method, which effectively lever-
ages all negative samples within a mini-batch to accelerate
convergence and improve final performance. Furthermore,
[Deuser et al., 2023] introduced Sample4Geo, utilizing Sym-
metric InfoNCE Loss to maximize the information derived
from mini-batch negative samples while enhancing feature
alignment through bidirectional optimization.

3 Methodology
3.1 Problem Formulation
We consider a dataset consisting of ground-aerial image pairs,
denoted as tpIgi , I

a
i quN , where Igi and Iai are ground and

aerial images, respectively, and N is the total number of pairs.
Each pair corresponds to a unique geo-location. Geo-tags are
available only for the aerial images tIai uN .

The objective of cross-view geo-localization is to find the
aerial image Iar that corresponds to a given query ground im-
age Igq , where q, r P t1, 2, . . . , Nu. This match determines
the geo-location of the query image Igq .

For this dataset, we extract feature representations
tpfg

i , f
a
i quN , designed such that the distance between

matched pairs is smaller than the distance to any unmatched
pair. This condition is mathematically represented as:

dpfg
q , f

a
q q ă tdpfg

q , f
a
i q | @i P t1, . . . , Nu, i ‰ qu, (1)

where dp¨, ¨q represents the L2 distance.
Accordingly, the geo-localization task can be defined as

finding:
r “ arg min

iPt1,...,Nu
dpfg

q , f
a
i q. (2)

A retrieval is correct if r “ q.

3.2 Model Overview
The proposed model, VimGeo, addresses the challenges of
cross-view geo-localization by leveraging the Vision Mamba
(ViM) [Zhu et al., 2024] architecture and incorporating inno-
vative modules for feature extraction and optimization. As
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illustrated in Figure 2(a), VimGeo adopts a dual-branch net-
work structure consisting of two branches: the ground-view
branch and the aerial-view branch. Each branch indepen-
dently processes a given ground-aerial image pair pIg, Iaq.

At the first stage, input images are divided into patches
and flattened, followed by a linear projection step that trans-
forms the patches into sequences of feature vectors. These
projected patches are then passed into the Vision Mamba En-
coder, which captures global contextual information within
the images. Unlike traditional methods that rely heavily on
classification heads and fully connected layers, VimGeo elim-
inates these computationally intensive components, opting in-
stead for a more efficient global feature integration mecha-
nism.

To mitigate the issue of excessive feature loss during
pooling, the Channel Group Pooling (CGP) module, as de-
picted in Figure 2(b), is introduced. CGP divides the feature
map into adjustable channel groups, applies average pooling
within each group, and subsequently flattens and combines
the pooled features. This design not only preserves critical
global information but also provides flexibility in adjusting
the output feature dimensions, similar to fully connected lay-
ers, without introducing additional parameters or computa-
tional overhead.

To further enhance cross-view matching, the model incor-
porates the Dynamic Weighted Batch-tuple Loss (DWBL) as
its optimization objective, shown in Figure 3. The DWBL
process computes a similarity matrix between query and ref-
erence features, dynamically assigning weights to negative
samples based on their proximity to the anchor. This mech-
anism ensures effective utilization of all negative samples,
significantly improving optimization and robustness in cross-
view geo-localization tasks.

The final feature representations fg P RL¨ CG and fa P

RL¨ CG are optimized through the DWBL mechanism, which
dynamically balances the difficulty of learning from nega-
tive samples, achieving enhanced performance on benchmark
datasets.

3.3 Channel Group Pooling (CGP)
The Channel Group Pooling (CGP) mechanism takes the raw
features F g and F a, produced by the backbone, to compute
the final representations fg and fa. The input features have
dimensions rL,Cs, where L denotes the sequence length (i.e.,
the number of spatial patches or tokens), and C indicates the
number of channels.

As part of the preprocessing, the satellite image features
are first mapped to the same spatial regions as the ground
image features, following the mapping procedure used in the
Feature Recombination Module (FRM) from FRGeo [Zhang
and Zhu, 2024]. Specifically, the satellite image features F a

are divided into 4 regions according to the spatial division
method, similar to the ground image. Each of these regions is
processed independently to align the feature representations
between the two views.

Next, the channel dimension C is divided into groups of
size G. The feature tensor F is then reshaped to group the
channels, and mean pooling is applied along the last dimen-

sion (group size):

F P RLˆ C
G ˆG meanpx,dim“´1q

ÝÝÝÝÝÝÝÝÝÝÑ F 1 P RLˆ C
G , (3)

which reduces the tensor’s size to rL, C
G s.

Finally, the tensor is flattened, combining the sequence and
channel dimensions:

F 1 P RLˆp C
G q Ñ f P RL¨ CG . (4)

This process produces the final feature representations fg

and fa for the ground and aerial images, respectively:
fg “ CGPpF gq, fa “ CGPpF aq. (5)

For a visual illustration of how the CGP module works,
refer to part (b) of Figure 2, which demonstrates the effective
application of CGP in processing the feature maps.

3.4 Optimization Objective
In previous works [Hu et al., 2018; Shi et al., 2019; Yang et
al., 2021; Zhu et al., 2022], the weighted soft-margin ranking
loss has been widely used. This loss is computed by con-
structing triplets within each mini-batch, focusing on only
one negative sample during each update. While effective to
some extent, this approach severely limits the utilization of
information from other negative samples in the mini-batch,
resulting in prolonged training times and suboptimal accu-
racy.

Building on the weighted (B+1)-tuple loss (WBL) pro-
posed in [Zhang and Zhu, 2024], which constructs (B+1)-
tuples by pushing the anchor sample away from all other neg-
ative samples in the mini-batch, we extend this concept fur-
ther to design a more efficient loss function. The WBL frame-
work leverages the relationship among multiple negative sam-
ples in a batch, providing a stronger optimization foundation.
However, its static weighting of negative samples may limit
its potential in handling harder negatives effectively.

To address this, we propose the Dynamic Weighted Batch-
tuple Loss (DWBL) (Figure 3), which not only constructs
batch-tuples but also introduces a dynamic weighting mech-
anism. Unlike traditional WBL, DWBL dynamically adjusts
the importance of each negative sample based on its similarity
to the anchor sample. By assigning higher weights to harder
negatives, DWBL ensures that these challenging samples are
emphasized and effectively learned. As iterations progress,
DWBL ensures that negatives of varying difficulty gradually
move farther from the positive sample, with their distances
converging to a similar range. This mechanism guarantees
the separation of all negatives from the positive sample, lead-
ing to improved accuracy and robust optimization.

To formalize this approach, we present the mathematical
formulation of DWBL. Given a set of mini-batch image pairs
tpIgi , I

a
i quB , their corresponding feature representations are

denoted as tpfg
i , f

a
i quB , where B is the number of image

pairs in the mini-batch. Since each pair constitutes one train-
ing instance, we denote the number of instances in the mini-
batch as N , and in our case, N “ B. When fg

i is selected as
the anchor sample, fa

i serves as the positive sample, while the
set of negative samples is tfa

j uj‰i. Within each mini-batch,
the DWBL is defined as:

L “
1

2

´

Lspf
g, faq ` Lspf

a, fgq

¯

, (6)
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Figure 3: Illustration of the proposed DWBL process. The similarity matrix between query and reference features is computed, and dynamic
weights are assigned to negative samples based on their proximity to the anchor. This mechanism ensures the effective utilization of all
negative samples, leading to improved optimization.

where the single-direction loss Ls is computed as:

Lspf
q, fk

q “
1

N

N
ÿ

i“1

log
´

1 `
ÿ

j‰i

exp
`

αpsneg
ij ´ spos

i q
˘

¯

. (7)

Here, spos
i represents the similarity between the anchor fq

i

and its corresponding positive fk
i , while sneg

ij denotes the sim-
ilarity between the anchor fq

i and a negative sample fk
j . The

weights for negative samples are dynamically adjusted using
a softmax function over the similarities. To ensure that the
total contribution of negative samples aligns with their orig-
inal scale, the weights are scaled by the number of negative
samples, N ´ 1:

wneg
ij “ pN ´ 1q

exppsneg
ij q

ř

j‰i exppsneg
ij q

. (8)

The dynamic weighting mechanism adaptively prioritizes
hard negatives (those with subtle visual differences from the
anchor) by amplifying their gradient contributions. The pa-
rameter α precisely controls this reweighting process to cap-
ture fine-grained similarity variations.

DWBL specifically optimizes for fine-grained retrieval by
reshaping the loss landscape: it strengthens gradients for
challenging cases with marginal visual differences while re-
ducing emphasis on obviously dissimilar samples. This ap-
proach is particularly effective for discriminating between
highly similar candidates where conventional losses fail to
capture subtle discriminative features. Our experiments
demonstrate superior performance in fine-grained cross-view
matching tasks.

4 Experiment
4.1 Datasets and Experimental Settings
Datasets. Our method is evaluated on three widely-used
cross-view geo-localization datasets: CVUSA [Zhai et al.,

2017], CVACT [Liu and Li, 2019], and VIGOR [Zhu et
al., 2021]. CVUSA consists of 35,532 training pairs and
8,884 testing pairs, primarily featuring suburban landscapes.
CVACT includes 35,532 training pairs, 8,884 validation pairs
(CVACT val), and 92,802 testing pairs (CVACT test), fo-
cusing on urban regions in Canberra for city-scale geo-
localization. In contrast, VIGOR contains 105,214 ground
images and 90,618 aerial images, allowing query ground im-
ages to originate from arbitrary locations within the target
area. It employs the Same-area and Cross-area protocols for
evaluation under the standard setup.

Evaluation Metrics. Following prior works [Hu et al.,
2018; Liu and Li, 2019; Shi et al., 2019; Shi et al., 2020],
we adopt R@K (K = {1, 5, 10, 1%}) as the primary met-
ric to evaluate performance. This metric measures the like-
lihood of correct matches within the top-K retrieved results.
Additionally, for the VIGOR dataset, we report the hit rate,
which quantifies the probability that the top-1 aerial image
contains the query ground image’s location. Together, these
metrics provide a comprehensive evaluation of both standard
and fine-grained geo-localization tasks.

Implementation Details. Our model is built upon the Vi-
sion Mamba (Vim) architecture [Zhu et al., 2024], a state-
of-the-art bidirectional state space model designed for effi-
cient visual representation learning. Vim replaces the con-
ventional attention-based mechanism with a pure-SSM-based
backbone, offering subquadratic-time computation and linear
memory complexity while retaining the capability for global
context modeling and positional awareness. The model is ini-
tialized with pretrained parameters on ImageNet-1K [Deng et
al., 2009].

The model is trained using 4 NVIDIA A6000 GPUs. We
utilize the AdamW optimizer [Loshchilov, 2017], with the
hyperparameter α in the single-direction loss function (Equa-
tion 7) set to 10, ensuring optimal convergence. Training ex-
periments were conducted on high-resolution image datasets,
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leveraging the computational efficiency and memory savings
of the Vim architecture, which outperforms Transformer-
based alternatives in terms of speed and memory consump-
tion.

4.2 Comparison with State-of-the-art Methods
Our proposed VimGeo model is evaluated against leading
methods on three benchmark datasets: CVUSA, CVACT, and
VIGOR. The experiments assess its performance across var-
ious cross-view geo-localization scenarios, including stan-
dard, fine-grained, and beyond one-to-one tasks.

Table 1 and Table 2 compare our VimGeo model with
state-of-the-art methods on the CVUSA and CVACT datasets
under various settings. The results demonstrate that Vim-
Geo achieves competitive performance across all metrics. On
the CVUSA dataset, VimGeo achieves an R@1 of 96.19%,
showcasing its effectiveness in cross-view geo-localization
tasks. While Sample4Geo achieves higher metrics across all
ranks (R@1, R@5, R@10, and R@1%), VimGeo maintains
strong performance as one of the top sequence modeling-
based methods, as shown in Table 1.

On the CVACT val dataset, VimGeo achieves an R@1 of
87.62%, which is competitive among sequence modeling-
based methods, although slightly lower than Sample4Geo
(90.81%). These results highlight VimGeo’s balanced per-
formance across various metrics. Furthermore, on the
CVACT test dataset, VimGeo significantly outperforms all
other methods, achieving an R@1 of 81.69%, which is
9.54% higher than the next best-performing method, FRGeo.

Table 3 summarizes the results on the VIGOR dataset un-
der both Same-area and Cross-area protocols. Initial ex-
periments showed that the Dynamic Weighted Batch-tuple
Loss (DWBL) was less effective for VIGOR, likely due
to its unique challenges, prompting the use of Weighted
(B+1)-tuple Loss (WBL) instead. In the Same-area setting,
Ours (WBL) achieves competitive performance among se-
quence modeling-based methods (R@1: 55.24%), while in
the Cross-area setting, it maintains adaptability with an R@1
of 19.31%, comparable to TransGeo.

Method R@1 R@5 R@10 R@1%

SAFA† 89.84% 96.93% 98.14% 99.64%
CDE† 92.56% 97.55% 98.33% 99.57%
L2LTR† 94.05% 98.27% 98.99% 99.67%
TransGeo 94.08% 98.36% 99.04% 99.77%
SEH† 95.11% 98.45% 99.00% 99.78%
GeoDTR† 95.43% 98.86% 99.34% 99.86%
FRGeo 97.06% 99.25% 99.47% 99.85%
Sample4Geo 98.68% 99.68% 99.78% 99.87%
Ours 96.19% 98.62% 99.00% 99.52%

Table 1: Comparisons between VimGeo (Ours) and state-of-the-art
methods on the CVUSA dataset. † indicates applying polar trans-
form to aerial images. For spatial modeling-based methods, the
highest values are underlined. For sequence modeling-based meth-
ods, the highest values are highlighted in bold. This notation is con-
sistently applied to the subsequent tables as well.

Method R@1 R@5 R@10 R@1%

CVACT val
SAFA† 81.03% 92.80% 94.84% 98.17%
DSM† 82.49% 92.44% 93.99% 97.32%
CDE† 83.28% 93.57% 95.42% 98.22%
L2LTR† 84.89% 94.59% 95.96% 98.37%
TransGeo 84.95% 94.14% 95.78% 98.37%
SEH† 84.75% 93.97% 95.46% 98.11%
GeoDTR† 86.21% 95.44% 96.72% 98.77%
FRGeo 90.35% 96.45% 97.25% 98.74%
Sample4Geo 90.81% 96.74% 97.48% 98.77%
Ours 87.62% 94.88% 96.06% 98.06%

CVACT test
SAFA† 55.50% 79.94% 85.08% 94.49%
DSM† 35.63% 60.07% 69.10% 84.75%
CDE† 61.29% 85.13% 89.14% 98.32%
L2LTR† 60.72% 85.85% 89.88% 96.12%
GeoDTR† 64.52% 88.59% 91.96% 98.74%
FRGeo 72.15% 91.93% 94.05% 98.66%
Sample4Geo 71.51% 92.42% 94.45% 98.70%
Ours 81.69% 92.42% 94.32% 97.19%

Table 2: Comparison between VimGeo (Ours) and state-of-the-art
methods on the CVACT dataset under CVACT val and CVACT test
settings.

These results collectively demonstrate VimGeo’s capabil-
ity to balance performance across various datasets and proto-
cols, establishing it as a robust and adaptable model for cross-
view geo-localization tasks.

4.3 Computational Costs
Figure 1 compares our proposed VimGeo model with six
state-of-the-art models on the CVACT test dataset in terms
of computational complexity (GFLOPs), trainable parame-
ters, and retrieval accuracy. VimGeo achieves the best com-
putational complexity (11.023 GFLOPs) and requires only
50.868M trainable parameters, while achieving a retrieval
accuracy of R@1: 81.69%, significantly outperforming all
competing methods. In contrast, models like GeoDTR and
L2LTR incur much higher computational costs but fail to
match VimGeo’s accuracy, and Sample4Geo, despite achiev-
ing moderate accuracy, does so at the expense of significantly
higher computational complexity (90.414 GFLOPs). Mean-
while, methods such as FRGeo and TransGeo exhibit rela-
tively lower computational demands but cannot achieve the
accuracy levels of VimGeo. These results highlight VimGeo’s
ability to balance computational efficiency and performance,
making it a scalable and effective solution for cross-view geo-
localization, particularly in resource-constrained scenarios.

4.4 Ablation Study
To evaluate the effectiveness of the proposed components,
including Channel Group Pooling (CGP) and Dynamic
Weighted Batch-tuple Loss (DWBL), we conducted a series of
ablation experiments by sequentially integrating these com-
ponents into the Baseline model. The Baseline model adopts
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Method R@1 R@5 R@10 R@1% Hit
Same-area Protocol

Siamese-VGG 18.69% 43.64% 55.36% 97.55% 21.90%
SAFA 33.93% 58.42% 68.12% 98.24% 36.87%
SAFA+Mining 38.02% 62.87% 71.12% 97.63% 41.81%
VIGOR 41.07% 65.81% 74.05% 98.37% 44.71%
TransGeo 61.48% 87.54% 91.88% 99.56% 73.09%
FRGeo 71.26% 91.38% 94.32% 99.52% 82.41%
Sample4Geo 77.86% 95.66% 97.21% 99.61% 89.82%
Ours 37.84% 66.63% 75.13% 96.81% 40.81%
Ours (WBL) 55.24% 80.75% 76.12% 97.30% 57.43%

Cross-area Protocol
Siamese-VGG 2.77% 8.61% 12.94% 62.64% 3.16%
SAFA 8.20% 19.59% 26.36% 77.61% 8.85%
SAFA+Mining 9.23% 21.12% 28.02% 77.84% 9.92%
VIGOR 11.00% 23.56% 30.76% 80.22% 11.64%
TransGeo 18.99% 38.24% 46.91% 88.94% 21.21%
FRGeo 37.54% 59.58% 67.34% 94.28% 40.66%
Sample4Geo 61.70% 83.50% 88.00% 98.17% 69.87%
Ours 8.17% 19.46% 26.47% 77.33% 8.64%
Ours (WBL) 19.31% 37.50% 46.03% 86.96% 20.72%

Table 3: Comparison between VimGeo (Ours) and state-of-the-
art methods on the VIGOR dataset under Same-area and Cross-
area protocols. Testing revealed that DWBL is unsuitable for this
dataset’s task, and thus the loss function was replaced.

a dual-branch architecture with Vim [Zhu et al., 2024] as the
backbone. To ensure a fair comparison, all configurations
were trained under consistent hyperparameters and strategies.
The results, summarized in Table 1, show the contribution of
each component to model performance.

The experiments started with the Baseline model, which
includes the Vim backbone without additional components.
Adding the CGP module enhances the model’s ability to cap-
ture global image representations, improving feature integra-
tion and localization accuracy. Integrating the DWBL loss
further optimizes the model by effectively utilizing negative
samples during training, resulting in improved optimization.
Finally, combining CGP and DWBL into the Baseline model
forms our complete VimGeo architecture, which achieves the
best performance in terms of R@1 and R@5, demonstrating
the complementary nature and effectiveness of these compo-
nents.

As shown in Table 4, both CGP and DWBL independently
contribute to notable performance improvements. The in-
tegration of both components (Baseline + CGP + DWBL)
achieves the best performance, demonstrating their comple-
mentary nature and highlighting the effectiveness of the pro-
posed VimGeo architecture.

4.5 Visualization Analysis
To better understand VimGeo’s learning process and the dif-
ferences in attention regions across models, we visualize
heatmaps, as shown in Figure 4. The Baseline model exhibits
scattered and inconsistent attention, focusing on non-sky
structures in a disorganized manner, while VimGeo demon-
strates a more stable and focused attention distribution by em-
phasizing prominent buildings alongside road information.

Method R@1 R@5 R@10 R@1%
Base 94.10% 98.39% 98.93% 99.68%
Base + CGP 95.36% 98.56% 99.11% 99.71%
Base + DWBL 94.17% 98.28% 98.86% 99.67%
Base + CGP + DWBL 96.19% 98.62% 99.00% 99.52%

Table 4: Performance comparison on the CVUSA dataset. The pro-
posed model with CGP and DWBL achieves the best performance
across all metrics.

Figure 4: Comparison of heatmaps generated by the VimGeo model
on street and satellite view images.

These prominent buildings provide stable reference features
for cross-view geo-localization, as they remain consistent in
appearance across different ground-aerial image pairs. Vim-
Geo’s enhanced focus on these critical regions is attributed to
the effectiveness of the Channel Group Pooling (CGP) mech-
anism and the Dynamic Weighted Batch-tuple Loss (DWBL)
loss, which together enable the model to align spatial layouts
across views and prioritize regions essential for accurate lo-
calization.

5 Conclusion
In this paper, we propose VimGeo, an innovative and effi-
cient cross-view geo-localization method designed to address
geometric spatial misalignments between cross-view images.
Through the introduction of the Channel Group Pooling
(CGP) mechanism, our approach effectively mitigates ambi-
guities and improves the extraction of discriminative local-
ization features. Additionally, the Dynamic Weighted Batch-
tuple Loss (DWBL) enhances optimization by strategically fo-
cusing on hard negatives to refine discriminative power, pri-
oritizing top-1 matching accuracy.

Comprehensive experiments demonstrate that VimGeo
achieves superior performance across the CVUSA, CVACT,
and VIGOR datasets. Furthermore, it offers significant ad-
vantages in computational efficiency and model scalability,
highlighting its practicality and suitability for cross-view geo-
localization tasks.
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