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Abstract

Personalized Federated Learning (PFL) meets each
user’s personalized needs while still facing the
high communication costs due to the large amount
of data transmission and frequent communication.
Decentralized PFL (DPFL) as an alternative dis-
cards the central server in PFL, which reduces
the pressure of communication and the risk of
server failure by using peer-to-peer communica-
tion.Nevertheless, DPFL still suffers from the sig-
nificant communication pressure due to the trans-
mission of a large number of model parameters,
especially numerous nodes. To address the is-
sues, we propose a novel personalized framework,
DFedHP, in which each client utilizes a hypernet-
work to generate the shared part of model param-
eters and train the personalized parameters sepa-
rately. The number of parameters in a hypernet-
work is much smaller than those in a typical lo-
cal network, so hypernetwork aggregation reduces
communication costs and the risk of privacy leak-
age. Furthermore, DFedHP can seamlessly inte-
grate into existing DPFL algorithms as a plugin
to boost their efficacy. At last, extensive experi-
ments on various data heterogeneous environments
demonstrate that DFedHP can reduce communi-
cation costs, accelerate convergence rate, and im-
prove generalization performance compared with
state-of-the-art (SOTA) baselines.

1 Introduction
Personalized Federated Learning (PFL) [Pillutla et al., 2022]
trains customized models for each local client. PFL aims to
meet the diverse needs of users and improve the generaliza-
tion ability and robustness of models in distributed environ-
ments [Tan et al., 2022]. To alleviate communication stress
and the risks of server failure in centralized federated learning
(CFL), DPFL [Li et al., 2023] uses communication topolo-
gies to directly exchange model updates with neighbors with-
out a central server [Sabah et al., 2024]. It distributes the

∗Corresponding authors.

communication load to some extent, which is particularly im-
portant for large-scale distributed systems.
However, even in DPFL, nodes need to frequently synchro-
nize and update local model parameters or gradient informa-
tion, increasing communication paths and complexity in the
network [Yuan et al., 2024]. Frequent and large data trans-
missions in such topologies consume a significant amount of
network bandwidth, especially on mobile devices or IoT de-
vices (Internet of Things). This not only leads to high com-
munication costs, but may also result in delayed or reduced
parameter updates, affecting the consistency and accuracy of
the model. Moreover, the large amount of communication
increases the time that data is transmitted over the network,
providing more potential attack surfaces and the risk of pri-
vacy leaks. Recently, researchers propose communication op-
timization strategies, such as compression [Zhu et al., 2024],
optimization algorithms [Wu et al., 2022] and efficient decen-
tralized architectures [Beltrán et al., 2023] to lower communi-
cation volume and frequency [Dai et al., 2022]. However, the
high communication cost and slow convergence issues have
not been fundamentally solved.
Therefore, we propose a new algorithm, the Decentralized
Personalized Federated Learning algorithm with Hypernet-
work (DFedHP). We deploy hypernetworks on the client-side
of the decentralized topologies. The hypernetwork maps in-
put information to the desired target and generates weights of
target local model (convolutional networks or recurrent net-
works) [Ha et al., 2016]. Clients only transmit these smaller
hypernet parameters, which greatly reduces the amount of
communication data required to transmit a complete model
[Chauhan et al., 2024]. This means that hypernetworks de-
couple communication costs from trainable model sizes. In
addition, the clients only need to share the parameters of the
hypernetwork, without exposing the complete architecture or
weight details of their local models. This approach effectively
protects user data privacy by serving as an intermediate ab-
stract layer that prevents direct transmission of sensitive in-
formation, providing stronger privacy guarantees. Further,
hypernetwork optimization can be performed in a smaller
search space (i.e., optimizing the weights of the hypernetwork
itself). This not only improves efficiency but also may avoid
getting stuck in a local optimum, making the final generated
weights more likely to approach an ideal solution [Caldarola
et al., 2022]. In sum, clients utilize hypernetworks to generate

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 1: The main pipeline of DFedHP algorithm. Each client unit ci consists of a personalized part vi and a hypernetwork φi. The
hypernetwork generates the weight parameters by inputting corresponding vectors zi. The client first aggregates hypernetwork information
from neighbors to generate a new hypernet, then uses it to produce the shared part of model weights. It combines these with the previous
round’s personalized parameters to form the complete client model. Finally, the client performs local training to update φi, zi and vi and
prepares for next round.

shared parameters, while training personalized parameters lo-
cally, which alleviates communication burden and maintains
the ability to train diverse individual models.
We conduct experiments on non-IID settings across different
data partitions (Dirichlet and Pathological distribution) and
different partition coefficients. And then we compare the per-
formance of our algorithm with many SOTA baselines in CI-
FAR10, CIFAR100, and Tiny-ImageNet datasets. Extensive
evaluations of various classification tasks show that our al-
gorithm can achieve competitive performance, with improve-
ments in both communication cost and convergence perfor-
mance. Our contributions are listed as follows.

• We propose a novel DPFL algorithm, DFedHP, which
can effectively leverage the characteristics of hypernet-
works to generate accurate personalized models. It re-
duces communication overhead significantly and fasters
speed of convergence.

• We explore the impact of aggregating different numbers
of node parameters on communication and convergence
and demonstrate the compatibility and integrability of
DFedHP with other PFL methods.

• We evaluate the communication and convergence perfor-
mance with various data distributions. Extensive exper-
iments prove that DFedHP achieves better performance
effectively than SOTA PFL baselines.

2 Related Work
Decentralized Federated Learning (DFL). In DFL, there
is no central server to coordinate and aggregate model up-

dates, clients must communicate directly with each other.
This enhances privacy but may lead to greater communi-
cation volume [Sun et al., 2022; Shi et al., 2023b; Li et
al., 2025b]. Besides, DFL primarily reduces communica-
tion pressure by optimizing communication content, reduc-
ing the frequency of communication and improving commu-
nication patterns [Liu et al., 2022; Li et al., 2025a], thus im-
proving system efficiency and scalability. Because we mainly
focus on the former, from this perspective, researchers typi-
cally use compression [Wang et al., 2022] such as quantiza-
tion, pruning [Xu et al., 2024], or sparsification [Dai et al.,
2022] to compress the data that need to be transmitted and re-
duce the amount of data transmitted each time. For instance,
ProxyFL[Kalra et al., 2023] transmits a publicly shared proxy
model to reduce communication costs and provide stronger
privacy guarantees. KD-PDFL [Jeong and Kountouris, 2023]
combines knowledge distillation with decentralized federated
learning DFL, enhancing personalization capabilities and re-
ducing transmission costs.

Personalized Federated Learning. PFL balances the gen-
eralization ability of the global model with the individual-
ized needs of customers. Common methods include fine-
tuning [Tamirisa et al., 2024], knowledge distillation [Su et
al., 2025], regularization [Zhang et al., 2023], parameter de-
coupling [Zhou et al., 2024], and data augmentation etc. The
parameter decoupling approach, such as FedPer [Arivazha-
gan et al., 2019], FedRep [Collins et al., 2021] and FedBABU
[Oh et al., 2021], generally allows each client retains a por-
tion of the model parameters for local personalization while
sharing other parameters for global aggregation. DisPFL [Dai
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et al., 2022] and FedMask [Li et al., 2021a] and achieve en-
hanced personalization and reduced communication costs by
proposing a distributed sparse training technique. To achieve
personalization, more complex models such as hierarchical
[Ma et al., 2022] and multi-task learning frameworks [Mills
et al., 2021] can be adopted, but this may increase compu-
tation and communication frequency. In addition, significant
differences between PFL clients can require more frequent
communication to ensure effective training participation [Pil-
lutla et al., 2022]. This motivates us to explore a PFL strategy
to improve the communication burden.
Hypernetworks. Hypernetworks [Chauhan et al., 2024]
dynamically generate target network weights based on input
data, rather than using pre-trained weights statically [Ha et
al., 2016]. It significantly reduces storage requirements with-
out sacrificing too much performance and adapts to differ-
ent input distributions or tasks. Hypernetworks are applied
in few-shot learning [Sendera et al., 2023], federated learn-
ing and reinforcement learning [Beck et al., 2023]. In the
field of federated learning, PFedHN [Shamsian et al., 2021]
deploys a hypernetwork on the central server using random
fixed vectors to generate weights directly. PFedLA [Ma et
al., 2022] uses hypernetwork to generate weight matrices, and
the server uses the matrix and client parameters to update per-
sonalized model weights. HFN [Chen et al., 2024] deploys a
hypernetwork on the client in CFL topologies, using a single
vector from client’s each layer and generate model weights.
Different from current work, DFedHP ensures model perfor-
mance while significantly reducing the communication fre-
quency between participants, thereby improving system ef-
ficiency and response speed. It is particularly suitable for
resource-constrained or applications that require rapid itera-
tion and updates, such as the IoT and mobile edge computing.

3 Methodology
In this section, we first define the problem setting for decen-
tralized partial personalized models. Next, we present the
DFedHP algorithm, which aggregates the hypernetworks pa-
rameters of clients to reduce the communication burden and
improve the convergence speed under resources heterogene-
ity situations while achieving SOTA performance.

3.1 Problem Setup
Considering n clients with parameters θ ∈ Rd = {θ1, ..., θn},
let Di be the non-IID data distribution of the client i ∈
{1, 2, ..., n}. The non-convex minimization problem in this
work can be defined as:

min
θ∈Rd

F (θ) :=
1

n

n∑
i=1

Fi(θi), (1)

where Fi (θi) = Eξ∼DiFi (θi; ξi) refers to the local objective
function of the client i, which is related to the data sample
ξi of Di. In order to preserve the personalized capabilities of
the clients, we divide the model into two parts: the shared
parameters and the personal parameters vi ∈ Rdi . Dif-
ferent from other PFL algorithms, DFedHP replaces shared
parameters with hypernetworks that have fewer parameters,

which significantly saves the communication resources re-
quired for interaction among nodes. Specifically, h(φi, zi)
denotes the the ith client’s hypernetwork with the hyper-
parameters φi ∈ Rdz and the embedding vectors zi ∈ Rdz .
Thus, the complete local model θi of the client i is denoted
as θi = (h(φi, zi), vi). Consequently, the objective function
can be derived from problem (1) to:

min
φ,z,V

F (h(φ, z), V ) :=
1

n

n∑
i=1

Fi (h(φ, z), vi) , (2)

where V = {v1, v2..., vn} ∈ Rd1+...+dn . φ presents the con-
sensus hypernetwork model averaged with all hypernetworks
φi from other clients, that is φ = 1

n

∑n
i=1(φi). The com-

munication network in the decentralized network topology
among nodes is modeled as an undirected connected graph
G = (N ,V,W). N = {1, ..., n} denotes the collection of
nodes, V ⊆ N × N denotes the set of end-to-end commu-
nication channels. Consequently, the shared parameters of
each client are sent to neighbors according to the mixing ma-
trix W, which defines the communication topology between
clients. In contrast, personal parameters will not be sent out
but will only be iterated locally.

3.2 DFedHP Algorithm
In this subsection, we introduce the DFedHP framework
to solve problem (2) by deploying hypernetworks in a dis-
tributed network in a more efficient manner.
DFedPH Algorithm. The Figure 1 presents the main
pipeline of DFedHP algorithm. Each client is composed of
shared part and a personal part. The hypernetwork gener-
ates only the shared components of the local models. Rather
than sharing their entire client models, clients only communi-
cate hypernetwork parameters with their neighbors. After ex-
changing information, client aggregates the hyper-parameters
of its neighbors and use it to generate shared part parameters.
The clients combine local personalized parameters from the
previous round of training to generate entire client model. Fi-
nally, client performs local training to update the complete
parameters, and prepares to send the shared parameters for
the next round. Specifically, in Algorithm 1, we form a com-
plete local network (h(φi, zi), vi) in line 6. In line 8 to line
19, multiple local iterative updates are performed on the per-
sonal parameters vi, hypernetwork φi and vectors zi in se-
quence. Finally, in line 19, DFedHP communicates with
neighboring models according to mixing matrix W and ag-
gregates hypernetworks. The client updates local hypernet-
work by computing the average of hyper-parameters from
neighbors (including itself) for the next round.
Consequently, communication between clients can mainly
transmit these smaller hypernetwork parameters, rather than
the complete structure or model weights. This greatly reduces
the amount of communication data required for each iteration.
In addition, the hypernetwork serves as an intermediate layer,
providing an additional layer of abstraction for sensitive in-
formation, further enhancing privacy. Moreover, based on
the data characteristics, hypernetwork generates model ini-
tialization weights that are closer to the specific task require-
ments, thereby achieving faster convergence. Furthermore,
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in addition to DFedAvg, DFedHP can seamlessly integrate
into existing DPFL training algorithms, with its lightweight
framework and flexible modular design.

Hypernetwork Structure. The hypernetwork maps a cer-
tain form of a small input to the weights of the target net-
work. The input generates specific model weights for differ-
ent tasks, clients, or data set characteristics, including random
noise, fixed or dynamically varying vectors [He et al., 2023;
Littwin et al., 2020]. In this paper, we input learnable embbe-
ding vectors zi into the hypernetwork φ, we can obtain output
h(φi, zi) of the client i. If we input a vector into the hyper-
net to generate the parameters, we would encounter the prob-
lem of excessive hyper-parameters and high communication
costs [Ha et al., 2016]. Therefore, we input a large number of
different vectors to generate multiple filters, and by concate-
nating different outputs, we form a large-sized weight matrix.
This can significantly reduce the number of hypernetwork pa-
rameters, which is far lower than the parameter numbers of
original network. As the hypermodel parameters are mainly
transmitted between clients, our method greatly reduces the
communication cost in DFL. In this paper, we mainly discuss
the case of hypernetwork composed of two linear layer and
activation function. In this configuration, DFedHP achieves a
reduction of up to 87.81% in the number of parameters trans-
mitted per round. Smaller hypernet parameters are transmit-
ted between clients, rather than the full model weights, which
reduces the communication costs and time.

Partial Personalized Models [Liu et al., 2025]. In a neu-
ral network, the convolutional layers near the input extract
features representations of input by filters (also called ker-
nels or feature detectors), mapping data to easily discernible
low-dimensional spaces [Sabah et al., 2024; Tan et al., 2022].
For many tasks, such as image classification, the early con-
volutional layers often capture some low-level features, such
as edges and textures, which have high generality. There-
fore, by sharing the convolutional layers, effective low-level
feature extractors can be shared among all clients, thereby
enhancing resource utilization efficiency and model perfor-
mance. This shared part is generated by the hypernetwork in
this paper. Conversely, the linear layer close to the output pri-
marily maps features to a specific output space. It is focused
on pattern recognition to determine the data category, which
we designate as the personalized part. The linear layers can
be personalized according to the data characteristics of each
client to better adapt to the local data distribution.

4 Theoretical Analysis
In this section, we conduct a convergence analysis of the
DFedHP algorithm and explore its working principle. First,
we make some general assumptions.

Definition 1 (The gossip/mixing matrix [Sun et al., 2022]).
The gossip matrix W = [wi,j ] ∈ [0, 1]n×n is assumed to
have these properties: (i) (Graph) If i ̸= j and (i, j) /∈
V then wi,j = 0, otherwise, wi,j > 0; (ii) (Symme-
try) W = W⊤; (iii) (Null space property) null {I −
W} =span{1}; (iv) (Spectral property) I ⪰ W ≻
−I. With these properties, the eigenvalues of W satisfy

Algorithm 1 DFedHP

1: Input: total number of devices n and communication
rounds T . Learning rate: personal part ηv , hypernet ηφ
and embedding vectors ηz . Number of local iterates Kv ,
Kφ and Kz .

2: Output: hyper parameters φT
i , personal part vTi and em-

bedding vectors zTi after the final communication of all
clients.

3: Initialization: randomly initialize each device’s hyper-
net parameters φ0

i , personal parameters v0i and vectors
z0i .

4: for each communication round t→ 1 to T do
5: for client i in parallel do do
6: Generate model parameters by φ0

i , sample a batch of
local data ξi and calculate local gradient iteration.

7: for local epoch from k = 0 to Kv do do
8: Perform personal parameters vi update:
9: vt,k+1

i ← vt,ki − ηv∇vFi

(
h(φt

i, z
t
i), v

t,k
i

)
10: vt+1

i ← vt,Kv

i
11: end for
12: for local epoch from k=0 to Kφ do do
13: Update the hypernetworks parameters φi:
14: φt,k+1

i ← φt,k
i − ηφ∇φFi

(
h(φt,k

i , zti), v
t+1
i

)
15: end for
16: gt1,i ← φ

t,Kφ

i
17: for local epoch from k=0 to Kφ do do
18: Update the embedded vector zi:
19: zt,k+1

i ← zt,ki − ηz∇zFi

(
h(φt,k+1

i , zt,ki ), vt+1
i

)
20: end for
21: gt2,i ← zt,Kz

i

22: Receive neighbors’ hyper-network gt1,j , gt2,j .
23: with mixing matrix W :
24: φt+1

i =
∑

l∈N (i) wi,lg
t
1,i, z

t+1
i =

∑
l∈N (i) wi,lg

t
2,i

25: end for
26: end for

1 = λ1(W)) > λ2(W)) ≥ · · · ≥ λn(W)) > −1. In ad-
dition, λ := max {|λ2(W)| , | λn(W)) |} and 1−λ ∈ (0, 1]
denote the spectral gap of W, which quantifies the character-
istics of the network topology.
Assumption 1 (Lipschitz Smoothness). Fi and hi are con-
tinuously differentiable. There exist constants Lφ, Lz , Lh,
Lv ,Lhv , Lvh, Lhφ, Lhz , ∀i ∈ {1, 2, ..., n} such that:

• ∇hFi(hi, vi) is Lh − Lipschitz with respect to hi,
Lhv − Lipschitz with respect to vi;

• ∇vFi(hi, vi) is Lv−Lipschitz with respect to vi, Lvh−
Lipschitz with respect to hi;

• ∇φFi(h(φi, zi), vi) is Lφ − Lipschitz with respect to
φi and ∇zFi(h(φi, zi), vi) is Lz − Lipschitz with re-
spect to zi;

• ∇φhi is Lhφ−Lipschitz continuous with respect to φi

and ∇zhi is Lhz − Lipschitz continuous with respect
to zi.
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Figure 2: Test accuracy on CIFAR-10, CIFAR-100, Tiny-ImageNet datasets with heterogenous data partitions.

The gradients ∇φh and ∇zh are respectively bounded by
constants γφ and γz . Besides, we present the relative cross-
sensitivity of gradient with the scalar:

χ := max {Lhv, Lvh} /
√

LhLv.. (3)

Assumption 2 (Bounded Variance). The gradient of the
function Fi has bounded variance. There exist constants σφ,
σz and σv , ∀i ∈ {1, 2, ..., n} such that:

• E
[
∥∇φFi (hi, vi; ξi)−∇φFi (hi, vi)∥2

]
≤ σ2

φ;

• E
[
∥∇zFi (hi, vi; ξi)−∇zFi (hi, vi)∥2

]
≤ σ2

z ;

• E
[
∥∇vFi (hi, vi; ξi)−∇vFi (hi, vi)∥2

]
≤ σ2

v .

Assumption 3 (Partial Gradient Diversity). There exists a
constant δ ≥ 0, ∀φi, zi, V such that:

• 1
n

∑n
i=1 ∥∇φFi (hi, vi)−∇φF (hi, V )∥2 ≤ δ2φ;

• 1
n

∑n
i=1 ∥∇zFi (hi, vi)−∇zF (hi, V )∥2 ≤ δ2z .

Theorem 1 (Convergence Analysis for DFedHP). Assume
Assumptions 1-3 holds, let the local adaptive learning rate
satisfy ηφ = O(1/LφKφ

√
T ), ηz = O(1/LzKz

√
T ), ηv =

O(1/LvKv

√
T ), where T is the number of communication

rounds. Furthermore, we adopt the averaged parameter
φ̄t = 1

n

∑n
i=1(φ

t
i), z̄

t = 1
n

∑n
i=1(z

t
i) of all clients as an

approximate solution to the problem (2) below. Additionally,
F ∗ denotes the minimal value of F : F (h(φ̄, z̄), V ) ≥ F ∗ for
all φ, z, and ∆t

φ̄, ∆t
z̄ and ∆t

v̄ are performed as:

∆t
φ̄ =

∥∥∇φF
(
h (φ̄t, z̄t) , V t+1

)∥∥2 ,
∆t

z̄ =
∥∥∇zF

(
h (φ̄t

i, z̄
t
i) , V

t+1
)∥∥2 ,

∆t
v = 1

n

∑n
i=1 ∥∇vFi (h (φ

t
i, z

t
i) , v

t
i)∥

2
.

(4)

Thus, we present the convergence rate:

1
T

∑T
i=1

(
1
Lφ

E
[
∆t

φ̄

]
+ 1

Lz
E [∆t

z̄] +
1
Lv

E [∆t
v]
)

≤ O
(

F(h(φ̄1,z̄1),V 1)−F∗
√
T

+
σ2
1

(1−λ)2
√
T
+

σ2
2√
T
+

σ2
3

(1−λ)2T

)
,

(5)
where the constants σ2

1 , σ2
2 and σ2

3 are defined as:

σ2
1 =

χ2LvLφ+2Kφγ2
φ

L2
φ

(
σ2
φ + δ2φ

)
+

χ2LvLz+2Kzγ
2
z

L2
z

(
σ2
z + δ2z

)
,

σ2
2 =

σ2
v(Lv+1)

L2
v

+
(σ2

φ+δ2φ)Lhφ

KφLφ
+

(σ2
z+δ2z)Lhz

KzLz
,

σ2
3 =

(σ2
φ+δ2φ)γ2

φL2
hφ

KφLφ
+

(σ2
z+δ2z)γ

2
zL

2
hz

KzLz
.

(6)

Remark 1 (Statistical Heterogeneity Affects the Conver-
gence Boundary). The smaller local variance variables
σ2
φ, σ

2
z , smaller gradient diversity δφ,δz and smoother Lip-

schitz constants all lead to a tighter convergence boundary.
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Algorithm

CIFAR-10 CIFAR-100 Tiny-ImageNet

Dirichlet Pathological Dirichlet Pathological Dirichlet Pathological

α = 0.1 α = 0.3 c = 2 c = 5 α = 0.1 α = 0.3 c = 10 c = 20 α = 0.1 α = 0.3 c = 10 c = 20

Local 74.83 61.54 83.77 63.42 34.93 21.89 50.64 40.68 13.83 5.72 31.90 18.24
FedAvg 76.34 72.58 85.12 72.61 51.02 41.05 61.98 53.39 25.26 16.17 42.93 33.51
Ditto 77.21 71.95 85.36 72.04 49.43 40.95 61.30 51.41 24.08 13.31 39.85 32.08
FedPer 82.47 77.20 89.01 77.35 48.98 38.36 62.15 52.84 23.53 10.08 45.28 32.62
DisPFL 79.93 74.12 86.99 73.78 49.77 37.28 60.33 50.23 24.16 13.46 41.02 32.04
DFedAvg 80.04 73.96 87.83 74.35 50.65 40.61 63.59 52.92 25.07 14.90 41.74 31.97
DFedAlt 82.65 77.91 86.42 76.60 51.81 40.70 63.02 53.68 24.30 13.19 44.12 33.50

DFedHP 81.79 77.01 89.64 77.43 50.08 41.54 65.06 52.70 26.22 15.93 44.06 32.16
DisPFL+HP 80.48 75.18 89.55 74.31 49.26 40.38 61.52 50.86 23.29 13.05 42.23 32.50
DFedAlt+HP 83.51 78.04 89.23 76.53 51.16 41.24 65.18 52.97 24.92 13.86 46.55 32.34

Table 1: Test accuracy on CIFAR-10, CIFAR-100 and Tiny-ImageNet in both Dirichlet (α) and Pathological (c) data distribution settings.

Since in a round of communication, viis updated first, fol-
lowed by φi and then zi, there is no Lvh in the convergence
boundary. The proof details are in the Appendix.

5 Experiments
In this section, we introduce the experiment, covering the
setup and the performance of the DFedHP. Additionally, we
present the communication advantages of the method and ver-
ify its effectiveness when combined with other methods.

5.1 Experiment Setup
Dataset and Data Partition. We evaluate the perfor-
mance of DFedHP on the CIFAR-10, CIFAR-100, and Tiny-
ImageNet datasets under Dirichlet distribution and Patholog-
ical distribution. The Dirichlet distribution specifies that the
local data set conforms to the Dirichlet distribution. And the
Pathological distribution is to allocate a finite number of clas-
sifications to each client. The two types of approaches guar-
antee the distribution of all data sets among the clients is non-
IID. We partition the training and testing data according to
the Dirichlet distribution Dir(α). The smaller partition alpha
α is, the more uneven the data distribution among clients will
be, resulting in higher data heterogeneity [Kotelevskii et al.,
2023; Wang et al., 2020]. In addition, we sample different
classes from the dataset for each client. The fewer classes
each client has, the more heterogeneous the setting becomes.
Baselines and Backbone. We evaluate our method and
the following SOTA baselines of DFL. We select FedAvg
[McMahan et al., 2017], FedPer [Arivazhagan et al., 2019],
and Ditto [Li et al., 2021b] as the FL baseline, and DFedAvg
[Sun et al., 2022] and DFedAlt [Shi et al., 2023a] as the DFL
baseline. Local means only local training for each local client
with no communication. Note that we define the accuracy as
the personal test accuracy. The PFL methods used in the ex-
periment learns personal classifiers for each client based on a
shared feature extraction.
Training Strategies. In all experiments, all algorithms are
conducted on ResNet-18 [He et al., 2016] with batch normal-
ization. We record the communication between the client and
server (or between clients) at 150 rounds. The total number

Algorithm

CIFAR-100 Tiny-ImageNet

Dirichlet Pathological Dirichlet Pathological

α = 0.3 c =20 α = 0.3 c = 20

@85 @85 @80 @90

FedAvg 74 89 70 79
DisPFL 73 76 45 96
DFedAvg 79 84 47 73
DFedHP 62 51 27 63

Table 2: The communication rounds necessary for attaining the tar-
get accuracy.

of clients is 100 and the communication radio is 0.1 for each
round. The batch size is 128 and the local training epoch is 4.
The experiment uses SGD as the optimizer with momentum
of 0.9. The distributed topologies is random. For DFedHP,
the embedding vector size is 128. Although dimensions of
kernels in each layer are different, the dimension of a kernel
is often an integer multiple of a fixed value [Ha et al., 2016].
We choose 64 as the fixed value of ResNet-18. We conduct
multiple experiments on the learning rates of all algorithms.

5.2 Performance Evaluation
Figure 2 shows the convergence curves of DFedHP and base-
line methods in image classification tasks using the ResNet-
18 model on different datasets and different non-IID data
distributions. DFedHP significantly reduces communication
costs. In the experimental setup of the paper, the amount of
data each client needs to transmit is reduced from a maximum
43,666.97KB to 5,321.06KB (32 float) in Table 3. Under the
decentralized setting, we assume that each client communi-
cates with 10 neighbors in each round, following the hyper-
network configuration in the main experiment. Each commu-
nication transmits at least 50.75 GB of parameter information
transmitted in 500 rounds of communication. Without the
hypernetwork, the minimum communication volume in 500
rounds is at least 418.23 GB. In sum, due to the use of hyper-
network weight generation network, the client only needs to
transmit a smaller number of hypernetwork parameters, thus
reducing the communication burden.
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Costs com.(KB) computation (s) memory (MB)

DfedHP 5.32 ×103 2.51 ×104 604.68 / 21.63
DFedAvg 4.37 ×104 2.39 ×104 669.87 / 103.06

Table 3: A comparison of each client’s communication, computa-
tion, and (maximum and average) video memory costs per round.

In addition, Table 2 presents the number of communication
rounds required to achieve the DFedHP target accuracy. It is
evident that DFedHP shows significant improvements in con-
vergence speed. In Pathological 20, the convergence speed
of DFedHP in CIFAR-100 is 39.29 % faster than that of
DFedAvg, and the convergence speed of the meta-network
transmission is greatly improved. Moreover, DFedHP can
be used with any PFL method, such as “DisPFL + HP”,
“DFedAlt + HP” in Table 1. In most cases, applying DFedHP
to other DFL frameworks significantly reduces convergence
speed and communication overhead. Faster convergence en-
ables the model to reach optimal or satisfactory performance
more quickly, reducing required iterations. This is crucial in
poor network conditions, where fewer communication rounds
lower overall costs. In applications that need rapid adaptation
to new data or changing environments, faster convergence al-
lows timely model updates and more accurate services.
Then, we compare the test accuracy of all baselines under
different settings in Table 1. In CIFAR-10 dataset, DFedHP
achieves 77.01% in the Dirichlet 0.3 setting, which is 3.05%
higher than the method without hypernetwork (DFedavg).
DFedHP performs well on the Dirichlet distribution and
pathological distribution. It can resist the negative effects of
some data heterogeneity, which proves the effectiveness and
robustness of the proposed method. Moreover, in cases of
excessive data heterogeneity, due to the limited local train-
ing data, accuracy decreases as the level of heterogeneity de-
creases, which is a normal phenomenon. It performs well
in scenarios with data heterogeneity, which proves the ef-
fectiveness of the proposed method. DFedHP utilizes em-
bedded vectors to capture more precise features of the data.
This allows the classification head to be more adaptive to the
local data of each client through a stronger feature extrac-
tor, thereby enabling the meta-network to generate accurate
model weights. In summary, the effects of DFedHP are sig-
nificant, and it can reduce communication burden and achieve
faster convergence speed with greater benefits in distributed
scenarios when performing partial model personalization.

5.3 Ablation Study
We conduct several ablation study on CIFAR-10 with Dirich-
let 0.3 distribution to verify the validity and robustness of the
component. In Figure 3 (a), FedHP achieves the robustness
in various communication topologies. Furthermore, based
on the spectral gap analysis in Section 4, as the sparsity of
topology decreases, spectral gap decreases, the generaliza-
tion effect improves. The results in Figure 3(a) are consis-
tent with the analysis. The communication costs and con-
vergence boundaries of different topologies, from largest to
smallest, are: fully connected, exponential, grid, ring. Fig-
ure 3(b) shows the impact of the number of hypernetwork

Figure 3: Ablation study on CIFAR-10 with Dirichlet 0.3 distribu-
tion. (a) Personal test accuracy in various network topologies for
DFL algorithms ; (b) the numbers of hypernetwork parameters; (c)
the number of total clients; (d) the number of active neighbors per
round of communication;

parameters on model accuracy under different network struc-
tures. The X-axis represents the proportion of hypernetwork
parameters in the original model without hypernetwork. In
the experiment, the best accuracy results among different hy-
pernetwork structures with the same number of hyperparam-
eters are selected. The number of parameters in a Hyper-
Network is not fixed, as it depends on model complexity,
task requirements, dataset characteristics, and expected per-
formance. It must have enough expressive power to generate
effective weights while avoiding overfitting or wasting com-
putational resources. In addition, more detailed ablation stud-
ies are shown in the Appendix.

6 Conclusion
In this work, we propose a new DPFL framework, DFedHP, to
realize decentralized personalized model aggregation through
hyper network aggregation. This enhances collaboration
among clients and generates better personalized models on
non-IID datasets. In addition, DFedHP decouples training
complexity from communication complexity. The size of the
generated client models is not limited, effectively reducing
communication overhead. Further, DFedHP can be combined
with other related methods, which is scalable and flexible. It
can adapt to clients with different computing capabilities or
large-scale federated learning scenarios, where communica-
tion capacity is typically limited. Extensive evaluations on
various classification tasks have demonstrated that the com-
munication efficiency and convergence ability of DFedHP
significantly enhance. In the future, we will explore the theo-
retical analysis and application extensively.
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Gregorio Martı́nez Pérez, and Alberto Huertas Celdrán.
Decentralized federated learning: Fundamentals, state
of the art, frameworks, trends, and challenges. IEEE
Communications Surveys & Tutorials, 2023.

[Caldarola et al., 2022] Debora Caldarola, Barbara Caputo,
and Marco Ciccone. Improving generalization in federated
learning by seeking flat minima. In European Conference
on Computer Vision, pages 654–672. Springer, 2022.

[Chauhan et al., 2024] Vinod Kumar Chauhan, Jiandong
Zhou, Ping Lu, Soheila Molaei, and David A Clifton. A
brief review of hypernetworks in deep learning. Artificial
Intelligence Review, 57(9):250, 2024.

[Chen et al., 2024] Xingyun Chen, Yan Huang, Zhenzhen
Xie, and Junjie Pang. Hyperfednet: Communication-
efficient personalized federated learning via hypernet-
work. arXiv preprint arXiv:2402.18445, 2024.

[Collins et al., 2021] Liam Collins, Hamed Hassani, Aryan
Mokhtari, and Sanjay Shakkottai. Exploiting shared repre-
sentations for personalized federated learning. In Interna-
tional conference on machine learning, pages 2089–2099.
PMLR, 2021.

[Dai et al., 2022] Rong Dai, Li Shen, Fengxiang He, Xinmei
Tian, and Dacheng Tao. Dispfl: Towards communication-
efficient personalized federated learning via decentralized
sparse training. In International conference on machine
learning, pages 4587–4604. PMLR, 2022.

[Ha et al., 2016] David Ha, Andrew Dai, and Quoc V Le.
Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[He et al., 2023] Yunlong He, Dandan Yan, and Fei Chen.
Hierarchical federated learning with local model embed-

ding. Engineering Applications of Artificial Intelligence,
123:106148, 2023.

[Jeong and Kountouris, 2023] Eunjeong Jeong and Marios
Kountouris. Personalized decentralized federated learning
with knowledge distillation. In ICC 2023-IEEE Interna-
tional Conference on Communications, pages 1982–1987.
IEEE, 2023.

[Kalra et al., 2023] Shivam Kalra, Junfeng Wen, Jesse C
Cresswell, Maksims Volkovs, and Hamid R Tizhoosh. De-
centralized federated learning through proxy model shar-
ing. Nature communications, 14(1):2899, 2023.

[Kotelevskii et al., 2023] Nikita Kotelevskii, Samuel
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Panov. Dirichlet-based uncertainty quantification for
personalized federated learning with improved posterior
networks. arXiv preprint arXiv:2312.11230, 2023.

[Li et al., 2021a] Ang Li, Jingwei Sun, Xiao Zeng,
Mi Zhang, Hai Li, and Yiran Chen. Fedmask: Joint
computation and communication-efficient personalized
federated learning via heterogeneous masking. In Pro-
ceedings of the 19th ACM Conference on Embedded
Networked Sensor Systems, pages 42–55, 2021.

[Li et al., 2021b] Tian Li, Shengyuan Hu, Ahmad Beirami,
and Virginia Smith. Ditto: Fair and robust federated learn-
ing through personalization. In International conference
on machine learning, pages 6357–6368. PMLR, 2021.

[Li et al., 2023] Bo Li, Mikkel N Schmidt, Tommy S Al-
strøm, and Sebastian U Stich. On the effectiveness of par-
tial variance reduction in federated learning with heteroge-
neous data. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3964–
3973, 2023.

[Li et al., 2025a] Qinglun Li, Li Shen, Guanghao Li, Quan-
jun Yin, and Dacheng Tao. Dfedadmm: Dual constraint
controlled model inconsistency for decentralize federated
learning. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2025.

[Li et al., 2025b] Qinglun Li, Miao Zhang, Tao Sun, Quan-
jun Yin, and Li Shen. Dfedgfm: Pursuing global con-
sistency for decentralized federated learning via global
flatness and global momentum. Neural Networks,
184:107084, 2025.

[Littwin et al., 2020] Etai Littwin, Tomer Galanti, Lior
Wolf, and Greg Yang. On infinite-width hypernet-
works. Advances in neural information processing sys-
tems, 33:13226–13237, 2020.

[Liu et al., 2022] Wei Liu, Li Chen, and Wenyi Zhang. De-
centralized federated learning: Balancing communication
and computing costs. IEEE Transactions on Signal and
Information Processing over Networks, 8:131–143, 2022.

[Liu et al., 2025] Yingqi Liu, Qinglun Li, Jie Tan, Yifan Shi,
Li Shen, and Xiaochun Cao. Understanding the stability-
based generalization of personalized federated learning. In
The Thirteenth International Conference on Learning Rep-
resentations, 2025.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Ma et al., 2022] Xiaosong Ma, Jie Zhang, Song Guo, and
Wenchao Xu. Layer-wised model aggregation for person-
alized federated learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 10092–10101, June 2022.

[McMahan et al., 2017] Brendan McMahan, Eider Moore,
Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR, 2017.

[Mills et al., 2021] Jed Mills, Jia Hu, and Geyong Min.
Multi-task federated learning for personalised deep neu-
ral networks in edge computing. IEEE Transactions on
Parallel and Distributed Systems, 33(3):630–641, 2021.

[Oh et al., 2021] Jaehoon Oh, Sangmook Kim, and Se-
Young Yun. Fedbabu: Towards enhanced representa-
tion for federated image classification. arXiv preprint
arXiv:2106.06042, 2021.

[Pillutla et al., 2022] Krishna Pillutla, Kshitiz Malik, Abdel-
Rahman Mohamed, Mike Rabbat, Maziar Sanjabi, and Lin
Xiao. Federated learning with partial model personaliza-
tion. In International Conference on Machine Learning,
pages 17716–17758. PMLR, 2022.

[Sabah et al., 2024] Fahad Sabah, Yuwen Chen, Zhen Yang,
Muhammad Azam, Nadeem Ahmad, and Raheem Sarwar.
Model optimization techniques in personalized federated
learning: A survey. Expert Systems with Applications,
243:122874, 2024.

[Sendera et al., 2023] Marcin Sendera, Marcin
Przewiez likowski, Konrad Karanowski, Maciej Zieba,
Jacek Tabor, and Przemyslaw Spurek. Hypershot: Few-
shot learning by kernel hypernetworks. In Proceedings
of the IEEE/CVF winter conference on applications of
computer vision, pages 2469–2478, 2023.

[Shamsian et al., 2021] Aviv Shamsian, Aviv Navon, Ethan
Fetaya, and Gal Chechik. Personalized federated learn-
ing using hypernetworks. In International Conference on
Machine Learning, pages 9489–9502. PMLR, 2021.

[Shi et al., 2023a] Yifan Shi, Yingqi Liu, Yan Sun, Zihao
Lin, Li Shen, Xueqian Wang, and Dacheng Tao. Towards
more suitable personalization in federated learning via de-
centralized partial model training, 2023.

[Shi et al., 2023b] Yifan Shi, Li Shen, Kang Wei, Yan Sun,
Bo Yuan, Xueqian Wang, and Dacheng Tao. Improving
the model consistency of decentralized federated learning.
In International Conference on Machine Learning, pages
31269–31291. PMLR, 2023.

[Su et al., 2025] Liwei Su, Donghao Wang, and Jinghua
Zhu. Dkd-pfed: A novel framework for personalized fed-
erated learning via decoupling knowledge distillation and
feature decorrelation. Expert Systems with Applications,
259:125336, 2025.

[Sun et al., 2022] Tao Sun, Dongsheng Li, and Bao Wang.
Decentralized federated averaging. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(4):4289–
4301, 2022.

[Tamirisa et al., 2024] Rishub Tamirisa, Chulin Xie, Wenx-
uan Bao, Andy Zhou, Ron Arel, and Aviv Shamsian. Feds-
elect: Personalized federated learning with customized se-
lection of parameters for fine-tuning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 23985–23994, 2024.

[Tan et al., 2022] Alysa Ziying Tan, Han Yu, Lizhen Cui,
and Qiang Yang. Towards personalized federated learn-
ing. IEEE transactions on neural networks and learning
systems, 34(12):9587–9603, 2022.

[Wang et al., 2020] Yansheng Wang, Yongxin Tong, and
Dingyuan Shi. Federated latent dirichlet allocation: A
local differential privacy based framework. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 6283–6290, 2020.

[Wang et al., 2022] Lun Wang, Yang Xu, Hongli Xu, Min
Chen, and Liusheng Huang. Accelerating decentral-
ized federated learning in heterogeneous edge computing.
IEEE Transactions on Mobile Computing, 22(9):5001–
5016, 2022.

[Wu et al., 2022] Chuhan Wu, Fangzhao Wu, Lingjuan Lyu,
Yongfeng Huang, and Xing Xie. Communication-efficient
federated learning via knowledge distillation. Nature com-
munications, 13(1):2032, 2022.

[Xu et al., 2024] Yin Xu, Mingjun Xiao, Jie Wu, Guoju Gao,
Datian Li, Haotian Xu, and Tongxiao Zhang. Enhancing
decentralized federated learning with model pruning and
adaptive communication. IEEE Transactions on Industrial
Informatics, 2024.

[Yuan et al., 2024] Liangqi Yuan, Ziran Wang, Lichao Sun,
S Yu Philip, and Christopher G Brinton. Decentralized
federated learning: A survey and perspective. IEEE Inter-
net of Things Journal, 2024.

[Zhang et al., 2023] Hao Zhang, Chenglin Li, Wenrui Dai,
Junni Zou, and Hongkai Xiong. Fedcr: Personalized fed-
erated learning based on across-client common represen-
tation with conditional mutual information regularization.
In International Conference on Machine Learning, pages
41314–41330. PMLR, 2023.

[Zhou et al., 2024] Xu Zhou, Jie Li, Gongjin Lan, Rongrong
Ni, Angelo Cangelosi, Jiaxin Wang, and Xiaofeng Liu.
Efficient lower layers parameter decoupling personalized
federated learning method of facial expression recognition
for home care robots. Information Fusion, 106:102261,
2024.

[Zhu et al., 2024] Xunyu Zhu, Jian Li, Yong Liu, Can Ma,
and Weiping Wang. A survey on model compression for
large language models. Transactions of the Association for
Computational Linguistics, 12:1556–1577, 2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


