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Abstract

Black-Box Optimization (BBO) has found success-
ful applications in many fields of science and engi-
neering. Recently, there has been a growing inter-
est in meta-learning particular components of BBO
algorithms to speed up optimization and get rid of
tedious hand-crafted heuristics. As an extension,
learning the entire algorithm from data requires the
least labor from experts and can provide the most
flexibility. In this paper, we propose RIBBO, a
method to reinforce-learn a BBO algorithm from
offline data in an end-to-end fashion. RIBBO em-
ploys expressive sequence models to learn the op-
timization histories produced by multiple behav-
ior algorithms and tasks, leveraging the in-context
learning ability of large models to extract task in-
formation and make decisions accordingly. Central
to our method is to augment the optimization his-
tories with regret-to-go tokens, which are designed
to represent the performance of an algorithm based
on cumulative regret over the future part of the his-
tories. The integration of regret-to-go tokens en-
ables RIBBO to automatically generate sequences
of query points that are positively correlated to
the user-desired regret, verified by its universally
good empirical performance on diverse problems,
including BBO benchmark, hyper-parameter opti-
mization, and robot control problems.

1 Introduction

Black-Box Optimization (BBO) [Alarie ef al., 2021] refers to
optimizing objective functions where neither analytic expres-
sions nor derivatives of the objective are available. To solve
BBO problems, we can only access the results of objective
evaluations, which usually also incur a high computational
cost. Many fundamental problems in science and engineering
involve the optimization of expensive BBO functions, such as
drug discovery [Terayama et al., 2021], material design [Fra-
zier and Wang, 2016], integrated circuit design [Shi et al.,
2023] and so on.

To date, a lot of BBO algorithms have been developed,
among which the most prominent ones are Bayesian Opti-
mization (BO) [Frazier, 2018] and Evolutionary Algorithms

(EA) [Back, 1996]. Despite the advancements, these algo-
rithms typically solve BBO problems from scratch and rely
on expert-derived heuristics. Consequently, they are often
hindered by slow convergence rates, and unable to leverage
the inherent structures within the optimization problems [As-
tudillo and Frazier, 2021; Bai et al., 2023].

Recently, there has been a growing interest in meta-
learning particular components of algorithms using previ-
ously collected data [Arango et al., 2021; Feurer er al.,
2021]. Learning these components not only alleviates the
need for the laborious design process of the domain ex-
perts, but also specifies the components with domain-specific
data to facilitate subsequent optimization. For example, sev-
eral components in BO are proposed to be learned from
data, including the surrogate model [Perrone er al., 2018;
Wang et al., 2021; Wistuba and Grabocka, 2021; Miiller et
al., 2023], the acquisition function [Volpp et al., 2020; Hsieh
et al., 2021], the initialization strategy [Feurer et al., 2015;
Poloczek et al., 2016], and the search space [Perrone and
Shen, 2019; Wang et al., 2024]. Some core evolutionary
operations in EA have also been considered, e.g., learning
the selection and mutation rate adaptation in genetic algo-
rithm [Lange et al., 2023a] or the update rules for evolution
strategy [Lange er al., 2023b]. Additionally, the configuration
of an algorithm can also be learned and dynamically adjusted
throughout the optimization process [Adriaensen e al., 2022;
Xue et al., 2022].

There have also been some attempts to learn an entire algo-
rithm in an End-to-End (E2E) fashion, which requires almost
no expert knowledge at all and provides the most flexibility
across a broad range of BBO problems. However, existing
practices require additional knowledge regarding the objec-
tive function during the training stage, e.g., the gradient in-
formation (often impractical for BBO) [Chen et al., 2017] or
online sampling from the objective function (often very ex-
pensive) [Maraval er al., 2023]. Chen er al. [2022] proposed
the OptFormer method to imitate the behavior algorithms sep-
arately during training, presenting a challenge for the user
to manually specify which algorithm to execute during test-
ing. Thus, these methods are less ideal for practical scenarios
where offline datasets are often available beforehand and a
suitable algorithm for the given task has to be identified auto-
matically without the involvement of domain experts.

In this paper, we introduce Reinforced In-context BBO
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(RIBBO), which learns a reinforced BBO algorithm from of-
fline datasets in an E2E fashion. RIBBO employs an expres-
sive sequence model, i.e., causal transformer, to fit the op-
timization histories in the offline datasets generated by ex-
ecuting diverse behavior algorithms on multiple tasks. The
sequence model is fed with previous query points and their
function values, and trained to predict the distribution over
the next query point. During testing, the sequence model it-
self serves as a BBO algorithm by generating the next query
points auto-regressively. Apart from this, RIBBO augments
the optimization histories with regrer-to-go (RTG) tokens,
which are calculated by summing up the regrets over the fu-
ture part of the histories, representing the future performance
of an algorithm. A novel Hindsight Regret Relabelling (HRR)
strategy is proposed to update the RTG tokens during testing.
By integrating the RTG tokens into the modeling, RIBBO can
automatically identify different algorithms, and generate se-
quences of query points that are positively correlated to the
user-desired regret. Such modeling enables RIBBO to cir-
cumvent the impact of inferior data and further reinforce its
performance on top of the behavior algorithms.

We perform experiments on BBOB synthetic functions,
hyper-parameter optimization and robot control problems
by using some representatives of heuristic search, EA, and
BO as behavior algorithms to generate the offline datasets.
The results show that RIBBO can automatically generate se-
quences of query points related to the user-desired regret
across diverse problems, and achieve good performance uni-
versally. Note that the best behavior algorithm depends on
the problem at hand, and RIBBO can perform even better on
some problems. Compared to the most related method Opt-
Former [Chen er al., 2022], RIBBO also has clear advantage.
In addition, we perform a series of experiments to analyze the
influence of important components of RIBBO.

2 Background

2.1 Black-Box Optimization

Let f : X — R be a black-box function, where X C R4
is a d-dimensional search space. The goal of BBO is to find
an optimal solution &* € argmax ¢y f(x), with the only
permission of querying the objective function value. Sev-
eral classes of BBO algorithms have been proposed, e.g.,
BO [Frazier, 2018] and EA [Back, 1996]. The basic frame-
work of BO contains two critical components: a surrogate
model, typically formalized as Gaussian Process (GP), and an
acquisition function [Balandat er al., 20201, which are used to
model f and decide the next query point, respectively. EA is a
class of heuristic optimization algorithms inspired by natural
evolution. It maintains a population of solutions and iterates
through mutation, crossover, and selection operations to find
better solutions.

To evaluate the performance of BBO algorithms, regrets
are often used. The instantaneous regret r; = f(x*) — f(x;)
measures the gap of function values between an optimal so-
lution * and the currently selected point x;. The cumulative
regret Reg, = ZiT:1 r; is the sum of instantaneous regrets
in the first 7 iterations.

2.2 Meta-Learning in Black-Box Optimization

Hand-crafted BBO algorithms usually require an expert to an-
alyze the algorithms’ behavior across a wide range of prob-
lems, a process that is both tedious and time-consuming. One
solution is meta-learning [Hospedales et al., 20211, which
aims to exploit knowledge to improve the performance of
learning algorithms given data from a collection of tasks. By
parameterizing a component of BBO algorithms or even an
entire BBO algorithm that is traditionally manually designed,
we can utilize historical data to incorporate domain knowl-
edge into the optimization, which may bring speedup.

Meta-learning particular components has been studied
with different BBO algorithms. Meta-learning in BO can be
divided into four main categories according to “what to trans-
fer” [Bai et al., 2023], including the design of the surrogate
model, acquisition function, initialization strategy, and search
space. For surrogate model design, Wang et al. [2021] and
Wistuba & Grabocka [2021] parameterized the mean or ker-
nel function of the GP model with Multi-Layer Perceptron
(MLP), while Perrone et al. [2018] and Muller et al. [2023]
substituted GP with Bayesian linear regression or neural pro-
cess [Garnelo et al., 2018; Miiller et al., 2022]. For acquisi-
tion function design, MetaBO [Volpp et al., 2020] uses Re-
inforcement Learning (RL) to meta-train an acquisition func-
tion on a set of related tasks, and FSAF [Hsieh et al., 2021]
employs a Bayesian variant of deep Q-network as a surrogate
differentiable acquisition function trained by model-agnostic
meta-learning [Finn et al., 2017]. The remaining two cat-
egories focus on exploiting the previous good solutions to
warm start the optimization [Feurer et al., 2015; Poloczek et
al., 2016] or shrink the search space [Perrone and Shen, 2019;
Wang et al., 2024]. Meta-learning in EA usually focuses
on learning specific evolutionary operations. For example,
Lang ef al. substituted core genetic operators, i.e., selec-
tion and mutation rate adaptation, with dot-product atten-
tion modules [Lange er al., 2023al, and meta-learned a self-
attention-based architecture to discover effective and order-
invariant update rules [Lange er al., 2023b]. Beyond that,
dynamic algorithm configuration [Adriaensen et al., 2022;
Xue et al., 2022] concentrates on learning the configurations
of algorithms, employing RL to dynamically adjust the con-
figurations during the optimization process.

Meta-learning entire algorithms has also been explored
to obtain more flexible models. Early works [Chen et al.,
2017] use Recurrent Neural Network (RNN) to meta-learn
a BBO algorithm by optimizing the summed objective func-
tions of some iterations. RNN uses its memory state to store
information about history and outputs the next query point.
This work assumes access to gradient information during the
training phase, which is, however, usually impractical in BBO
problems. OptFormer [Chen er al., 2022] uses a text-based
transformer framework to learn an algorithm, providing a uni-
versal E2E interface for BBO problems. It is trained to imitate
different BBO algorithms across a broad range of problems,
which, however, presents a challenge for the user to manu-
ally specify an algorithm for inference. Neural Acquisition
Processes (NAP) [Maraval et al., 2023] uses transformer to
meta-learn the surrogate model and acquisition function of
BO jointly. Due to the lack of labeled acquisition data, NAP



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

uses an online RL algorithm with a supervised auxiliary loss
for training, which requires online sampling from the expen-
sive objective function and lacks efficiency. Black-box Opti-
mization NETworks (BONET) [Krishnamoorthy er al., 2023]
employ a transformer model to fit regret-augmented trajecto-
ries in an offline BBO scenario, where the training and test-
ing data are from the same objective function, and a prefix
sequence is required to warm up the optimization before test-
ing. OPT-GAN [Lu et al., 2023] utilizes Generative Adver-
sarial Networks (GAN) to estimate the distribution of opti-
mum gradually by exploration-exploitation trade-off. Com-
pared to the above state-of-the-art E2E methods, we consider
the meta-BBO setting, where the training datasets are gener-
ated from diverse algorithms across different functions. Our
approach offers the advantage of automatically identifying
(with RTG tokens) and deploying the best-performing algo-
rithm without requiring the user to pre-specify which algo-
rithm to use or to provide a prefix sequence during the testing
phase. It utilizes a supervised learning loss for training on a
fixed offline dataset without the need for further interaction
with the objective function.

2.3 Decision Transformer

Transformer has emerged as a powerful architecture for se-
quence modeling tasks [Lin et al., 2022]. A basic build-
ing block behind transformer is the self-attention mecha-
nism [Vaswani er al., 2017], which captures correlations be-
tween any token pairs across timesteps. As the scale of data
and model increases, transformer has demonstrated the in-
context learning ability [Brown et al., 2020], referring to the
capability of the model to infer the tasks at hand based on
the input contexts. Decision Transformer (DT) [Chen et al.,
2021; Gao et al., 2024] abstracts RL as a sequence model-
ing problem, and introduces return-to-go tokens, represent-
ing the cumulative future rewards. Conditioning on return-to-
go tokens enables DT to correlate the trajectories with their
corresponding returns and generate future actions to achieve
a user-specified return. Inspired by DT, we will treat BBO
tasks as a sequence modeling problem naturally, use a causal
transformer for modeling, and train it by conditioning on fu-
ture regrets. Such design is expected to enable the learned
model to distinguish algorithms with different performance
and achieve good results with a user-specified low regret. Fur-
ther discussions on DT are available in Appendix I.

3 Method

This section presents Reinforced In-context Black-Box Opti-
mization (RIBBO), which learns an enhanced BBO algorithm
in an E2E fashion, as illustrated in Figure 1. We follow the
task-distribution assumption, which is commonly adopted in
meta-learning settings [Finn er al., 2017; Hospedales er al.,
2021]. Our goal is to learn a generalizable model M capable
of solving a wide range of BBO tasks, each associated with a
BBO objective function f sampled from the task distribution
P(F), where F denotes the function space.

Let [N] denote the integer set {1,2, ..., N}. During train-
ing, we usually access NV source tasks and each task corre-
sponds to an objective function f; ~ P(F), where i € [N].

Hereafter, we use f; to denote the task ¢ if the context is
clear. We assume that the information is available via offline
datasets D; ;, which are produced by executing a behavior al-
gorithm A; on task f;, where j € [K] and ¢ € [N]. Each
dataset D; ; = {h7?""}M_, consists of M optimization his-
tories h7""™ = {(x,y:)}L_,, where @, is the query point
selected by .A; at iteration ¢, and y, = f;(x) is its objective
value. If the context is clear, we will omit ¢, j, m and simply
use hp to denote a history with length 7". The initial his-
tory hg is defined as (). We impose no additional assumptions
about the behavior algorithms, allowing for a range of BBO
algorithms, even random search.

With the datasets, we seek to learn a model Mg (x¢|h:—1),
which is parameterized by 6 and generates the next query
point x; by conditioning on the previous history h;—1. As
introduced in Section 2.1, with a given budget 7" and the his-
tory hr produced by an algorithm A, we use the cumulative
regret to evaluate performance:

T

Regr =) (¥ —u) (1)

as the evaluation metric, where y* is the optimum value and
{y:}L_, are the function values in h7-.

3.1 Method Outline

Given the current history h;_ at iteration ¢, a BBO algo-
rithm usually selects the next query point x;, observes the
function value y; = f;(x;), and updates the history h; =
hi—1 U {(x¢,y;)}. Similar to previous work [Chen et al.,
20171, we take this framework as a starting point and treat
the learning of a universal BBO algorithm as learning a model
M g, which takes the preceding history h;_; as input and out-
puts a distribution of the next query point x;. The optimiza-
tion histories in offline datasets provide natural supervision
for the learning process.

Suppose we have a set of histories {hr}, generated by a
single behavior algorithm .4 on a single task f. By employing
a causal transformer model Mg, we expect My to imitate A
and produce similar optimization history on f. In practice,
we usually have datasets containing histories from multiple
behavior algorithms {A;}/< | on multiple tasks {f;}/ . To
fit My, we use the negative log-likelihood loss

T
Lpc(0) = —Enpop,, |:Zt_110gM0(-'Btht—1) . Q)

To effectively minimize this loss, My needs to recognize
both the task and the behavior algorithm in-context, and then
imitate the optimization behavior of the corresponding behav-
ior algorithm.

Nevertheless, naively imitating the offline datasets hin-
ders the model since some inferior behavior algorithms may
severely degenerate the model’s performance. Inspired by
DT [Chen et al., 2021], we propose to augment the optimiza-
tion history with Regret-To-Go (RTG) tokens Ry, defined as
the sum of instantaneous regrets over the future history:

. T
hr = {(zt, 41, Re)} g Re = Z

t’=t+1(y _yt’)7 (3)
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Figure 1: Illustration of RIBBO. Lefi: Data Generation. K existing BBO algorithms {.A;}<, and N BBO tasks {fi};_, are used to
serve as the behavior algorithms and the training tasks, respectively. The offline datasets {D; ; } consist of the optimization histories hr =
{(z¢, y¢) i1 collected by executing each behavior algorithm .A; on each task f; for T' evaluation steps, which are then augmented with

the regret-to-go tokens R; (calculated as the cumulative regret ZtT,:t O

— yy) over the future optimization history) to generate the final

dataset {D;,;} for training. Right: Training and Inference. Our model takes in triplets of (z,y:, R;), embeds them into one token, and
outputs the distribution over the next query point @41. During training, the ground-truth next query point is used to minimize the loss in

Eq. (4). During inference, the next query point x:+1 is generated auto-regressively based on the current history h;.

where ¢ and y, are placeholders for padding, denoted as
[PAD] in Figure 1(b), and R = 0. The augmented histories

compose the augmented dataset D; ;, and the training objec-
tive of Mg becomes

T
Lrigeo(0) = *IE;LTN@M [Z log/\/lg(mtﬁzt_l)} . @

t=1

The integration of RTG tokens in the context brings identi-
fiability of behavior algorithms, and the model Mg can ef-
fectively utilize them to make appropriate decisions. Further-
more, RTG tokens have a direct correlation with the metric of
interest, i.e., cumulative regret Reg; in Eq. (1). Conditioning
on a lower RTG token provides a guidance to our model and
reinforces M to exhibit superior performance. These advan-
tages will be clearly shown by experiments in Section 4.4.

The resulting method RIBBO has implicitly utilized the
in-context learning capacity of transformer to guide the opti-
mization with previous histories and the desired future regret
as context. The in-context learning capacity of inferring the
tasks at hand based on the input contexts has been observed
as the scale of data and model increases [Kaplan et al., 2020].
It has been explored to infer general functional relationships
as supervised learning or RL algorithms. For example, the
model is expected to behave as a supervised learning algo-
rithm to accurately predict the query input x; by feeding the
training dataset {(z;, y;)}.=1 as the context [Li ef al., 2023];
Laskin et al. [2023] learned RL algorithms using causal trans-
formers. Here, we use it for BBO.

3.2 Practical Implementation
Next, we detail the model architecture, training and inference
processes of RIBBO.

Model Architecture. For the formalization of the model
Mg, we adopt the commonly used GPT architecture [Rad-

ford et al., 2018], which comprises a stack of causal at-
tention blocks. Each block is composed of an attention
mechanism and a feed-forward network. We aggregate each
triplet (x;,y;, R;) using a two-layer MLP network. The
output of My is a diagonal Gaussian distribution of the
next query point. Note that previous works that adopt the
sequence model as surrogate models [Miiller ez al., 2022;
Nguyen and Grover, 2022; Miiller et al., 2023] typically re-
move the positional encoding because the surrogate model
should be invariant to the history order. On the contrary, our
implementation preserves the positional encoding, naturally
following the behavior of certain algorithms (e.g., BO or EA)
and making it easier to learn from algorithms. Additionally,
the positional encoding can help maintain the monotonically
decreasing order of RTG tokens. More details about the ar-
chitecture can be found in Appendix A.

Model Training. RTG tokens are calculated as outlined in
Eq. (3) for the offline datasets before training. Since the cal-
culation of regret requires the optimum value of task ¢, we use
the best-observed value y¢ . as a proxy for the optimum. Let

{D; j}ie[ny,je[k) denote the RTG augmented datasets with
N tasks and K algorithms. During training, we sample a
minibatch of consecutive subsequences of length 7 < 7" uni-
formly from the augmented datasets. The training objective
is to minimize the RIBBO loss in Eq. (4).

Model Inference. The model My generates the query
points x; auto-regressively during inference, which involves
iteratively selecting a new query point &, based on the current
augmented history izt_l, evaluating the query as y; = f (@),
and updating the history by h, = h;_, U {(xs,ys, R)}. A
critical aspect of this procedure is specifying the value of
RTG (i.e., R;) at each iteration ¢. Inspired by DT, a naive ap-
proach is to set a desired performance as the initial RTG Ry,
and decrease itas Ry = Ry—1 — (y* —y:). However, this strat-
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Algorithm 1 Model Inference with HRR

Input: trained model Mg, budget 7', optimum value y*
Process:
1: Initialize hg = {(x0,y0, Ro)}, wWhere xo and yq are
placeholders for padding and Ry = 0;
2: fort=1,2,...,7T do
3:  Generate the next query point &; ~ M9(~|fzt,1);
4:  Evaluate x; to obtain y; = f(x¢);
5:  Calculate the instantaneous regret r = y* — y;
. A
7
8:

Relabel R; < R; + r, for each (x;,y;, R;) in hy_1;

. ilt :ﬁt—lu{(wtvytao)}
end for

egy has the risk of producing out-of-distribution RTGs, since
the values can fall below 0 due to an improperly selected Ry.

Given the fact that RTGs are lower bounded by 0 and a
value of 0 implies a good BBO algorithm with low regret,
we propose to set the immediate RTG as 0. Furthermore,
we introduce a strategy called Hindsight Regret Relabelling
(HRR) to update previous RTGs based on the current sample
evaluations. The inference procedure with HRR is detailed
in Algorithm 1. In line 1, the history hy is initialized with
padding placeholders xg,yo and RTG Ry = 0. At iteration
t (i.e., lines 3-7), the model My is fed with the augmented
history hi_1 to generate the next query point x; in line 3,
followed by the evaluation procedure to obtain y; in line 4.
Then, the immediate RTG R; is set to 0, and we employ HRR
to update previous RTG tokens in ﬁt,l, i.e., calculate the
instantaneous regret r = y* — y; (line 5) and add r to every
RTG token within h;_; (line 6):

VO<i<t,Ri < Ri+(y" — ) (5)

Note that this relabelling process guarantees that V0 < ¢ < ¢,
the RTG token R; = Zi/ziﬂ(y* — Y ), which can also be
written as 3 ,_, +1 (" —yw), consistent with the definition in
Eq. (3), because the immediate RTG R; = Z$:t+1 (V" —yr)
is set to 0. In line 7, the history hy is updated by expanding
hi_1 with {(x+,y+,0)}, i.e., the current sampling and its im-
mediate RTG R; = 0. The above process is repeated until
reaching the budget T'. Thus, we can find that HRR not only
exploits the full potential of My through using 0 as the im-
mediate RTG and thereby demands the model to generate the
most advantageous decisions, but also preserves the calcula-
tion of RTG tokens following the same way as the training
data, i.e., representing the cumulative regret over future opti-
mization history. More discussions about the RTG tokens can
be found in Appendix F and G.

3.3 Data Generation

Finally, we give some guidelines about data generation for
using the proposed RIBBO method.

Data Collection. Given a set of tasks {f;}2, sampled
from the task distribution P(F), we can employ a diverse
set of behavior algorithms for data collection. For exam-
ple, we can select some representatives from different types

of BBO algorithms, e.g., BO and EA. Datasets D; ; are ob-
tained by using each behavior algorithm to optimize each
task with different random seeds. Each optimization history
hr = {(z:,y:)}{_, in D, ; is then augmented with RTG
tokens R;, which is computed as in Eq. (3). The resulting
histories hr = {(z,y:, R¢)}1_, compose the final datasets
ﬁL j for model training.

Data Normalization. To provide a unified interface and
balance the statistic scales across tasks, it is important to ap-
ply normalization to the inputs to our model. We normalize
the point & by (£ — Tmin)/(®max — Tmin), With Ty and
Tmin being the upper and lower bounds of the search space,
respectively. For the function value y, we apply random scal-
ing akin to previous works [Wistuba and Grabocka, 2021;
Chen et al., 2022]. That is, when sampling a history h.,
from the datasets D; ;, we randomly sample the lower bound
I ~ UYhin — 5 ¥4m + 5) and the upper bound u ~
U(Yax — 3, Yhnax + 5 ), Where U stands for uniform distribu-
tion, ¥’ ;.., Y% ... denote the observed minimum and maximum
values for f;, and s = yi  — yi . : the values y, in h, are
then normalized by (y: — [)/(u — [) for training. The RTG
tokens are calculated accordingly with the normalized values.
The random normalization can make a model exhibit invari-
ance across various scales of y. For inference, the average
values of the best-observed and worst-observed values across
the training tasks are used to normalize y.

4 Experiments

In this section, we examine the performance of RIBBO across
various tasks, such as synthetic functions, Hyper-Parameter
Optimization (HPO) and robot control problems. The model
architecture and hyper-parameters are consistent across these
problems, with the average performance and standard devi-
ation being reported after execution using distinct random
seeds. Details of the model are given in Appendix A. Our
code is available at https://github.com/lamda-bbo/RIBBO.

4.1 Experimental Setup

Benchmarks. We use BBO Benchmarks (BBOB) [Elhara et
al., 2019], HPO-B [Arango et al., 2021], and rover trajectory
planning task [Wang er al., 2018]. The BBOB suite, a com-
prehensive and widely used benchmark in the continuous do-
main, consists of 24 synthetic functions. For each function,
a series of linear and non-linear transformations are imple-
mented on the search space to obtain a distribution of func-
tions with similar properties. HPO-B is a commonly used
HPO benchmark and consists of a series of HPO problems.
Each problem is to optimize a machine learning model across
various datasets, and an XGBoost model is provided as the
objective function for evaluation in a continuous space. We
conduct experiments on two widely used models, SVM and
XGBoost, in the continue domain. For robot control opti-
mization, we perform experiments on rover trajectory plan-
ning task, which is a trajectory optimization problem to em-
ulate rover navigation. Similar to Elhara er al. [2019] and
Volpp er al. [2020], we implement random translations and
scalings to the search space to construct a distribution of func-
tions. For BBOB and rover problems, we sample a set of
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functions from the task distribution as training and test tasks,
while for HPO-B, we use the meta-training/test task splits
provided by the authors. Detailed explanations of the bench-
marks can be found in Appendix B.1.

Data. Similar to OptFormer [Chen et al., 2022], we em-
ploy 7 behavior algorithms, i.e., Random Search, Shuffled
Grid Search, Hill Climbing, Regularized Evolution [Real et
al., 20191, Eagle Strategy [Yang and Deb, 2010], CMA-
ES [Hansen, 2016], and GP-EI [Balandat et al., 2020], which
are representatives of heuristic search, EA, and BO, respec-
tively. Datasets are generated by employing each behavior al-
gorithm to optimize various training functions sampled from
the task distribution, using different random seeds. For infer-
ence, new test functions are sampled from the distribution to
serve as the test set. Specifically, for the HPO-B problem, the
meta-training/test splits have been predefined by the authors
and we adhere to this standard setup. Additional information
about the behavior algorithms and datasets can be found in
Appendix B.2 and B.3, respectively.

4.2 Baselines

As RIBBO is an in-context E2E model, the most related
baselines are those also training an E2E model with offline
datasets, including Behavior Cloning (BC) [Bain and Sam-
mut, 1995] and OptFormer [Chen et al., 2022]. Their hyper-
parameters are set as same as that of our model for fair-
ness. Note that the seven behavior algorithms used to gen-
erate datasets are also important baselines, and included for
comparison as well.

BC uses the same transformer architecture as RIBBO. The
only difference is that we do not feed RTG tokens into the
model of BC and train to minimize the BC loss in Eq. (2).
When the solutions are generated auto-regressively, BC tends
to imitate the average behavior of various behavior algo-
rithms. Consequently, the inclusion of underperforming algo-
rithms, e.g., Random Search and Shuffled Grid Search, may
significantly degrade the performance. To mitigate this issue,
we have also trained the model by excluding these underper-
forming algorithms, denoted as BC Filter.

OptFormer employs a transformer to imitate the behav-
iors of a set of algorithms and an algorithm identifier usu-
ally needs to be specified manually during inference for su-
perior performance. Its original implementation is built upon
a text-based transformer with a large training scale. In this
paper, we re-implement a simplified version of OptFormer
where we only retain the algorithm identifier within the meta-
data. The initial states, denoted as xy and yo, are used to
distinguish between algorithms. They are obtained by index-
ing the algorithm type through an embedding layer, thereby
aligning the initial states with the specific imitated algorithm.
This enables the identification of distinct behavior algorithms
within the simplified OptFormer. Further details about the
re-implementation can be found in Appendix C.

4.3 Main Results

Synthetic Functions. We use the BBOB suite as the syn-
thetic benchmark functions, consisting of 24 synthetic func-
tions. The model is trained on all BBOB synthetic func-
tions simultaneously with the results shown in the leftmost

subfigure in Figure 2. To aggregate results across func-
tions with different output scaling, we normalize all the func-
tions adhering to previous literature [Arango et al., 2021;
Chen et al., 2022]. For the sake of clarity in visualization,
we have omitted the inclusion of Random Search and Shuf-
fled Grid Search due to their poor performance from start to
finish. We also provide the detailed results on each BBOB
function. Please see Appendix D.

The results suggest that RIBBO achieves superior average
performance compared to the best behavior algorithm, BC,
BC Filter and OptFormer. A single trained model across all
BBOB functions behaves well, demonstrating the versatility
and generalization capabilities of RIBBO. We can observe
that RIBBO performs well in the early stages, drawing advan-
tage from the HRR strategy, i.e., employing 0 as the imme-
diate RTG to generate the optimal potential solutions. Com-
pared with BC and BC Filter, RIBBO exhibits better perfor-
mance. BC tends to imitate the average behavior of various
algorithms, and its poor performance is due to the aggregation
of behavior algorithms with inferior performance. BC Filter
is generally better than BC, because the data from the two un-
derperforming behavior algorithms, i.e., Random Search and
Shuffled Grid Search, are manually excluded from the train-
ing of BC Filter. As introduced before, OptFormer requires
manual specification of which behavior algorithm to execute.
We have chosen Eagle Strategy, which obtains good overall
performance on these problems. It can be observed that Opt-
Former displays a close performance to Eagle Strategy, while
RIBBO performs better. More details about the imitation ca-
pacity of OptFormer can be found in Appendix C.

Note that the good performance of RIBBO is not due to
the memorization of optimal solutions, as the search space is
transformed randomly, resulting in variations in optimal solu-
tions across different functions from the same distribution. It
is due to the in-context capacity. The context data consists of
the trajectory collected from new problems and the RTG to-
kens specified by the user. The collected trajectory provides
an understanding of the problems, while the RTG tokens fa-
cilitate the identification of algorithms and reinforce the per-
formance on top of the behavior algorithms, which will be
clearly shown later. These elements are integrated as inputs,
thereby influencing the resulting sampled points.

Real-World Problems. We further conduct experiments
on real-world problems, including the HPO-B and rover tra-
jectory planning task. The results are shown in Figure 2. We
can observe that RIBBO achieves good performance on XG-
Boost and rover problems. For the SVM problem, RIBBO
does not perform well, which may be due to the problem’s
low-dimensional nature (only three parameters) and its rel-
ative simplicity for optimization. Behavior algorithms can
achieve good performance easily, while the complexity of
RIBBO’s training and inference processes could instead re-
sult in the performance degradation.

Cross-Distribution Generalization. We also conduct ex-
periments to examine the cross-distribution generalization
capacity of RIBBO to unseen function distributions during
training. According to the mathematical properties of the
functions, the BBOB suite can be divided into 5 categories
(detailed in Appendix B.1), and we select one from each cat-
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Figure 2: Performance comparison among RIBBO, BC, BC Filter, OptFormer, and behavior algorithms on synthetic functions, HPO, and
robot control problems. The y-axis is the normalized average objective value, and the length of vertical bars represents the standard deviation.
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Figure 3: (a) Visualization of the contour lines of 2D Branin function
and sampling points of RIBBO (red), Eagle Strategy (orange), and
Random Search (gray), where the arrows represent the optimization
trajectory of RIBBO. (b) RTG update strategy comparison between
HRR and the naive strategy with various initial RTG Rp.

egory due to resource constraints, including Greiwank Rosen-
brock, Lunacek, Rastrigin, Rosenbrock, and Sharp Ridge.
The training is performed on 4 of the 5 chosen synthetic func-
tions, with the remaining one used for testing. Note that each
function here actually represents a distribution of functions
with similar properties, and a set of functions is sampled from
each distribution as introduced before. The results demon-
strate RIBBO’s strong generalizing ability to unseen function
distributions with different properties. Due to space limi-
tation, comprehensive experimental results and analyses are
provided in Appendix E.

Why Does RIBBO Behave Well? To better understand
RIBBO, we train the model using only two behavior algo-
rithms, Eagle Strategy and Random Search, which represent
a good algorithm and an underperforming one, respectively.
Figure 3(a) illustrates the contour lines of the 2D Branin func-
tion along with the sampling points of RIBBO, Eagle Strat-
egy, and Random Search, which are represented by red, or-
ange, and gray points, respectively. Arrows are used to depict
the optimization trajectory of RIBBO. Note that the two pa-
rameters of the Branin function have been scaled to the range
of [—1,1] for better visualization. It can be observed that
RIBBO tends to favor Eagle Strategy over Random Search,
indicating its ability to automatically identify the quality of
training data. Additionally, RIBBO achieves a balance be-
tween exploration and exploitation based on its knowledge
acquired during training, thereby achieving superior solutions
than those in the training dataset.

4.4 Ablation Studies

Effectiveness of HRR. A key point of the inference proce-
dure is how to update the value of RTGs at each iteration.
To assess the effectiveness of the proposed strategy, HRR, as
outlined in Eq. (5), we compare it with the naive strategy, that
sets an initial RTG token R and decreases it by the one-step
regret after each iteration. This method employs the same
updating mechanism as DT. The results are shown in Fig-
ure 3(b). The naive strategy shows distinct behaviors depend-
ing on the initial setting of Ry. Specifically, when Ry = 0,
i.e., the lower bound of regret, the model performs well ini-
tially. However, as the optimization progresses, the RTG to-
kens gradually decrease to negative values, leading to poor
performance since negative RTGs are out-of-distribution val-
ues. Using Ry = 5 compromises the initial performance, as
the model may not select the most aggressive solutions under
a high Ry. However, a higher initial R yields better conver-
gence value since it prevents out-of-distribution RTGs in later
stage. The proposed HRR strategy consistently outperforms
across the entire optimization stage, because setting the im-
mediate RTG to 0 encourages the model to make the most
advantageous decisions at every iteration, while hindsight re-
labeling of previous RTG tokens, as specified in Eq. (5), en-
sures that these values remain meaningful and feasible.

Further Studies. We also study the effects of the ini-
tial RTGs Ry, the immediate RTG R;, the method to aggre-
gate (x;,y;, R;) tokens, the normalization method for y, the
model size, and the sampled subsequence length 7. For more
details, please see Appendix G. Additional visualizations il-
lustrating the effects of random transformations on the search
space are detailed in Appendix H.

5 Conclusion

This paper proposes RIBBO, which employs a transformer
architecture to learn a reinforced BBO algorithm from offline
datasets in an E2E fashion. By incorporating RTG tokens into
the optimization histories, RIBBO can automatically gener-
ate optimization trajectories satisfying the user-desired regret.
Comprehensive experiments on synthetic functions, HPO and
robot control problems show the versatility of RIBBO. This
work is a preliminary attempt towards universal BBO, and we
hope it can encourage more explorations in this direction. For
more potential future works, please refer to Appendix J.
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