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Abstract

In Multimodal Sentiment Analysis (MSA), data
noise arising from various sources can lead to un-
certainty in Aleatoric Uncertainty (AU), signifi-
cantly impacting model performance. Current ef-
forts to address AU have insufficiently explored
its sources. They primarily focus on modeling
noise rather than implementing targeted modeling
based on its origin. Consequently, these approaches
struggle to effectively mitigate the influence of AU,
resulting in sustained limitations in model perfor-
mance. Our research identifies that the AU primar-
ily stems from two problems: subjective bias in
the annotation process and the complex set re-
lationships of sentiment features. To specifically
address them, we propose DFMU, a Distribution-
based Framework for Modeling Aleatoric Uncer-
tainty, which incorporates an uncertainty modeling
block capable of encoding uncertainty distributions
and adaptively adjusting optimization objectives.
Furthermore, we introduce distribution-based con-
trastive learning with sentiment words replacement
to better capture the complex relationships among
features. Extensive experiments on three public
MSA datasets, i.e., MOSI, MOSEI, and SIMS,
demonstrate that the proposed model maintains ro-
bust performance even under high noise conditions
and achieves state-of-the-art results on these popu-
lar datasets.

1 Introduction

MSA is a pivotal research task that seeks to comprehend indi-
viduals’ sentiment states and analyze multimodal information
present in online video data, to predict the intensity of ex-
pressed sentiment. This capability is central in diverse real-
world applications, such as affective intelligence [Li et al.,
2023a] and human-computer interaction [Jiang et al., 2020].
However, multimodal signals inevitably contain redundant
and noisy information, which causes unavoidable Aleatoric
Uncertainty(AU). According to previous studies [Kendall and
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Figure 1: The annotation labels may have inconsistency as depicted
in the figure. The higher the difference in annotation values, the
higher the degree of uncertainty. Traditional approaches modeled
the sample as a point in the representation space, as shown in (a),
resulting in the loss of information about the degree of uncertainty.
In contrast, DFMU employs distribution representation to predict
the level of uncertainty, as shown in (b).

Gal, 2017][Gawlikowski ef al., 2023], AU in deep learning
reflects the inherent uncertainty issues within the data, which
are related to data noise. This uncertainty significantly af-
fects model performance and makes it difficult for the model
to achieve reliability. Most current work in MSA overlooks
the inherent AU problem. A few works that consider AU pri-
marily focus on modeling noise rather than implementing tar-
geted modeling based on its origin. There is a lack of further
exploration into the sources of AU in the MSA field, with un-
derstanding limited to the presence of noise in the data. As a
result, previous models that have attempted to model uncer-
tainty in MSA struggle to genuinely mitigate the impact of
AU, leading to continued limitations in model performance.
According to experiments, this work finds that in the MSA
field, the generation of AU primarily stems from two prob-
lems: subjective biases in the annotation of MSA datasets
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and the complex set relationships of sentiment features.

As shown in Figure 1, some samples in the dataset express
sentiment with ambiguity, increasing the difficulty of anno-
tation. Additionally, the subjectivity of the annotators leads
to inconsistent label values for the same sample. The degree
of inconsistency reflects the bias of the samples, referred to
as subjective annotation bias. Samples with high subjective
annotation bias contain greater AU. Moreover, in Figure 1,
points represent correlations solely through distances in the
representation space, without expressing their inclusion re-
lationships. For instance, in distribution representations, the
sentiment features of joy and pride are almost inclusive, while
they do not intersect with sadness. Therefore, there exist rela-
tionships between sentiment features that cannot be expressed
through deterministic point distances, termed complex set
relationships of sentiment features. Our model needs to
specifically address this complex relationship.

In response to the discovered source of AU generation
in MSA, we designed a specialized model to achieve bet-
ter dataset performance, and we obtained improved results
in AU-related noise resistance experiments. To address Prob-
lem 1, we designed an uncertainty modeling block that uti-
lizes Gaussian distributions to encode uncertain distribution
representations. These representations can store AU infor-
mation of samples with high subjective annotation bias in
the variance dimension of the distribution. Subsequently,
the proposed uncertainty regularization can adaptively ad-
just the optimization objectives based on the obtained uncer-
tainty information. This regularization enables the model to
learn variance during the training process, ultimately display-
ing AU through information from the variance dimension.
To tackle Problem 2, we proposed a distribution-based con-
trastive learning with sentiment words replacement to model
the complex set relationships of sentiment features. We em-
ployed a sentiment dictionary data augmentation method to
enhance the fine-grained sentiment-capturing capability and
then used distribution-based contrastive learning to endow
DFMU with the ability to model complex set relationships.

The main contributions of this work can be summarized as
follows:

* This paper presents DFMU, which reveals through em-
pirical research that the source of AU generation in the
MSA lies in the issues of subjective bias in MSA dataset
annotations and the complex set relationships of senti-
ment features.

* This paper introduces an uncertainty modeling block
and uncertainty regularization, modeling sentiment fea-
tures as uncertain distribution representations to enable
DFMU to quantify the subjective annotation bias.

» This paper proposes distribution-based contrastive learn-
ing with sentiment words replacement, utilizing distribu-
tion contrastive loss and sentiment dictionary data aug-
mentation methods to model complex set relationships
of sentiment features.

e DFMU achieves state-of-the-art performance across
multiple widely adopted datasets. This work provides
analysis of uncertainty issues and offers comprehensive

empirical results to demonstrate the effectiveness and
necessity of DEMU.

2 Related Work

In this section, we review relevant research in the areas of
MSA uncertainty modeling, and contrastive learning.

2.1 Multimodal Sentiment Analysis

Previous work primarily relied on deterministic approaches to
model sentiment representations, often employing contrastive
learning [Yu et al., 2023]or complex fusion methods [Zhang
et al., 2023] to address noise in modality information. Some
works [Liang et al., 2023] attributed the noise to redundancy
and conflicting information across modalities, while [Haz-
arika et al., 2020] suggested projecting each modality into
modality-invariant and modality-specific representations to
model the noise. However, these approaches overlooked
the issue of uncertainty in the noise that cannot be resolved
through deterministic point representations.

2.2 Uncertainty Modeling

Recently, the MSA field has gradually begun to consider the
impact of AU on prediction. AU refers to the inherent noise
in the provided training data. TMSON [Xie et al., 2024] pro-
posed to use Trustworthy Multimodal Fusion to estimate the
reliability of each multimodality. EAU [Gao et al., 2024]
believes that each modality in a multimodal task has sepa-
rate noise, and proposes to use a novel generic and robust
multimodal fusion strategy to better model unimodal noise.
TMSC [Xu et al., 2024] constructs the modal private task
(unique) by using the Dirichlet distribution and evidence the-
ory to solve the uncertainty of each modal noise. However,
previous methods have stopped at linking AU with noise,
without exploring the source of AU in the MSA field, which
prevents them from truly modeling the complete AU.

2.3 Contrastive Learning

Contrastive learning aims to learn effective representations by
bringing positive samples closer together and pushing neg-
ative samples farther apart in embedding space. In multi-
modal tasks, HyCon [Mai et al., 2023] explored relationships
between samples and classes within and across modalities,
while ConFEDE [Yang et al., 2023] and ConKI [Yu er al.,
2023] process each modality into two different features to
explore similarities and differences. Previous works treated
sentiment features as deterministic points in the feature space,
failing to capture their complex set relationships.

3 Method

The overall processing flow of DFMU for handling uncer-
tainty in MSA tasks is illustrated in Figure 2. As shown in
the figure, DFMU primarily consists of three components:
Uncertainty Modeling Block, Distribution-based Contrastive
Learning, and Uncertainty Regularization.
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Figure 2: DFMU begins by extracting unified modality features from the input data. Then DFMU models the sentiment features as uncertain
high-dimensional distributions by Uncertainty Modeling Block. Within the high-dimensional space of sentiment distribution representation, a
Distribution-based Contrastive Learning approach is utilized to model the complex set relationships between different sentiments. The novel
Sentiment Words Replacement method is applied to improve the fine-grained modeling capability of contrastive learning. With the fused
sentiment distribution features, uncertainty regularization is employed to fit the label, thus establishing the Distribution-based Framework.

3.1 Uncertainty Modeling Block

To encode uncertain distribution representations, DFMU uti-
lizes Gaussian distributions N (u, o) to represent the sen-
timent features of different modalities in the sentiment dis-
tribution space. We assume Gaussian distributions to model
our uncertain representations and learn mappings for mean
and covariance vectors. As shown in Figure 2, the Uncer-
tainty Modeling Block (UMB) is proposed to better model the
single-modality data relationships by using multi-head self-
attention. Let E € {V, A, T} be a matrix in RL*P, where
V, A, T represent the initial visual, audio, and textual em-
beddings, respectively. Here L is the sequence length and
D is the embedding size. FE is sent to an Feed Forward
layers(FFD) and two pathways, i and o2. Then it is split
into k£ heads. Within each head, the input hidden state of
each path is B ¢ RE*P/2k in j-th head. After E() pro-
cessing in corresponding Self-Attention heads, the k& outputs
are concatenated and then passed through an additional self-
attention(SA) layer and an FFD to model the relationships
across the sequences. The o2 path is similar to the p path.
Since the input point representations are related to the mean
of the distributional representations, a residual network is em-
ployed to learn the mean vector. Formally, the operation in
the p path is:

Head(!) = Self-Attention (E©)), (1)
tp =FFD (Concatiek {Headff)] + E(i)). 2)

3.2 Distribution-Based Contrastive Learning

The Distribution-Based Contrastive Learning module is pro-
posed to model the complex set relationships of features.

To measure the distance between multivariate Gaussian dis-
tributions, the 2-Wasserstein distance [Mallasto and Fera-
gen, 2017] is employed, different modality embeddings E €
{T, A, V'}, as an example:

Do (Bi, Ej) = ||pe, — MEJ-Hz + o, — oy, @
where F;, E; represent the samples of corresponding modal-

ity embeddings. pg, and o%i are the mean and variance val-
ues obtained from F; after UMB processing.

Sentiment Words Replacement

To further enhance the model’s learning of textual sentiment
distribution, we design a distribution-based text augmenta-
tion for contrastive learning: Sentiment Words Replacement
(SWR) method, which is shown in Figure 3. Unlike ran-
dom words processing, we first explore the Sentiment scores
of each word in the sentence by using SentiWordNet [Bac-
cianella et al., 2010], where higher scores represent stronger
sentiment. The words with high sentiment scores are chosen
for a series of augmentations. Specifically, two types of text
augmentations are constructed: positive sentences and nega-
tive sentences. Each type of augmentation operates on k; % of
words in the sentence. Positive sentences are constructed by
replacing words with synonyms and negative sentences are
constructed by replacing words with antonyms.

In each training iteration, DFMU feeds the batches of orig-
inal sentences, positive sentences, and negative sentences into
the Feature Extractor, obtaining corresponding sets of text
embeddings, which denoted as {T',..., 7%}, {1y, ...,T};},
and {T}, ..., T®}, respectively. Here, b is batchsize, T rep-
resents the text embedding of an original sentence, 7}, and
T, represent the text embedding of a positive sentence and
negative sentence respectively.
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The SWR contrastive learning loss is defined as L5V E,
using InfoNCE [van den Oord et al., 2018] and r represents
either positive sentences or negative sentences:
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Figure 3: In Sentiment Words Replacement, the text modality of
input samples is enhanced using SentiWordNet to create positive
and negative counterpart samples. These samples are then processed
through the UMB to convert them into corresponding distributional
representations, as depicted in the figure on the right. Subsequently,
distribution-based contrastive learning is applied.

Intra-Modal and Cross-Modal Contrastive Learning

If the sentiment scores of two samples are close, we con-
sider their intended sentiment intents to be similar, and uncer-
tain distribution representations should be close. Specifically,
positive pairs are defined as samples whose absolute differ-
ence in sentiment scores is less than a threshold value k. and
negative pairs are on the contrary:

P ={(E,, E)|E,E' € {T,A,V}

5
& itj & |Zi-2Z,] <k, R
N = {(E., E})|E,E' € {T,A,V} A
& i#j & |Z;—Zj| >k},

where, P and N represent positive pairs and negative
pairs respectively. E;, E’. represent the samples of corre-
sponding modality embeddings, Z represents the sentiment
score of corresponding sample, which can be acquired from
datasets. The contrastive learning loss for both Intra-modal
and Cross-moda Contrastive Learning is defined as £, where
(Ep, Ey), (Es, E}) represent the corresponding combination
in P or N:

S, ) OXP(Dau (B, By))
Z(ES,E;)GPUN exp(Daw (Es, EY))

For Intra-modal Learning, we compare samples in the
same modality of data to model intra-modal information.
Based on Equation 5, 6, it requires £ = E’, that is, the
two samples’ modalities in combinations in P and N are the

same. Then uses Equation 7 to compute Intra-modal loss
Eintra
e

L= —log

)

For Cross-modal Contrastive Learning, we compare
samples in the different modalities of data to learn the re-
lationships between different modalities and contribute to
model cross-modal information. Based on Equation 5, 6, it
requires £ # E’ , that is, the two samples’ modalities in
combinations in P and N are different. Then uses Equation 7
to compute Cross-modal loss £7%%.

3.3 Uncertainty Regularization

To learn the distribution of the representation’s mean and
variance, the original Mean Square Error(MSE) regression
loss is modified to prevent the variance from collapsing to
zero or exploding to extremely large values. In our exper-
iments, we discovered that replacing the MSE loss entirely
with the regularization loss made the model difficult to con-
verge. Therefore, a hyperparameter « is proposed to balance
the MSE loss and the regularization loss. The £,,s is Mean
squared error loss, and the L, is regularization loss:

L
20

To simulate the discrepancies among n annotators during data
annotating, we designed the method to perform multi-point
sampling within the distribution, as shown in Figure 1 (b) and
Figure 2. Each sampled point is individually predicted and
takes the average of the multiple predictions. Subsequent ab-
lation experiments confirmed that this approach helps model
the subjective biases that may arise during data annotation. It
is worth noting that the sampling operation of the distribution
poses challenges for backpropagation. By applying the repa-
rameterization trick [Kingma and Welling, 2014], the model
firstly samples random noise from the standard normal distri-
bution instead of directly sampling from the distribution :

e~N(0,1). 9)

Following the equation, the output z follows the predictive
distribution of the partial differential equation. Hence, the
computation of mean and standard deviation from the sam-
pling operation can be separated, and they are trainable.

The final loss for all the tasks is:

ESWR

se 1
;Creg = Ol( 3 + § 10g0’2) + (1 — a)ﬁmse. (8)

= p+ o,

ﬁCTOSS

Loy = Qg p + Qeross

10
+alntra£znt'ra + = Z E'r‘pg? ( )

=1

where aigyy, gy Qerosss Qintra are hyperparameters of losses, n
is the number of samples, and L%, o 1s the regularization loss
of the ¢-th sample.

4 Experiment

4.1 Experimental Settings

The experiments were conducted on three publicly avail-
able benchmark datasets in MSA: CMU-MOSI [Zadeh et
al., 2016], CMU-MOSEI [Zadeh et al., 2018] and CH-
SIMS [Yu et al., 2020].

For fairness, we employ the same feature extractors
adopted in ALMT [Zhang et al., 2023] for vision, audio, text
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Models CMU-MOSI CMU-MOSEI
Corr (1)  Acc-7(1)  Acc-2 (1) F1(1) MAE (}) Corr (1) Acc-7(1)  Acc2 (1) F1(1) MAE ({)
MISA 0.795 - 83.53/85.52 83.46/85.51 0.714 0.761 - 83.34/85.88 83.91/85.76 0.542
MMIM 0.800 46.65 84.14/86.06 84.00/85.98 0.700 0.772 54.24 82.24/85.97 82.66/85.94 0.526
Self-MM 0.795 45.79 82.54/84.77 83.68/84.91 0.712 0.767 53.46 82.68/84.96 82.95/84.93 0.529
ALMT 0.801 48.27 84.21/86.38 84.25/86.29 0.699 0.762 53.73 84.52/86.34 85.06/86.44 0.529
TMSON 0.803 46.9 85.36/87.01 85.32/86.99 0.690 0.758 54.42 85.13/86.28 85.02/86.24 0.531
EAU 0.801 48.47 84.73/86.12 84.66/86.15 0.722 0.778 54.31 85.29/86.56 85.25/86.33 0.533
TMSC 0.793 48.66 83.78/85.01 83.64/85.02 0.689 0.768 5341 84.02/85.5 83.94/85.53 0.527
ConKI 0.809 48.22 84.52/86.17 84.53/86.18 0.688 0.771 54.05 82.87/86.45 83.34/86.47 0.526
ConFEDE 0.784 43.12 84.21/85.61 84.23/85.62 0.737 0.774 54.25 82.34/86.07 82.36/86.09 0.524
HyCon 0.787 45.84 83.82/85.27 83.91/85.16 0.711 0.769 52.21 83.93/85.44 83.17/85.59 0.597
DFMU 0.830 49.45 85.78/87.66 86.01/87.68  0.663 0.780 54.50 85.65/87.59 85.61/87.62  0.513
Table 1: Performance of DFMU compared to SOTA approaches on MOSI and MOSEI datasets. Higher metric values indicate better

performance except "MAE”. The "MAE” metric is better with lower values.

Models  Corr (1)  Acc-5(1)  Acc-3(1) Acc-2(f) FI(1) MAE()
ALMT 0.602 45.53 67.28 80.87 81.02 0.426
UDMF 0.617 45.14 66.28 80.89 80.94 0.427
EAU 0.605 42.20 64.31 78.98 79.35 0.501
TMSC 0.608 44,37 65.85 80.41 80.33 0.414
ConKI 0.568 43.37 65.21 78.12 78.22 0.463

DFMU  0.627 46.13 68.96 81.32 81.91 0.399

Table 2: Performance of DFMU compared to SOTA approaches on
CH-SIMS dataset. Higher metric values indicate better performance
except "MAE”. The "MAE” metric is better with lower values.

and also retrain all baselines under the same conditions. All
the experiment records are aggregated over three independent
runs.

Experimental results are reported in two forms: regres-
sion and classification. For regression, MAE (mean abso-
lute error) and Corr (Pearson correlation) are reported. For
classification, Acc-2 (binary classification accuracy), Acc-
7 (seven-class classification accuracy) and F1 score are re-
ported. Higher values indicate better performance for all met-
rics except for MAE.

4.2 Baselines

We compare DFMU with the following state-of-the-art base-
line models in MSA: based on contrastive learning methods:
ConKI [Yu et al., 2023], ConFEDE [Yang et al., 20231, Hy-
con [Mai et al., 2023]; uncertainty modeling models: TM-
SON [Xie et al., 2024], EAU [Gao et al., 2024], TMSC [Xu
et al., 2024] ; deterministic modeling models: MMIM [Han
et al., 2021], MISA [Hazarika et al., 2020], ALMT [Zhang et
al., 2023], Self-MM [Yu et al., 2021].

4.3 Performance Comparison

Table 1 and Table 2 list the comparison results of our pro-
posed and state-of-the-art methods on the MOSI, MOSEI,
and CH-SIMS, respectively. It can be observed from these
tables that DFMU yields better results to a range of baseline
models on all datasets.

It was noteworthy that DFMU was the only model to
exceed an F1 score of 87 on both the MOSI and MOSEI
datasets. On MOSEI, it surpassed the second-best model,
ConKI, by a significant margin of 1.15 points, which showed

Method MAE(]) Acc-7(1) Corr(1)
w/o Text modality 1.364 24.31 0.224
w/o Vision modality 0.704 47.53 0.807
w/o Audio modality 0.701 48.18 0.812
wilo LSWE 0.712 46.07 0.796
w/o Lo 0.694 47.60 0.818
wlo Lintra 0.684 47.89 0.813
w/o Uncertainty Modeling Block 0.693 44.83 0.793
w/o Distribution-based CL 0.728 44.03 0.789
w/o Uncertainty Regularizaion 0.685 46.36 0.807
DFMU 0.663 49.45 0.830

Table 3: Ablation results when (1) without different modalities (2)
without different uncertainty contrastive learning methods (3) with-
out different uncertainty modules.

that DFMU can accurately model uncertainty and demon-
strate superior performance in fitting high subjective anno-
tation bias samples. Furthermore, the Acc-7 metric of the
DFMU on the MOSI exceeded the performance of the best
baseline model by 0.79, though the task was particularly
a challenging seven-class classification problem, within the
context of a regression task. The superiority of DFMU in
Acc-7 metric demonstrated that it was excellent performance
in predicting labels across the entire range.

4.4 Ablation Study

An ablation study about modalities was conducted first, as
shown in Table 3. This finding validated that the text modality
plays a dominant role in the MSA. In addition, a series of ab-
lation experiments on subtasks of our proposed distribution-
based contrastive learning were conducted. When the three
contrastive learning subtasks were removed, the Acc-7 met-
ric of the model decreased by 3.38, 1.85, and 1.56, which
showed that among the three sub-tasks, the SWR task showed
the highest improvement in performance.

Finally, a series of ablation experiments were conducted on
our proposed Uncertainty Regularizaion, Uncertainty Model-
ing Block and Distribution-based Contrastive Learning. We
found that the absence of Uncertainty Regularization and the
Uncertainty Modeling Block resulted in a decrease of 3.09
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Figure 4: Visualization evidence of uncertainty issues in the dataset, the x-axis represents the degree of AU, and the y-axis represents the

sentiment value.

Hyperparameter Value Acc-7(1) FI(1)
0.05 4728 84.76

o 0.1 4368 8254
0.3 29.54  79.18

0.05 4552 86.11

Qleross 0.1 4595 85.19
0.3 4595 85.66

0.05 45.83 86.10

intra 0.1 45.39 85.95
0.3 4525 84.56

Table 4: Ablation results when DFMU removed the other two un-
certainty contrastive learning methods. The Values meant the values
of the hyperparameter of the remaining method.

and 4.62, respectively, in the model’s Acc-7 scores. More-
over, without the Distribution-based Contrastive Learning,
the performance suffered the most, which led to a substantial
5.42 reduction in the Acc-7 metric. The Distribution-based
Contrastive Learning helped our model learn better represen-
tations of sentiment distributions.

4.5 Hyperparameters of Contrastive Learning

To study the impact of hyperparameters of different uncer-
tainty contrastive learning methods in more detail, we con-
ducted the ablation experiments of three hyperparameters in
MOSI. According to Table 4, we found that the cross-modal
contrastive learning and Intra-modal Learning methods had
little impact on the results, and were insensitive to hyper-
parameters. On the contrary, sentiment words replacement
contrastive learning method was very sensitive to hyperpa-
rameters. The value of Acc-7 metric dropped 37.52% when
0y changed from 0.05 to 0.3. We speculated that this may
be because the loss value of this method is very large, which
caused the situation.

Models CMU-MOSI  CMU-MOSEI
UniSA 84.11 84.93
UniMSE 85.85/86.9 85.86/87.50
GPT-4V 80.43 -
DFMU 85.78/87.66  85.65/87.59
DFMU w/o Audio modality 84.67/86.45 84.88/86.95

Table 5: Performance of DFMU compared to the pre-trained models
and the multimodal large language model. The metric in the table is
”Acc-2” and higher values indicate better performance. The results
of UniSA [Li et al., 2023b] and UniMSE [Hu et al., 2022] are from
their original papers. The result of GPT-4V is from [Lian et al.,
2024].

4.6 Comparison With Large Models

To prove the effectiveness of DFMU, we compared it to the
pre-trained models and the multimodal large language model,
as shown in Table 5. Our model remained ahead in perfor-
mance although the number of parameters and training data
was much smaller than that of large models. It was notable
that DFMU exceeded GPT-4V by 7.23 in CMU-MOSI. The
weak performance of GPT-4V can be partly attributed to the
fact that GPT-4V does not support audio input and the loss
of information. The performance of DFMU without audio
modality still exceeded GPT-4V in CMU-MOSI by 6.02. The
result proved that the necessity of the ability to model the un-
certainty and the damage of AU to performance.

4.7 MSA Uncertainty Problems Analysis

Subjective Annotation Bias

To verify one of the proposed sources of AU: subjective an-
notation bias, we used the model to output the AU values cor-
responding to each sample in MOSI and visualized them. As
in Figure 4, we selected representative samples for analysis:

 In sample 1, a person had a consistently highly positive
facial expression and the corresponding text. This is the
easiest scenario for annotation.
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Figure 5: The figure compares our model’s performance with base-
lines on data with different values of scale factor. The higher value
means higher uncertainty. The table below represents the percent-
age decrease in performance for each model relative to the original
scores at the corresponding scale factor. The translucent area repre-
sents the confidence interval.

e In sample 2, the person’s facial expression remained
neutral, but the text was obviously negative. Annota-
tors will disagree on how to annotate the sentiment score
when text and facial expressions are inconsistent, caus-
ing high sample uncertainty.

* In sample 3, the person’s expression switched between
frowning and expressionless, and the text is neutral,
which caused complex sentiments that are difficult to an-
notate, causing high uncertainty.

* In sample 4, the person had a highly positive facial ex-
pression but with neutral text. Compared to Sample 1,
the difficulty of annotation increases, and uncertainty
also rises.

Meanwhile, a trend line was plotted in the scatter plot, the
polynomial fitting function is used here to calculate the trend
line. The line showed a clear negative correlation between
the sentiment score and the AU. This is because samples with
lower absolute label values are more likely to express com-
plex or ambiguous sentiment, increasing the difficulty of la-
beling and resulting in subjective annotation bias, which in
turn generates AU.

Comparison in High Uncertainty

We added different degrees of noise to the MOSI test data to
simulate uncertainty. Specifically, we extract noise vectors

Character 1
Character 2
Character 3

Character 1
Character 2 A
Character 3

—J

ol \I
A) ] l ! “And the action in the 1p)
% N | movie is so well used” !

Figure 6: A 2-D toy experiment was performed by using T-SNE
[Rauber et al., 2016]. In the 2-D Uncertain Distribution Representa-
tion, sample B is almost an intersection of samples A and C. Sample
B represents only positive text without gestures or positive expres-
sions, while samples A and C represent positive text with gestures
and positive text with positive expressions, respectively.

from a Gaussian distribution and then multiply these noise
vectors by a scaling factor to contaminate the test data, simu-
lating the AUs present in the data. We compared the perfor-
mance of DFMU and the baselines in the test data and visu-
alized the results as line graphs in Figure 5. By comparing
the results, we observed that the performance of all baselines
decreased significantly as uncertainty increased. When the
scaling factor was set to 9, our model’s score only decreased
by 7.85%, while the score of ALMT, which cannot model
AU, dropped by 28.09%.

Complex Set Relationships of Sentiment

To verify one of the sources of AU: complex set relationships
of sentiment, we conducted a visual analysis of the distribu-
tion representations of sentiment features in the model. As
shown in Figure 6, In the left diagram, samples A B C D pre-
served the fine-grained set relationships among the features,
where samples A B C intersected with one another but do
not overlap with D. However, in the right diagram, all rela-
tionships degenerated into mere distance relationships, indi-
cating that point representations lost more information com-
pared to distribution representations, particularly for samples
with similar label values. This indicated that the loss of senti-
ment information in point representations also contributed to
AU.

5 Conclusion

In this work, we explore two causes for the emergence of
Aleatoric Uncertainty in MSA: subjective bias in the anno-
tation process and the complex relationships among senti-
ment features. To address these issues, we propose DFMU,
a Distribution-based Framework for Modeling Aleatoric Un-
certainty, which includes an uncertainty modeling module
and distribution-based contrastive learning with sentiment
word replacement. Our proposed model demonstrates ro-
bust performance even under high noise conditions, achieving
state-of-the-art results on various popular datasets.
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