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Hyper-graph Video Object Segmentation via Text-depth Collaborative Reasoning
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Abstract
Current video object segmentation (VOS) solutions
often overlook the wealthy information e.g. subti-
tles and depth cues among video sequences, which
are crucial for effectively linking video content.
Recognizing the significance of these elements, in
this paper, we introduce a novel approach termed
as ”Hyper-graph Text-Depth Collaborative Reason-
ing Video Object Segmentation” (HTD). It aims to
leverage the synergy between textual and depth in-
formation to enhance the segmentation of objects
in video sequences. The HTD framework inte-
grates textual and depth data into a hyper-graph
structure, where nodes represent objects, text, and
depth features, and hyper-edges encode complex
relationships among them. After grabbing the mul-
timodal context of video scenes, the proposed col-
laborative reasoning mechanism within the hyper-
graph iteratively refines object boundaries by con-
sidering the interplay between textual cues, depth
information, and spatial-temporal coherence. We
demonstrate the effectiveness of HTD through ex-
tensive experiments on four benchmarks. The re-
sults show that our approach outperforms state-
of-the-art VOS methods, particularly in scenarios
with complex backgrounds, occlusions, and dy-
namic scenes. The inclusion of text and depth data
not only improves segmentation accuracy but also
enhances the interpretability of the segmentation
process. We have released the training and testing
code on https://github.com/zyaireleo/HTD.git.

1 Introduction
Video Object Segmentation (VOS) is a fundamental research
problem in computer vision, aiming to accurately identify and
segment specific target objects in video sequences. With the
rapid development of deep learning technologies, VOS has
shown broad application prospects across various fields: in
video editing and post-production, it enables automatic mat-
ting and special effects addition; in autonomous driving, VOS
helps vehicles accurately identify and track various obstacles

∗Corresponding author.

Figure 1: By constructing a multimodal hyper-graph structure, our
solution enables collaborative reasoning among textual expressions,
depth maps, and visual features for VOS. Compared to traditional
methods that heavily rely on visual features, it achieves better re-
sults, particularly excelling in complex background scenarios.

on the road; in video surveillance systems, it enables con-
tinuous tracking of specific targets; in augmented reality ap-
plications, VOS technology supports precise integration of
real objects with virtual content; in medical image analysis,
it can assist doctors in tracking and analyzing specific tis-
sues or organs in dynamic medical images [Xu et al., 2023;
Peng et al., 2025; Wu et al., 2024]. As a key technology,
VOS is continually advancing our capabilities in visual con-
tent processing and understanding. However, due to the com-
plexity of video scenes, uncertainty of object motion, and
various occlusion and interference factors, achieving accurate
and stable video object segmentation still faces challenges.

Existing VOS methods [Liang et al., 2023; Wu et al., 2022;
Luo et al., 2023; Miao et al., 2023a; Yang et al., 2024;
He and Ding, 2024] primarily rely on visual features and
spatio-temporal consistency information from RGB image
sequences, but they often overlooking other rich modal in-
formation contained in videos, such as subtitle text and depth
information. This additional modal information holds signif-
icant value for understanding video content and accurately
segmenting target objects. Particularly in challenging situa-
tions involving complex backgrounds, object occlusions, and
dynamic scenes, relying solely on visual features often fails to
achieve satisfactory segmentation results. For instance, when
target objects have similar appearance features to the back-
ground, introducing depth information can help better dis-
tinguish foreground from background; meanwhile, semantic
information contained in subtitle text can provide important
clues for object identity recognition and cross-shot tracking.
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Based on these observations, as illustrated in figure 1, we
propose a novel Hyper-graph Text-Depth Collaborative Rea-
soning Video Object Segmentation (HTD) method. The core
idea of this method is to construct a multimodal hyper-graph
structure that uniformly represents target objects, textual in-
formation, and depth features in videos as graph nodes, while
using hyper-edges to describe their complex relationships.
Through iterative reasoning on the hyper-graph, our method
can fully utilize the interactions between textual cues, depth
information, and spatio-temporal consistency to continuously
optimize object boundary segmentation results. Compared to
existing methods, our proposed HTD framework offers the
following advantages: first, it can effectively integrate mul-
timodal information, fully exploiting textual and depth cues
in video sequences. Second, the hyper-graph-based collabo-
rative reasoning mechanism enables deep fusion and interac-
tion of various modal information, thereby producing more
accurate segmentation results. Finally, the introduction of
text and depth information not only improves segmentation
accuracy but also enhances the interpretability of the segmen-
tation process. Extensive experiments demonstrate that our
method achieves superior performance to existing state-of-
the-art methods on four mainstream datasets, showing partic-
ularly significant advantages in handling challenging scenar-
ios. In conclusion, the presented method represents a signif-
icant advancement in video object segmentation, providing
a robust framework that can effectively utilize multimodal
information to achieve superior segmentation performance.
The contributions are summarized as follows:

• We introduce a novel approach termed as ”Hyper-graph
Text-Depth Collaborative Reasoning Video Object Seg-
mentation” (HTD), which integrates appearance, loca-
tion, text, and depth data to enhance VOS, offering more
context for accurate video object segmentation.

• We propose a progressive hyper-graph model that inte-
grated modalities such as appearance, location, text, and
depth to construct hyper-edges between spatially and
temporally adjacent regions. It also incorporates mul-
tiple object proposals per frame, rather than relying on
a single object proposal per frame, thereby generating
more reliable object regions per frame.

• Collaborative reasoning mechanism that takes into
account higher-order correlations, effectively handles
complex non-pairwise relationships in video frames, and
simultaneously integrates them together.

• HDT yields favorable performance on four challenging
benchmarks. The inclusion of text and depth data not
only improves segmentation accuracy but also enhances
the interpretability of the segmentation process.

2 Related Works
2.1 Video Object Segmentation
Video object segmentation is a research hotspot in com-
puter vision, and great progress has been made in semi-
supervised, unsupervised and referring VOS fields in recent
years. Semi-supervised VOS aims to utilize the segmen-
tation annotation of the first frame to segment the target in

subsequent video frames. In recent years, researchers have
proposed a series of innovative methods to enhance the per-
formance of semi-supervised VOS: Cheng et.al. [Cheng et
al., 2024] propose Cutie that introduces object-level mem-
ory reading through object queries, contrasting with tradi-
tional pixel-level approaches. It uses a query-based object
transformer and foreground-background masked attention to
better separate target objects from backgrounds. On the
popular datasets, Cutie achieves significant improvements,
while running 3x faster. Li et.al. [Li et al., 2025] introduce
a novel unified framework for Video Object Segmentation
that integrates feature extraction, matching, memory manage-
ment, and multi-object aggregation into a single transformer-
based architecture. Unlike traditional approaches that handle
these components separately, OneVOS models all features
as transformer tokens and processes them through a unified
attention mechanism. Unsupervised VOS does not require
any manual labeling, but automatically finds and segments
the main moving objects in the video. Traditional meth-
ods mainly rely on low-level clues such as optical flow and
moving boundary detection. In recent years, deep learning
methods have made important breakthroughs in this field.
Cho et.al. [Cho et al., 2024] introduce two novel attention
mechanisms (inter-modality attention and inter-frame atten-
tion) to improve unsupervised video object segmentation by
better integrating appearance and motion information across
frames and modalities. Ding et.al. [Ding et al., 2025] intro-
duce a simplified self-supervised video object segmentation
approach that leverages DINO-pretrained Transformers’ in-
herent objectness and spatio-temporal dependencies, achiev-
ing state-of-the-art results without requiring auxiliary modal-
ities or iterative slot attention. Referring VOS are designed
to locate and segment specific targets in a video based on
linguistic references. This is a multimodal understanding
problem: Botach et.al. [Botach et al., 2022a] present MTTR
(Multimodal Tracking Transformer), a simple yet effective
end-to-end Transformer-based approach that treats referring
video object segmentation as a sequence prediction problem,
achieving state-of-the-art performance with a significantly
simplified pipeline. Miao et.al. [Miao et al., 2023b] propose
a Spectrum-guided Multi-granularity (SgMg) approach that
addresses feature drift in referring video object segmentation
by performing direct segmentation on encoded features and
introducing spectral domain fusion, enabling efficient multi-
object segmentation with state-of-the-art performance. Zhu
et.al. [Zhu et al., 2025] introduce VD-IT, a framework that
leverages pre-trained text-to-video diffusion models for refer-
ring video object segmentation, demonstrating that generative
models can maintain better alignment and temporal consis-
tency compared to traditional discriminative backbones.

2.2 Hyper-graph Learning
The development of hyper-graph learning has gone through
several important stages: Beginning in the early 2000s with
spectral theory-based research, researchers extended tradi-
tional graph spectral theory to the hyper-graph domain,
proposing hyper-graph Laplacian matrices and spectral clus-
tering algorithms, laying the theoretical foundation for hyper-
graph data analysis [Chan et al., 2018]. Around 2010,
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Figure 2: Overall architecture of the proposed HTD method: The approach extracts multimodal features through video encoder, depth en-
coder, and text encoder respectively, constructing a hyper-graph structure that incorporates target objects, textual information, and depth
features. Through dual attention and cross attention mechanisms, it enables collaborative reasoning of multimodal features, utilizes Trans-
former encoder-decoder for feature enhancement, and achieves precise object segmentation results after post-processing optimization. This
architecture effectively synthesizes multimodal information, demonstrating significant advantages particularly in complex backgrounds.

research focus shifted towards tensor decomposition-based
methods, capturing complex interactions between multiple
entities through tensor decomposition techniques, while also
developing random walk-based hyper-graph representation
learning methods [Antelmi et al., 2023]. After 2015, the
rise of deep learning brought revolutionary changes, with
researchers extending graph neural networks to the hyper-
graph domain [Kim et al., 2020], proposing innovative ar-
chitectures such as hyper-graph neural networks, and devel-
oping models like hyper-graph attention networks and dy-
namic hyper-graph neural networks. Research after 2020 has
increasingly focused on the dynamics and heterogeneity of
hyper-graphs [Fan et al., 2021], beginning to explore self-
supervised learning in the hyper-graph domain, while empha-
sizing the interpretability and robustness of hyper-graphs.

3 Methodology
As illustrated in figure 2, we propose HTD (Hyper-graph
Transformer Dual-stream), a novel framework for video ob-
ject segmentation that leverages multi-modal information
through hyper-graph reasoning and Transformer-based fea-
ture synthesis. Our approach consists of four main compo-
nents: multi-modal text-depth video encoding, hyper-graph
construction and reasoning, Transformer collaborative syn-
thesis, and post-processing refinement. Figure 2 illustrates
the overall architecture of our proposed method.

3.1 Multi-modal Text-Depth Video Encoding
Video Encoder. The video encoder processes a sequence of
T frames to extract rich spatio-temporal features. For each
frame, we employ a hierarchical CNN architecture that gen-
erates feature maps with dimensions Layer × T × (C × H
× W), where Layer denotes the number of hierarchical fea-
tures, T represents the temporal dimension, and C, H, W
correspond to the channel, height, and width dimensions re-
spectively. This multi-scale representation captures both fine-
grained details and high-level semantic information across
different temporal stages.

Depth Encoder. To incorporate geometric cues, we in-
troduce a dedicated depth encoder that processes the corre-
sponding depth information for each frame. The depth en-
coder maintains the same architectural design as the video
encoder, producing feature maps with matching dimensions.
This parallel processing ensures geometric information can
be effectively integrated with appearance features in subse-
quent stages.

Text Encoder. Natural language descriptions provide cru-
cial semantic guidance for identifying target objects. Our text
encoder converts the input text query (e.g., ”a man wearing
red skiing”) into a dense feature representation of dimension
C × L, where L denotes the sequence length. We utilize a
pre-trained transformer-based language model fine-tuned on
our task to generate contextually rich text embeddings.
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3.2 Hyper-graph Construction and Reasoning
Node Construction. The foundation of our multi-modal rea-
soning framework is a dynamic hyper-graph structure that
serves as a unified representation space where features from
different modalities can effectively interact. In the node con-
struction phase, we project visual (Fv), depth (Fd), and tex-
tual (Ft) features into a common embedding space through
learnable linear transformations:

Ni = WiFi + bi, i ∈ {v, d, t}, (1)
where Wi and bi are modality-specific projection parameters.
Each node represents a semantic unit that can participate in
cross-modal reasoning.

Hyper-edge Formation. The hyper-graph structure is de-
fined through four distinct types of hyper-edges, each de-
signed to capture specific aspects of multi-modal relation-
ships. Spatio-temporal relations (e1) connect nodes across
spatial and temporal dimensions, enabling the model to rea-
son about object consistency and motion patterns. The con-
nection strength αst between nodes i and j is computed as:

αst(i, j) = Softmax(
(WqNi)

T (WkNj)√
d

+ βij), (2)

where βij represents the spatial proximity bias and d is the
feature dimension.

Text-visual associations (e2) bridge the semantic gap be-
tween language and vision through hyper-edges that link text
feature nodes with relevant visual feature nodes. The asso-
ciation strength is determined using a cross-modal attention
mechanism that measures semantic compatibility. Depth-
region correspondences (e3) establish connections between
depth feature nodes and spatial regions in the visual features,
incorporating geometric constraints for improved segmenta-
tion accuracy. Finally, global context hyper-edges (e4) con-
nect all nodes within each modality, facilitating long-range
dependency modeling and holistic scene understanding.

Iterative Reasoning. The hyper-graph reasoning process
follows an iterative message passing scheme where node fea-
tures are progressively refined through multiple rounds of in-
formation exchange. During message generation, for each
hyper-edge type ek, we aggregate information from con-
nected nodes using modality-specific attention mechanisms:

Mk
i =

∑
j∈Nk(i)

αk
ijW

k
v Nj , (3)

where Nk(i) denotes the neighboring nodes of node i con-
nected by hyper-edge type k. The node features are then
updated through a combination of self-attention and feed-
forward networks:

N t+1
i = FFN(LayerNorm(N t

i +
∑
k

γkM
k
i )), (4)

where γk are learnable weights that balance the contribution
of different hyper-edge types, and t denotes the iteration step.
This iterative reasoning process is performed multiple times
to achieve deep cross-modal fusion, enabling the model to
progressively refine its understanding of the multi-modal re-
lationships and generate more accurate segmentation results.

3.3 Transformer Collaborative Synthesis
Our transformer-based collaborative synthesis framework in-
tegrates multiple attention mechanisms to effectively fuse and
enhance multi-modal features. In the feature enhancement
stage, we implement two complementary attention mecha-
nisms. The Dual Attention (DA) module operates indepen-
dently on each modality to capture both spatial and channel-
wise dependencies. For a given feature map F ∈ RC×H×W ,
the dual attention output is computed as:

FDA = αs · SpatialAtt(F ) + αc · ChannelAtt(F ), (5)

where αs and αc are learnable parameters that balance the
contribution of each attention component. The Cross Atten-
tion (CA) mechanism facilitates direct interaction between
different modality features, enabling effective alignment and
fusion of complementary information. For features from two
modalities F1 and F2, the cross attention is formulated as:

CA(F1, F2) = Softmax(
Q1K

T
2√

dk
)V2, (6)

where Q1, K2, and V2 represent the query, key, and value
projections respectively, and dk is the dimension of the key
vectors.

The query initialization process builds upon the hyper-
graph node outputs to preserve the rich multi-modal relation-
ships established during hyper-graph reasoning. We employ
a learnable projection layer ϕ to transform node features N
into query representations Qinit: Qinit = ϕ(N)+PE, where
PE denotes positional encoding that injects spatial informa-
tion into the queries.

Our transformer architecture adopts an encoder-decoder
design optimized for multi-modal synthesis. The en-
coder processes the enhanced features through multiple self-
attention layers, effectively capturing long-range dependen-
cies and contextual relationships. The decoder then generates
refined feature representations by attending to encoder out-
puts through cross-attention mechanisms. This architecture
is specifically designed to maintain precise spatial informa-
tion while synthesizing multi-modal cues. The final output
feature Fout at each decoder layer l is computed as:

F l
out = FFN(LayerNorm(CA(Ql,Kenc, Venc) + SA(Ql))),

(7)
where FFN represents a feed-forward network, SA denotes
self-attention, and Kenc and Venc are the encoder’s key and
value projections respectively.

3.4 Post-processing Refinement
A critical aspect of our framework is the post-processing re-
finement stage, which focuses on enhancing the quality of ini-
tial segmentation results. The first key component is resolu-
tion enhancement, which employs a dual-stream architecture
to recover fine-grained details that may have been lost dur-
ing initial processing. We implement skip connections that
combine features Fl from earlier layers with upsampled fea-
tures Fu through an adaptive fusion mechanism, and yield:
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Method Publication Backbone Ref-YouTube-VOS Ref-DAVIS17
J&F J F J&F J F

MTTR [Botach et al., 2022b] CVPR’22 Video-Swin-T 53.3 54.0 56.6 - - -
ReferFormer [Wu et al., 2022] CVPR’22 Video-Swin-T 56.0 54.8 57.3 - - -
SgMg [Miao et al., 2023a] ICCV’23 Video-Swin-T 58.9 57.7 60.0 56.7 53.3 60.0
SOC [Luo et al., 2023] NeurIPS’23 Video-Swin-T 59.2 57.8 60.5 59.0 55.4 62.6
HTR [Miao et al., 2024] TCSVT’24 Video-Swin-T 59.8 58.3 61.3 57.2 53.8 60.6

HTD (Ours) This work Video-Swin-T 59.8 58.4 61.1 58.6 55.6 61.6
Pre-training with Refcoco

ReferFormer [Wu et al., 2022] CVPR’22 Video-Swin-T 59.4 58.0 60.9 59.7 56.6 62.8
TempCD [Tang et al., 2023] ICCV’23 Video-Swin-T 62.3 60.5 64.0 62.2 59.3 65.0
OnlineRefer [Wu et al., 2023] ICCV’23 Video-Swin-T 62.9 61.0 64.7 62.4 59.1 65.6
SgMg [Miao et al., 2023a] ICCV’23 Video-Swin-T 62.0 60.4 63.5 61.9 59.0 64.8
LAVT [Yang et al., 2024] TPAMI’24 Video-Swin-T 60.9 59.4 62.5 - - -

HTD (Ours) This work Video-Swin-T 63.1 61.8 64.3 63.1 60.3 66.0

Table 1: Quantitative comparison to methods on Ref-YouTube-VOS and Ref-DAVIS17.

Ffused. Our progressive upsampling strategy gradually re-
stores the feature resolution while maintaining semantic con-
sistency. This is followed by feature projection, where the
refined features are projected onto the segmentation space
through convolutional layers. To ensure stable training and
effective feature transformation, we incorporate residual con-
nections and normalization layers throughout this process.

Mask generation employs a binary classification head to
predict pixel probabilities, controlled by a confidence-aware
prediction function:

P (x, y) = σ(ϕ(Ffused(x, y))) · exp(−λ ·D(x, y)), (8)

where σ is the sigmoid function, ϕ is the classification net-
work, D(x, y) is the distance transform value, and λ controls
the spatial distance influence. We train the model by combin-
ing Focal loss, Dice loss, and Cross-entropy loss. Focal loss
addresses class imbalance:

FL(pt) = −αt(1− pt)
γ log(pt). (9)

Dice loss maximizes the overlap between predicted and
ground truth masks:

DL = 1−
2
∑N

i pigi∑N
i p2i +

∑N
i g2i

. (10)

Cross-entropy measures the difference between pre-
dicted probability p and true distribution q: CE =

−
∑N

i qi log(pi). Post-processing includes boundary refine-
ment and small object filtering to generate high-quality video
segmentation results. In VOS tasks, Focal loss effectively
handles foreground-background sample imbalance, Dice
loss directly optimizes the IoU metric, and cross-entropy
provides pixel-level supervision. Joint training with multiple
loss functions comprehensively improves segmentation
performance, particularly suitable for Dense Prediction
problems in complex scenarios like VOS.

4 Experimental Results
4.1 Datasets and Metrics
Datasets and Settings. We evaluate our method on four
prominent RVOS benchmarks: A2D-Sentences [Gavrilyuk
et al., 2018], Refer-YouTube-VOS [Seo et al., 2020],
JHMDB-Sentences [Jhuang et al., 2013a], and Refer-
DAVIS17 [Khoreva et al., 2019]. A2D-Sentences contains
3,754 videos (3,017 for training, 737 for testing) with pixel-
wise masks in three frames per video and 6,655 unique
text expressions. Refer-YouTube-VOS includes 3,978 videos
and 15,009 expressions, with instance masks for every fifth
frame. JHMDB-Sentences and Refer-DAVIS17 extend JH-
MDB [Jhuang et al., 2013b] and DAVIS17 [Pont-Tuset et al.,
2017], respectively, featuring 928 and 90 videos annotated
with 1,544 expressions in total. Following [Wu et al., 2022;
Miao et al., 2023a], we use the overall IoU, mean IoU,
mAP and precision@K for A2D-Sentences and JHMDB-
Sentences. For Refer-YouTube-VOS and Refer-DAVIS17,
we adopt J , F , and their average J&F as metrics.

Implementation details. We extract depth features us-
ing [Ranftl et al., 2020] and adopt two strategies inspired
by [Wu et al., 2022; Luo et al., 2023]. For training without
pre-training, we train the model on Ref-YouTube-VOS and
directly evaluate it on its validation set and Ref-DAVIS17.
When using pre-trained models, we first train on RefCOCO,
RefCOCO+, and RefCOCOg [Mao et al., 2016; Yu et al.,
2016], then fine-tune on Ref-YouTube-VOS, and evaluate on
Ref-DAVIS17. Similarly, we pre-train on A2D-Sentences,
fine-tune on JHMDB-Sentences, and evaluate accordingly.
We use the Video Swin-Tiny [Liu et al., 2022] backbone for
vision and depth features in all experiments.

4.2 Quantitative Results
Ref-YouTube-VOS and Ref-DAVIS17. As reported in Ta-
ble 1, experimental results demonstrate that the proposed
HTD method achieves significant performance improvements
in video object segmentation tasks. Specifically, without pre-
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Method Publications Backbone Precision IoU mAP
P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 Overall Mean

MTTR [Botach et al., 2022b] CVPR’22 Video-Swin-T 75.4 71.2 63.8 48.5 16.9 72.0 64.0 46.1
ReferFormer [Wu et al., 2022] CVPR’22 Video-Swin-T 76.0 72.2 65.4 49.8 17.9 72.3 64.1 48.6
SOC [Luo et al., 2023] NeurIPS’23 Video-Swin-T 79.0 75.6 68.7 53.5 19.5 74.7 66.9 50.4
LAVT [Yang et al., 2024] TPAMI’24 Video-Swin-T 77.3 73.2 65.0 49.0 17.3 74.4 65.9 -

HTD (Ours) This work Video-Swin-T 78.3 76.1 69.7 55.0 20.9 75.7 66.9 51.4
Pre-training with Refcoco

ReferFormer [Wu et al., 2022] CVPR’22 Video-Swin-T 82.8 79.2 72.3 55.3 19.3 77.6 69.6 52.8
SOC [Luo et al., 2023] NeurIPS’23 Video-Swin-T 83.1 80.6 73.9 57.7 21.8 78.3 70.6 54.8
SgMg [Miao et al., 2023a] ICCV’23 Video-Swin-T - - - - - 78.0 70.4 56.1
HTML [Han et al., 2023] ICCV’23 Video-Swin-T 82.2 79.2 72.3 55.3 20.1 77.6 69.2 53.4
LAVT [Yang et al., 2024] TPAMI’24 Video-Swin-T 82.8 79.3 71.5 54.6 19.5 77.9 70.0 -
TCE-RVOS [Hu et al., 2024] WACV’24 Video-Swin-T 83.0 79.9 73.6 56.7 20.5 77.5 69.9 54.8
HTD (Ours) This work Video-Swin-T 84.0 81.0 75.9 60.1 23.1 78.6 70.9 57.0

Table 2: Quantitative comparison to methods on A2D-Sentences.

Method Publications Backbone Precision IoU mAP
P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 Overall Mean

ReferFormer [Wu et al., 2022] CVPR’22 Video-Swin-T 93.3 84.2 61.4 16.4 0.3 70.0 69.3 39.1
LOCATER [Liang et al., 2023] TPAMI’23 Video-Swin-T 93.6 85.9 61.9 16.8 0.3 70.8 69.6 39.4
SOC [Luo et al., 2023] NeurIPS’23 Video-Swin-T 94.7 86.4 62.7 17.9 0.1 70.7 70.1 39.7

HTD (Ours) This work Video-Swin-T 95.1 87.3 63.5 19.0 0.2 71.3 71.0 40.8
Pre-training with Refcoco

ReferFormer [Wu et al., 2022] CVPR’22 Video-Swin-T 95.8 89.3 66.8 18.9 0.2 71.9 71.0 42.2
SOC [Luo et al., 2023] NeurIPS’23 Video-Swin-T 96.3 88.7 67.2 19.6 0.1 72.7 71.6 42.7
SgMg [Miao et al., 2023a] ICCV’23 Video-Swin-T - - - - - 72.8 71.7 44.4
DsHmp [He and Ding, 2024] CVPR’24 Video-Swin-T - - - - - 73.1 72.1 44.9

HTD (Ours) This work Video-Swin-T 96.1 90.0 68.3 21.9 0.3 73.7 72.6 45.0

Table 3: Quantitative comparison to methods on JHMDB-Sentences.

training, HTD achieves a J&F score of 59.8 on the Ref-
YouTube-VOS dataset, outperforming existing methods. This
result validates the effectiveness of the multi-modal data inte-
gration strategy, which provides richer contextual informa-
tion by fusing appearance, location, text, and depth infor-
mation. Notably, when Refcoco pre-training is introduced,
HTD’s performance shows substantial improvement, with the
J&F score increasing from 59.8 to 63.1, fully demonstrat-
ing the advantages of the progressive hyper-graph model in
handling multiple object proposals. Experiments on the Ref-
DAVIS17 dataset further validate the effectiveness of the col-
laborative reasoning mechanism, with F-scores reaching 61.6
and 66.0 under non-pre-trained and pre-trained conditions
respectively, demonstrating the mechanism’s powerful ca-
pability in handling complex non-pairwise relationships be-
tween video frames. Although having only 85M parameters,
the presented approach HTD has attained a real-time speed
of 50 FPS and surpassed six state-of-the-art methods from
2024 as shown in Tables above, demonstrating that our pro-
posed solution achieves both high accuracy and efficiency
with significant performance advantages. In addition, un-

der the same setting of Video-Swin-Tiny backbone and sim-
ilar model parameter count, the presented HTD achieves the
highest performance on four mainstream datasets, including
JHMDB-Sentences, A2D-Sentences, Refer-DAVIS17, and
Refer-YouTube-VOS.

A2D-Sentences. In Table 2,Extensive experiments on
the A2D-Sentences dataset demonstrate the superior perfor-
mance of our proposed HTD method. Without pre-training,
HTD achieves substantial improvements across all preci-
sion metrics, reaching 78.3% for P0.5, 20.9% for P0.9, and
75.7% for Overall IoU, consistently outperforming existing
approaches. When incorporating Refcoco pre-training, the
performance is further enhanced, with P0.5 increasing to
84.0%, P0.9 reaching 23.1%, and Overall IoU improving to
78.6%. The significant performance gain validates the ef-
fectiveness of our hyper-graph structure in encoding multi-
modal feature relationships and the synergistic effect of in-
tegrating textual and depth information. Moreover, the im-
proved mAP score of 57.0 indicates the method’s robust per-
formance across various scenarios, particularly in handling
complex backgrounds and occlusions, which aligns with our
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Figure 3: Qualitative examples from two statements of one video.

design objectives. These comprehensive results demonstrate
that our HTD framework successfully leverages the comple-
mentary strengths of textual cues, depth information, and
spatial-temporal coherence to achieve state-of-the-art perfor-
mance in video object segmentation tasks.

JHMDB-Sentences. As showing in Table 3, the extensive
experiments on the JHMDB-Sentences dataset further vali-
date the effectiveness and superiority of our proposed HTD
framework. The results demonstrate that even without pre-
training, HTD achieves remarkable performance with 95.1%
P0.5 and 71.3% Overall IoU, surpassing existing methods and
confirming the advantages of our multi-modal data integra-
tion strategy that combines appearance, location, text, and
depth information. When incorporating Refcoco pre-training,
the model’s performance is further enhanced and achieves
favorable performance, with P0.5 increasing to 96.1% and
Overall IoU improving to 73.7%, strongly validating the ef-
fectiveness of the presented progressive hyper-graph model in
capturing spatio-temporal relationships in video sequences.

4.3 Ablation Study
In Table 4, to thoroughly understand the role of each compo-
nent in the HTD framework, we conducted detailed ablation
experiments on the Ref-YouTube-VOS dataset. The results
show that the complete HTD model (Version VIII) achieves
optimal performance (J&F=59.8), which stems from the ef-
fective synergy of various innovative components. Specifi-
cally, the importance of multi-modal data integration is val-
idated through comparisons between the complete model
and single-modality versions: when removing depth infor-
mation (Version II, J&F=59.7) or retaining only text in-
formation (Version III, J&F=59.6), model performance de-
creases, confirming the necessity of multi-modal fusion strat-
egy. The contribution of the progressive hyper-graph model
is reflected in the performance difference between Version I
(J&F=59.5) and the baseline (Version VII, J&F=58.9), with
a 0.6 percentage point improvement clearly demonstrating the
advantages of the hyper-graph structure in modeling spatio-
temporal relationships among texts, depths, and frames.

We conducted ablation experiments combining different
loss functions to evaluate the impact of various combinations
of Cross-Entropy Loss, Focal Loss, and Dice Loss on model
performance. As illustrated in Table 5, the results indicate
that using all three in combination offers the greatest advan-

Components Performance
VersionsText-DS-Node Hyper-G J&F

I ✗ ✓ ✓ 59.5
II ✓ ✗ ✓ 59.7
III ✓ ✓ ✗ 59.6
IV ✓ ✗ ✗ 59.2
V ✗ ✓ ✗ 59.0
VI ✗ ✗ ✓ 59.3
VII ✗ ✗ ✗ 58.9
VIII ✓ ✓ ✓ 59.8

Table 4: Ablation of various components in Ref-YouTube-VOS.

Type CE Loss Focal Loss Dice Loss Performance

Impact Class Box Mask J&F J F
I ✓ ✓ ✗ 58.5 57.3 59.7

II ✓ ✗ ✓ 58.0 56.8 59.2

III ✓ ✓ ✓ 59.8 58.4 61.1

Table 5: Combinatorial experiment of loss function.

tage. Specifically, Cross-Entropy Loss provides basic clas-
sification capabilities and is the most indispensable among
three loss functions above. Focal Loss automatically focuses
on those hard-to-segment boundary regions and ambiguous
parts, which is particularly important at the edges of moving
objects across videos. Dice Loss improves the integrity of the
target contours by optimizing the overlap between regions.

4.4 Qualitative Results
Figure 3 shows a sequence of skydiving frames with differ-
ent segmentation results. Text-depth collaborative integra-
tion: The system processes two different text expressions (”a
person wearing a blue jumpsuit is being held by another with
a parachute flying in the sky” and ”a man behind another man
in a harness”). The HTD method shows better consistency in
segmenting the skydivers across frames while maintaining the
spatial relationship described in the textual elements, espe-
cially in handling the complex overlapping of the two people.

5 Conclusion
In this paper, we have proposed a novel video object seg-
mentation approach called Hyper-graph Text-Depth Collab-
orative Reasoning Video Object Segmentation (HTD), which
achieves significant improvements over existing VOS tech-
niques. By integrating multimodal information including ap-
pearance, location, text, and depth, HTD provides richer con-
textual information, thereby enhancing the accuracy and ro-
bustness of segmentation. Our main contributions are: First,
we propose a progressive hyper-graph model incorporating
multimodal information for hyper-edges between adjacent
regions, enhancing target representation. Second, we im-
prove reliability through multiple object proposals per frame.
Finally, we introduce a collaborative reasoning mechanism
that handles complex relationships while integrating various
modalities. Experimental results on four challenging datasets
demonstrate that HTD achieves excellent performance.
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