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Abstract
API migration is essential for software mainte-
nance due to the rapid evolution of third-party li-
braries where API elements may change continu-
ously through updates. There are two main chal-
lenges for API migration at the project level, espe-
cially across multiple versions: 1) lack of specific
library evolution knowledge across multi-version;
2) difficulty in identifying the chain of changes at
the project level. This paper proposes a project-
level cross-multi-version API migration framework
APIMig. We first construct an API evolution
knowledge graph (KG) to capture changes between
adjacent library versions and then derive coherent
cross-version API evolution knowledge by KG rea-
soning. Second, we design a chain exploration al-
gorithm to track the chain of changes and aggre-
gate the affected code segments. Finally, a large
language model is employed in completing API mi-
gration by providing the API evolution knowledge
and the chain of changes. We construct an evolu-
tion KG for the Lucene library from version 4.0.0
to 10.1.0 and evaluate our approach through project
migration pairs that depend on different major ver-
sions. Our framework shows improvements over
the baseline in migrating projects across 7 major
versions, achieving average increases of 16.52% in
CodeBLEU scores and 28.49% in VCEU scores in
GPT-4o.

1 Introduction
In modern software development, third-party libraries are es-
sential for developers, facilitating specific functionalities and
enhancing development efficiency for scalable applications
[Mahmud et al., 2021]. As technology progresses, third-party
libraries continually evolve. Consequently, developers must
upgrade these libraries to access new features, fix bugs, and
address security vulnerabilities, ensuring project security and
compatibility [Kula et al., 2015].

However, library updates typically proceed independently
of their callers, and significant changes in new library ver-

∗Corresponding author

sions often introduce backward-incompatible API modifica-
tions, posing challenges to the quality assurance of upper-
level software [Yan et al., 2024]. To prevent compatibility is-
sues arising from library updates, API migration has become
a critical task for software quality assurance.

Currently, most migration processes are performed manu-
ally by developers, who are required to consult library docu-
mentation, version release notes, and open-source community
resources to understand new version features, assess their im-
pacts, and estimate the migration effort [Kula et al., 2018].
Developers then manually identify the affected API usage
within the project and perform appropriate code replacement
to finalize the migration.

To automate the API migration at project-level, especially
across multi-version, there are two main challenges:

Challenge 1: lack of specific library evolution knowl-
edge across multi-version. Library maintainers typically
document API differences between consecutive versions in
change logs or release notes. In practical scenarios, library
migrations usually involve skipping intermediate versions.
However, the API change information is fragmented since
only the changes between adjacent versions are provided.
There is a lack of explicit and coherent API evolution knowl-
edge across multiple versions.

Challenge 2: difficulty in identifying the chain of
changes at project-level. Due to interdependencies among
code elements, the code changes would propagate through the
project in a chain, making it challenging to promptly identify
and adjust indirectly affected code segments. Consequently,
achieving automated code migration at the project level be-
comes highly challenging.

Traditional approaches [Fazzini et al., 2019; Xu et al.,
2019; Nielsen et al., 2021; Lamothe et al., 2022; Wang
and Yu, 2022] to API migration involve extracting migra-
tion instances from the current and target versions of open-
source projects, applying them through pattern matching to
find suitable instances. The rapid evolution of large lan-
guage models (LLMs) has led to research that leverages their
strong understanding and generation capabilities for code
migration tasks. Existing studies [Almeida et al., 2024;
Wu et al., 2024] are typically empirical-oriented, focusing
on validating the feasibility of generated migration code by
LLMs. Empirical studies show LLMs struggle to meet the
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challenges, as current models are hard to adapt to changing
libraries promptly and to understand library dependencies.

To address the challenges mentioned above, we propose
a project-level cross-multi-version API Migration framework
(APIMig). To address the specific library evolution knowl-
edge across multi-version (Challenge 1), we first construct
an API evolution knowledge graph to capture the dynamic
API changes as the version evolves and then derive the coher-
ent cross-version API evolution knowledge by KG reasoning.
To address identifying the chain of changes at project-level
(Challenge 2), we design a chain exploration algorithm based
on the project dependency graph, allowing us to identify the
comprehensive code segments impacted by changes through-
out the project. Finally, we construct prompts for the API mi-
gration requirement, guiding the LLMs to complete the API
migration task by providing API evolution knowledge and the
chain of changes.

The contributions of this paper are as follows:

1. Cross-version API evolution knowledge: We pro-
pose a dynamic API Evolution Knowledge Graph
(APIEvoKG) and derive coherent multi-version API
evolution knowledge by KG reasoning.

2. Project-level chain of changes: We propose a Chain
Exploration Algorithm(CEA) based on project depen-
dency graph to track the chain of changes and identify
all code segments to be updated within the project.

3. Dataset and effectiveness: We construct a KG for the
Lucene library, and the migration project pairs datasets
from different major versions. The experiments demon-
strate the effectiveness of our approach in project-level
cross-multi-version API migration task.

2 Related Work
2.1 Instance-Based API Migration Method
The instance-based approach to project migration is predom-
inant in existing research, focusing on deriving editing scripts
from migration instances and applying them to new contexts.
[Nguyen et al., 2010] used a code analysis tool to analyze
modifications in API declarations and extracted API usage
snippets from clients that successfully migrated. They used a
pattern miner to infer adaptation patterns, aiding library ver-
sion migration automatically. [Xu et al., 2019] proposed
Meditor, a template-based migration method in two stages.
They sourced projects using the target library from GitHub,
analyzed commit histories to extract API migration edits,
and generated migrated programs by matching these edits to
source code templates. [Lamothe et al., 2022] proposed A3,
a migration method based on the principles of mining, apply-
ing, and testing migration patterns. A3 extracted migration
patterns from various sources using API name matching and
data flow graph. Then, these patterns were applied to the tar-
get code to facilitate migration, and test suites were used to
confirm the effectiveness of migration.

Approaches based on project-level migration instances
identify potential changes by mining API migration patterns,
which means that their applicability and flexibility are limited

[Bai et al., 2024]. Migration relies on programs that have suc-
cessfully migrated to new library versions, which requires a
large number of API usage examples. In practice, finding mi-
gration instances for each API change is often infeasible, par-
ticularly for these changes in new library versions. Moreover,
the differences between versions make it difficult to establish
associations between changes.

2.2 LLM-Based API Migration Method
LLMs have been little used in API migrations. [Almeida et
al., 2024] introduced a library migration framework, evalu-
ating different prompt types for LLM-based API migration.
[Bairi et al., 2024] employed prompt engineering to inte-
grate the migration task instructions with API modifications
and contextual information. Meanwhile, [Zan et al., 2022]
and [Zhou et al., 2023b] observed that LLMs frequently
encounter difficulties in generalizing beyond their training
data distribution. They suggested employing Retrieval-
Augmented Generation (RAG) to access more efficient APIs,
thereby enhancing code generation capabilities. However,
[Wu et al., 2024] highlighted the challenges in using RAG for
version-controlled code generation, as ambiguous version-
related queries can complicate the retrieval process [Wang
et al., 2020]. Specifically, similar embeddings of version
strings, such as ”V2.1.3” and ”1.3.2V”, can hinder the accu-
racy of retrieval systems to distinguish version-specific fea-
tures and functionalities [Zhou et al., 2023a].

In response to the practical needs of cross-version API mi-
gration, we propose the APIMig framework. We design a
scalable and dynamic API evolution knowledge graph to ef-
fectively infer the coherent knowledge of multi-version API
evolution. By analyzing the affected elements in the knowl-
edge graph and employing the chain exploration algorithm,
we can accurately identify the affected code that needs to
be modified, thereby improving the accuracy of migration re-
sults generated by LLMs.

3 Approach
Problem Definition. The project-level API migration task
across multi-version is defined as follows: Consider a
third-party dependent library L, which has n versions
V1, V2, V3, . . . , Vn. Given a project P to be migrated, which
depends on the version Vi of L, the target is to migrate the
code in P to version Vj (only considering upward migration,
1 ≤ i < j ≤ n).

Framework Overview. Figure 1 shows the framework of
APIMig. APIMig focuses on facilitating project-level cross-
multi-version API migration through the use of API evolu-
tion knowledge. The framework consists of three key com-
ponents: 1) API Evolution Knowledge Reasoning. We built
the APIEvoKG to capture the changes that occur between ad-
jacent library versions and derive the coherent cross-version
API evolution knowledge through KG reasoning. 2) Chain
of Changes Exploration. We design a chain exploration al-
gorithm to track the code segments affected by API changes
through the project dependency graph. 3) LLM-based API
Migration. We employ LLM to facilitate the completion of
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Figure 1: Overview of our framework APIMig

API migration using the API evolution knowledge and the
identified chain of changes.

3.1 API Evolution Knowledge Reasoning
Construction of the APIEvoKG. The APIEvoKG schema
was specifically designed to capture key elements of the API
documentation and track evolution within those APIs.

The entities include three types: API Library (EL), API El-
ement (Ee), and API Evolution (EEvo). The primary entity-
relationship-entity triples are as follows: (EL, has element,
Ee), (EL, has evolution, EEvo), (EEvo, source from, Ee),
and (EEvo, target to, Ee). The ”has...” relationship indicates a
containment relationship between entities, ”source from” in-
dicates the Ee to be evolved, and ”target to” indicates the Ee

after the evolution. The EEvo entity has two key attributes:
”type”, which includes add, remove, and update to represent
the type of API Evolution, and ”scope”, which denotes the
evolution target (e.g., Method, Parameter).

Based on the aforementioned schema, we develop different
extraction methods for types of knowledge from API docu-
ments, release notes, and change logs. We employ a keyword-
based heuristic approach to extract entities (Ee) such as class
and method, as well as the dependency relationship. We use
a pattern-matching method to extract fine-grained Ee such
as parameters. Furthermore, we use prompts to guide LLMs
through a few-shot learning to extract (EEvo) and the rela-
tionship between EEvo and Ee. Furthermore, we conduct
human reviews to ensure the quality of the extraction process.
API Evolution Knowledge Reasoning. In APIEvoKG,
EEvo captures API evolution information between adjacent
versions. During cross-version evolution, API elements often
experience multiple, successive changes. Inspired by [Zhao

et al., 2024], we extract evolutionary paths and infer cross-
version API evolution knowledge through reasoning rules.

1) Evolutionary Path Extraction. Define ELV i
as an API

evolution entity in version Vi of Library L, ES as the source
API element entity, ET as the target API element entity, and
”type” and ”scope” represent attributes of the evolution, re-
spectively. A set of 1-hop evolutionary paths denoted as P 1

can be extracted by the following path (1) and will be ap-
pended to the API Evolutionary Path List (EPListji ).

P 1 = ⟨“ES ,Type,ET ”, [Scope]⟩ (1)
To capture the API evolution knowledge of L from version

Vi to Vj , while traversing the knowledge graph, if the API
element entity in the 1-hop path of the subsequent version is
included in the path in the EPListji , we extract a 2-hop evolu-
tionary path P 2. By repeating these operations, we continue
until all change entities have been traversed, and we obtain
the complete set of multi-hop evolutionary path Pn (2) for
evolved APIs across multi-version of library L.

Pn = ⟨“ES1,Type1,ET1,ES2,Type2,
ET2, ...”, [Scope1, Scope2, ...]⟩ (2)

2) Jointly Reasoning. We conduct joint reasoning for evo-
lutionary paths over 2-hop, which includes reasoning about
change operations and their scopes.

Using 2-hop reasoning as an example, in a 2-hop context,
two changes can influence different scopes of the same ele-
ment, such as modifying method parameters and altering its
return value type. Therefore, we define a union operation to
represent the impact of these scopes: if Scope1 = Scope2, we
select Scope1; if Scope1 differs from Scope2, we take their
union, indicating that changes have occurred in both scopes.
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Figure 2: Reasoning Rules and Jointly Reasoning Example

Additionally, we identify three atomic evolution types:
add, remove, and update. Different atomic operations within
the same scope may have varying impacts. We present the
evolution reasoning rules in Figure 2, and provide an Exam-
ple. In this example, we obtain evolution knowledge for the
Lucene Library from version 6.0.0 to 8.0.0 in APIEvoKG,
including API Evolution Entities and their related API Ele-
ment Entities. For EEvo1 and EEvo2, we can respectively ex-
tract 1-hop evolution paths according path1. Since ES2 is in-
cluded in P 1

Evo, we can extract a 2-hop evolutionary path P 2.
The two evolution entities share the same scope, and based
on rule5 of Reasoning Rules, we can derive the inference re-
sult and corresponding description. In this way, we derive the
cross-version API change information for evolutionary paths
in EPListji and get the valid reasoning results.

3.2 Chain of Changes Exploration
Project-Level Code Dependency Graph. We designed a
heterogeneous dependency graph to represent the structure
and dependencies of a project.

This graph consists of three types of nodes: 1) Struc-
tural nodes, such as the class body, which organize the code
structure; 2) Statement nodes, including class declarations,
method declarations, and others, which detail specific code
statements; and 3) Element nodes, such as variables and pa-
rameters, which describe the components of the statements.

The graph includes three types of edges: 1) Structural
edges (str), connecting Structural nodes to Statement nodes
or between Statement nodes, thereby highlighting hierarchi-
cal relationships and the execution order between statements;
for example, a method body contains multiple statements; 2)
Dependency edges (dep), representing a forward dependency
relationship based on the execution order between nodes; and
3) Reverse Dependency edges (redep), indicating a backward
dependency between the current Statement node and the pre-
ceding Element node, such as the relationship between the
current method call statement and its parameters.

Callsite Analysis. API migration affects a project beyond
immediate call sites due to interdependencies between code
elements and the impact can significantly vary based on the
scope of changes. For instance, modifications to API method
parameters and return types can influence different parts of
the project. To illustrate this, we define the Callsite Analysis
rules in Figure 3 that outlines the potential impact range of
various code elements under different change scopes. In this
context, we define ”Callsite” as the statement where an API is
invoked, ”Before Callsite” as the preparatory statements pre-
ceding the API call (with redep), and ”After Callsite” as the
statements that utilize the return of the API call (with dep).

Chain Exploration Algorithm. We developed the Chain
Exploration Algorithm (CEA) to track the chain of changes
and identify all code segments that require updating through-
out the entire project, as demonstrated in Algorithm 1.

Class/
Interface

Before Callsite
(1)Parameter Declaration
(2)Parameter Usage
(3)Caller Declaration
(4)Caller Usage
Callsite
(1)Invoke
(2)Method Declaration
After Callsite
(1)Return Value Usage

Method/
Constructor

Name
Extends/
Implements

Overall

Modifier

ReturnType

ReturnValue

Name

ParamList

Callsite(1)(2)(3)(4)

Callsite(2)

Callsite(2)

Callsite(2)
After Callsite(1)
Callsite(2)
After Callsite(1)

Callsite(1)(2)

Before Callsite(1)(2)
Callsite(1)(2)
Callsite(1)(2)
After Callsite(1)

Class/
Interface

Before Callsite
(1)Import
Callsite
(1)Variable Usage
After Callsite
(1)Variable Usage

DataType Callsite(1)
After Callsite(1)

Name Before Callsite(1)
Callsite(1)

Value Callsite(1)
After Callsite(1)

Granularity Change Scope and
Impact Statements

Callsite Statement Analysis

Callsite
(1)Import
(2)Class Declaration
(3)Object Declaration
and Creation
(4)Static Invoke

Figure 3: Callsite Analysis
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Algorithm 1 Chain Exploration Algorithm
Input: Dependency Relation Graph G = (N,E), Callsite
list N∗ = {n∗

0, n
∗
1, . . .}, N = {ni ∈ G}

ind(ni) return the in-degree of ni

getImpactNodes(gran, scope, ni) return Impact State-
ments Nodes
Output: Callsite Block List CBL : {B0, B1, . . .}

1: while |N∗| > 0 do
2: ni ← argminni∈N ind(ni)
3: if ni ∈ N∗ then
4: Nipt ← getImpactNodes(gran, scope, ni)
5: BCS ,ACS ← [], []
6: for each nj ∈ Nipt do
7: if e(ni, nj).type == dep then
8: ACS .append(nj)
9: end if

10: if e(ni, nj).type == redep then
11: BCS .append(nj)
12: end if
13: ind[nj ]← ind[nj ]− 1
14: end for
15: CBL.append({BCS , ni,ACS})
16: N∗.remove(ni)
17: end if
18: N.remove(ni)
19: end while
20: return CBL

We define a CallSite List (CSL) to track change propaga-
tion in the dependency graph. We begin by identifying the
node with the minimum in-degree. If this node is a Callsite
node, we determine the impacted statement nodes from Call-
site Analysis based on the API granularity and change scope.
Nodes connected by dependency edges are recorded as After
Callsite (ACS ), while those connected by reverse dependency
edges are recorded as Before Callsite (BCS ). Consequently,
all code segments affected by this Callsite node are aggre-
gated into {BCS , Callsite node,ACS}. We then decrement
the in-degree of each of the impacted statement nodes by one.
Repeat the above steps until all Callsite nodes are processed.
This algorithm maintains the order of change propagation and
aggregates affected code segments, enabling the LLM to ap-
ply changes sequentially in later prompts.

3.3 LLM-Based API Migration

To complete the migration for the project, according to the
code segments in the CBL, we construct a prompt for each
callsite block of API changes, utilizing API evolution knowl-
edge from the APIEvoKG to guide the LLM in generating
the migrated code. The structure of our prompt template is
illustrated in Figture 4. We begin with the task definition for
project-level cross-version library migration p1; provide the
code to be migrated p2. Next, we list the statements that con-
tain calls to changed API elements p3. Finally, we present
the information from the APIEvoKG, including source entity,
change type, target entity, and change scope p4.

Task	Instructions:	I	update	my	Java	project‘s	dependency	Library	
[Library	Name]	from	version	[source_version]	to	[target_version].	
I	will	provide	you	with the	Code	Snippet	that	has	API	call	problems	due	
to	version	change.	Your	task	is	to	modify	the	Code	Snippet	based	on	the	
information	given.
Target	Code	Snippet:	 This is	the	code	that	need	to	migrate,	containing	
the	Changed	API	and	Dependent	code	statements…
API	Callsite:	The	statement	containing	the	changed	API	Callsite…
API Change	information	description: <change source element,	type,
change target element>	[scope],[Description]

Migrate	the	“Target	Code	Snippet” to	target version according the given
API Change information.	Only	return	the	Migrated	Code.

P1

P2

P3

P4

Figure 4: Prompt Template

4 Experiments
4.1 Datasets
Dependency Library. The cross-version API migration
task aims to modify the project in response to update in de-
pendency library. We select library for migration based on
their current popularity in Maven, the frequency of version
changes, and previous research on libraries migration. For
our study, we choose Lucene, an open-source information
retrieval library. Following the principles of semantic ver-
sioning principles [Preston-Werner, 2013; Lam et al., 2020]
where major versions indicate breaking API changes while
minor/patch versions are used to maintain backward compat-
ibility or bug fixes, we analyzed Lucene’s evolution from ver-
sion 4.0.0 to version 10.1.0 (Oct 11, 2012 - Dec 20, 2024) -
encompassing 7 major versions and 118 total subversions - to
extract API and change information and construct a compre-
hensive version evolution knowledge graph.
Dataset for Migration Projects. Previous API migration
tasks primarily concentrated on code block-level migrations,
lacking comprehensive data on cross-version project migra-
tions. Utilizing the dataset construction methodology detailed
in [Zhong and Meng, 2024], we expanded and developed a
dataset of API usage example projects in 7 major versions of
Lucene, all released by Apache, ranging from version 4.0 to
10.0. Based on these projects, we built 28 migration pairs,
involving different version spans, from a span of 0 version to
that of 6 versions.

4.2 Metrics
We employ two primary evaluation metrics, CodeBLEU (CB)
and Valid Code Element Usage Rate (VCEU), to evaluate our
method for handling changes across multi-version libraries in
projects.

• CodeBLEU [Ren et al., 2020] evaluates the quality and
accuracy of the generated code by comparing its struc-
ture, syntax, and vocabulary with the ground truth in the
target version. CodeBLEU = 0.25 ·MatchN-gram +0.25 ·
MatchWeighted N-gram + 0.25 · MatchSyntactic AST + 0.25 ·
MatchSemantic data-flow.

• VCEU evaluates the validity of API changes by match-
ing API-related keywords against the ground truth with
regular expressions. Score = n

k , where n is the number
of matched keywords from total keywords k.
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Base
LLM Method span-0 span-1 span-2 span-3 span-4 span-5 span-6

CB VCEU CB VCEU CB VCEU CB VCEU CB VCEU CB VCEU CB VCEU

Claude-
3

FRb 29.06 25.82 27.48 50.24 29.24 44.12 30.14 33.67 30.34 39.42 29.56 31.19 32.66 32.55
FRc 26.19 17.50 28.28 52.36 36.23 48.73 38.86 34.01 32.80 35.59 28.29 21.35 22.49 15.75
VC 32.39 27.10 31.93 52.93 36.25 48.20 39.90 32.66 36.48 41.55 34.53 31.19 40.90 33.27
CP 36.03 37.87 41.68 71.47 40.26 61.11 37.38 47.69 38.53 59.08 35.95 43.27 36.61 47.06
APIMig 51.58 55.33 51.45 63.72 62.04 76.22 66.16 84.55 62.31 88.85 58.96 80.37 51.73 67.58

Deep
Seek-

V3

FRb 34.39 37.01 36.18 74.69 37.84 74.57 43.56 75.18 38.85 71.50 36.76 60.43 39.31 65.46
FRc 31.61 26.33 30.57 44.15 33.93 37.27 30.58 31.56 29.52 37.76 31.46 33.18 32.95 35.72
VC 42.37 44.67 42.22 71.60 45.86 77.34 52.25 63.72 46.53 71.09 44.85 54.93 46.65 68.40
CP 46.64 71.11 49.47 69.84 51.25 85.75 50.83 84.07 48.47 83.01 45.70 71.98 46.34 73.92
APIMig 64.13 88.84 63.99 73.14 68.19 90.09 70.01 90.89 62.99 89.76 61.02 80.90 59.39 80.98

GLM-
4

FRb 33.21 20.83 30.78 48.86 35.11 49.72 41.13 49.57 36.87 51.39 34.12 38.33 37.12 41.76
FRc 34.40 27.67 33.92 48.74 39.92 38.43 38.93 34.00 36.94 39.91 34.51 34.78 34.65 33.59
VC 41.75 51.03 41.25 68.59 45.21 76.26 51.57 78.45 46.64 78.29 44.37 67.47 44.59 69.31
CP 46.09 55.31 50.60 74.59 50.55 81.20 50.65 83.52 49.12 81.92 46.03 69.20 44.33 67.84
APIMig 59.03 69.29 57.60 61.81 64.87 83.80 67.49 89.10 64.32 89.22 61.40 82.35 59.98 83.59

GPT-
4o

FRb 34.74 30.53 32.06 50.48 34.84 48.41 40.74 41.47 36.19 49.68 35.17 38.01 36.61 44.77
FRc 31.69 26.98 27.49 47.40 31.76 32.80 34.10 30.90 31.19 39.23 30.80 31.37 33.37 27.06
VC 38.42 28.53 34.28 51.69 39.44 47.57 43.46 41.81 41.63 49.50 39.02 37.64 39.79 41.47
CP 44.70 45.23 45.52 53.37 46.64 51.20 45.05 43.00 44.15 51.71 42.16 42.00 40.18 49.61
APIMig 59.33 64.77 54.04 58.82 62.49 78.02 66.63 84.69 64.46 89.76 60.14 80.46 56.96 79.02

Table 1: Results of Base LLMs for Different Methods. ”span-x” denotes a migration pair’s version span (e.g., 4.x.x-5.x.x is categorized as a
span-1). The metric for each span is computed as the average of all corresponding migration pairs within that span category.

4.3 Baselines
We compare our results with baseline methods that utilize
LLMs, including Automatic Library Migration (FR), VER-
SICODE, and CodePlan, using the aforementioned datasets.

• FR[Almeida et al., 2024]: This method introduces a
set of prompts designed to guide LLMs in generating
migration code. We compare two types of prompts:
FRb(Zero-Shot) and FRc(Chain of Thoughts).

• VERSICODE(VC)[Wu et al., 2024]: This approach in-
troduces the version-aware code migration task and pro-
vides prompts to validate the model’s ability to migrate
code between specified versions.

• CodePlan(CP)[Bairi et al., 2024]: This model tackles
project-level code editing tasks by providing contextual
information within a class to aid in generating code.

4.4 Implementation Setup
We employ LLMs to accomplish API migration tasks. For
the selection of LLMs, we choose the most popular LLMs:
Claude-3, DeepSeek-V3, GLM-4, and GPT-4o. Our model
parameter settings are configured as follows: the Temperature
is set to 0.7 to strike a balance between text diversity and
coherence during the generation process, while Max Tokens is
capped at 512 to ensure the readability of the code fragments.
Additionally, to enhance the robustness of our experiments,
we allow each LLM to generate results independently 5 times,
reporting the average in our paper.

4.5 Main Results
Table 1 presents the comparison between APIMig and base-
line methods across four LLMs. Our approach achieves supe-
rior performance in cross-multi-version API migration tasks.

Taking GPT-4o as an example, APIMig achieves a 16.52%
average improvement over the state-of-the-art method Code-
Plan in the CodeBLEU metric for all spans. Specifically, for

small version spans (span ≤ 2 major versions), the improve-
ment is 13%, while for large spans (span≥ 3 major versions),
it rises to 19.16%, particularly reaching 21.58% for span-3.
Compared to FRb, FRc, and VC, APIMig shows average
improvements of 24.81%, 29.09%, and 21.14% in 6 spans,
respectively. Furthermore, in the VCEU metric, APIMig
achieves a 28.49% average improvement for all spans, in-
cluding a remarkable 36.90% improvement for large spans.
Against FRb, FRc, and VC, it outperforms 33.17%, 42.83%,
and 33.9% on average in 6 spans respectively.

The results show the superiority of our approach over tra-
ditional prompting and chain-of-thought methods in API mi-
gration, showing its ability to generate critical code elements.
Additionally, experiments on Claude-3, DeepSeek-V3, and
GLM-4 further verify APIMig’s robustness, demonstrating its
adaptability to diverse LLMs.

4.6 Ablation Studies
As shown in Figure 5, we conducted an ablation study on
APIMig to investigate the contributions of its key compo-
nents: (1) removing API evolution information from the
knowledge graph (w/o KG), and (2) eliminating code seg-
ments in the change chain (w/o Change Chain Impact).

Our results demonstrate that both components are essential
for optimal performance. Without the API Evolution Knowl-
edge Graph, LLMs relies only on the training corpus to gener-
ate migration code, causing a 33.08% average VCEU metric
drop in different spans. The VUEC metric decline confirms
that missing API information significantly limits accurate and
relevant migration code generation, highlighting the critical
role of APIEvoKG in providing version-specific API knowl-
edge.

Without Chain of Changes Exploration, CodeBLEU and
VCEU decrease by 22.98% and 5.35%, respectively, demon-
strating that third-party API changes propagate through de-
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Figure 5: Component Effects on GPT-4o

pendency chains rather than occurring in isolation. This
performance drop reveals the model’s difficulty in accu-
rately identifying modification locations without understand-
ing contextual code dependencies, highlighting the necessity
of dependency information for effective migration.

4.7 Case Study
Figure 6 demonstrates our solution during an upgrade of
Lucene in the project from version 4.10.4 to 7.3.1. We uti-
lize our APIEvoKG to generate a cross-version API Change
List through reasoning. Then, we build a dependency graph
for the project code that requires migration and apply the
chain exploration algorithm to pinpoint the affected code that
needs updates throughout the project. For instance, the API
change on line 128 modifies the invoking method’s name and
the return value type, which in turn affects line 222, where a
function declared on line 115 is invoked. Finally, we use a
prompt to guide the LLM to generate the result. Compared
to baseline methods, our method correctly utilizes the change
information and applies the appropriate contextual content to
generate migration code.

5 Threats to Validity
This study proposes a project-level code generation method
for migrating APIs across versions using an APIEvoKG.
While our method shows significant capabilities, it faces lim-
itations, such as the scarcity of relevant datasets for third-
party libraries and open-source projects[Liu et al., 2023]. Our
knowledge graph relies on official documentation and change
logs, which may have inconsistencies and missing informa-
tion, affecting change reasoning accuracy. Additionally, au-
tomated entity extraction and relationship identification may

private ValueSource get…() {
Expression ……
SimpleBindings ……
return 
distance.getValueSource(bindings);
}
final ValueSource vs = 
getDistanceValueSource();

Project Dependency Graph Chain Exploration Algorithm

115
116
124
128
129
……
217
221
222

private ValueSource getDistanceValueSource() {
Expression distance;……
SimpleBindings bindings=new SimpleBindings();……
return distance.getValueSource(bindings);

}

public TopDocs drillDown(DoubleRange range)……{……
DrillDownQuery q=new DrillDownQuery(null);
final ValueSource vs=getDistanceValueSource();

Source code(lucene 4.10.4)

// FRb
distance.getValueSource(bindings, null);
// FRc
distance.getValueSource(bindings);
// VC
distance.getValueSource();
// CP
distance.getValueSource(sortFieldProvider.getSortFields())
// APIMig(ours)
private DoubleValuesSource getDistanceValueSource() {……
distance.getDoubleValuesSource(bindings);}}……
final DoubleValuesSource vs = getDistanceValueSource();

Results

Step 2

Step 1Lucene
6.3.0

getValue
Source

getDoubleV
aluesSource

APIEvoKG
Lucene
6.4.0

API Change List (<“ES , Type, ET ”, [Scope]>)
ValueSource
getValueSource(xxx) update DoubleValuesSource

getDoubleValuesSource(xxx)
[“Method.
Overall”]

𝑬!"#

115217

222
124

Figure 6: Case Study. Migrate project from lucene 4.10.4 to 7.3.1.

introduce errors, especially with complex changes. To miti-
gate this, we have manually reviewed the extraction results to
minimize errors.

6 Conclusion
In this work, we propose a cross-multi-version API migra-
tion framework (APIMig), which provides cross-version evo-
lution knowledge of APIs in libraries through the reasoning of
the API Evolution Knowledge Graph and locates the impact
scope of API changes in the project code using a chain explo-
ration algorithm. Based on a large language model, it facili-
tates the migration of code within the project. This approach
dynamically expands the cross-version API knowledge of the
LLMs while precisely identifying the code that needs to be
modified in context, thus enabling API migration. Experi-
ments conducted on cross-version projects demonstrate the
effectiveness of our proposed method, which achieves com-
petitive results across various cross-version pairs, proving the
method’s effectiveness and robustness in cross-version library
migration projects.
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