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Instantiation-based Formalization of Logical Reasoning Tasks using
Language Models and Logical Solvers

Mohammad Raza and Natasa Milic-Frayling
Qatar Computing Research Institute

Abstract
Robustness of reasoning remains a significant chal-
lenge for large language models, and addressing
it is essential for the practical applicability of AI-
driven reasoning systems. We introduce Semantic
Self-Verification (SSV), a novel approach that ad-
dresses the key challenge in combining language
models with the rigor of logical solvers: to accu-
rately formulate the reasoning problem from natu-
ral language to the formal language of the solver.
SSV uses a consistency-based approach to produce
strong abstract formalizations of problems using
concrete instantiations that are generated by the
model and verified by the solver. In addition to sig-
nificantly advancing the overall reasoning accuracy
over the state-of-the-art, a key novelty that this ap-
proach presents is a feature of verification that has
near-perfect precision over a significant coverage of
cases, as we demonstrate on open reasoning bench-
marks. We propose such near-certain reasoning as
a new approach to reduce the need for manual ver-
ification in many cases, taking us closer to more
dependable and autonomous AI reasoning systems.

1 Introduction
Logical reasoning remains a persistent challenge for large
language models (LLMs). Although these models demon-
strate reasoning capabilities across various domains, their
reasoning often lacks robustness and becomes increasingly
error-prone as task complexity increases. Many recent ap-
proaches have made notable advancements in this active area
of research. Chain-of-thought (CoT) prompting has demon-
strated how the quality of reasoning can be improved by
prompting the model to explicitly generate the steps of rea-
soning in natural language before arriving at the final answer
[Wei et al., 2022]. Variants of CoT and other related prompt-
ing and fine-tuning approaches have shown further improve-
ments [Zhou et al., 2023; Wang et al., 2023; Yu et al., 2024;
Weng et al., 2023; Creswell et al., 2023]. To address the log-
ical inconsistencies that can arise in such natural language
approaches, another interesting direction is to incorporate
LLMs with logical solvers or automated reasoning tools [Pan
et al., 2023; Ye et al., 2023]. Rather than directly attempting

reasoning with the LLM, these approaches use the LLM to in-
fer a formal representation of the problem as a program that
can be executed by the solver, as such automated reasoning
tools guarantee logically sound inference by construction.

While these approaches have demonstrated relative im-
provements in accuracy, we are still far from achieving ro-
bustness and reliability of reasoning. For instance, Figure 1
shows an example reasoning problem from the Law School
Admissions Test on analytical reasoning [Zhong et al., 2022].
On tasks of such complexity, the best reported accuracy,
achieved by a solver-augmented system, is only 43% [Pan
et al., 2023]. Such lack of reliability especially hinders the
practical usability of existing approaches: the burden of ver-
ifying correctness is always on the user, which can be espe-
cially difficult and error-prone for complex reasoning tasks.
Therefore, having a reliable signal of correctness with high
confidence can be hugely beneficial to help reduce the overall
manual effort and cost of verification.

In this work, we propose a new approach to cor-
rectly formalizing reasoning problems called Semantic Self-
Verification (SSV), which offers two key benefits: (1) it im-
proves the overall accuracy of reasoning significantly over
SoTA, and (2) it provides a novel feature of verification that
has near-perfect precision. In our problem formulation, in
addition to producing an answer to a given question, the sys-
tem also indicates if it was able to verify the correctness of the
answer: Question → (Answer, isVerified). This problem for-
mulation is similar to confidence estimation in machine learn-
ing, except that in our case the isVerified indicator is a boolean
rather than continuous value: if true, it indicates a “near cer-
tain” confidence in the correctness of the answer. Such high-
confidence verification can reduce the need for manual check-
ing in many cases.

At its core, our approach addresses the key challenge in
combining LLMs with the robust reasoning of logical solvers:
the formulation of a problem from informal natural language
(NL) to the formal representation that is a program executable
by the solver. For example, Figure 2 shows the formal repre-
sentation of the NL problem from Figure 1. In this case the
formalization is expressed as code in the language of the Z3
SMT solver [de Moura and Bjørner, 2008], which is a state-
of-the-art industrial strength theorem prover that can produce
the correct answer when given these correctly-expressed for-
mal constraints. The crucial task, therefore, is for the LLM
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In a repair facility, there are exactly six technicians: Stacy, Urma, Wim, Xena,

Yolanda, and Zane. Each technician repairs machines of at least one of the follow-

ing three types—radios, televisions, and VCRs—and no other types. The following

conditions apply: Xena and exactly three other technicians repair radios. Yolanda

repairs both televisions and VCRs. Stacy does not repair any type of machine that

Yolanda repairs. Zane repairs more types of machines than Yolanda repairs. Wim

does not repair any type of machine that Stacy repairs. Urma repairs exactly two

types of machines. Which one of the following pairs of technicians could repair all

and only the same types of machines as each other?

(A) Stacy & Urma

(B) Urma & Yolanda

(C) Urma & Xena

(D) Wim & Xena

(E) Xena & Yolanda

Figure 1: Sample problem from the Law School Admissions Test

to correctly translate the NL problem description to such a
formal representation, and this is where LLMs can make sig-
nificant errors, as shown by the limits of prior work [Pan et
al., 2023; Ye et al., 2023].

Our approach of verifying that a formal representation is
true to the original problem is inspired by how humans often
create formalizations of problems expressed in natural lan-
guage. For instance, when school students solve math word
problems, they must first create the right algebraic equation
that represents the problem, before they can solve it to get the
answer. To ensure that their translation to an abstract equation
represents the problem correctly, they are encouraged to con-
sider various example instances of the problem and to check
that the abstract equation consistently satisfies those instances
so that it all “makes sense”. In the same way, in the SSV
approach, rather than just doing a single abstract translation
from NL to a formal representation, we also use the LLM to
additionally generate various concrete instantiations, or ex-
amples, of the general constraint, which are used as test cases
to check the correctness of the abstract formalization. Using
the logical solver, we verify that each of these instantiations
is consistently satisfied by the formal representation. If all of
these distinct semantic relationships consistently hold, then
verification passes.

Figure 4 illustrates how the SSV approach works for the
third constraint from the problem in Figure 2, which requires
that Stacy and Yolanda cannot repair the same type of ma-
chine. A direct translation using the LLM may produce an
incorrect abstract formalization of this constraint as shown in
Figure 4a, where the condition is asserted only for some ma-
chine rather than for all machines because the Exists quanti-
fier is incorrectly used. However, in the SSV approach, we
use the LLM to additionally infer simple concrete instantia-
tions, or examples, of the general constraint. For instance,
a concrete positive example is that Stacy repairs radios and
Yolanda repairs TVs. A negative example is that Stacy and
Yolanda both repair TVs. After inferring these examples in
NL, we also use the LLM to translate them to formal expres-
sions in the language of the solver. We then use the solver

Figure 2: Sample problem formalization as Z3 code

to check that each of these expressions is consistent with the
abstract formalization. In Figure 4a we see that the negative
instantiation fails verification because the abstract formaliza-
tion does not assert the condition for all machine types, so
it still allows Stacy and Yolanda to both repair TVs. How-
ever, with the correct formalization in Figure 4b that uses the
ForAll quantifier, both instantiations pass the solver verifica-
tion, since the abstract formalization correctly disallows that
any machine can be repaired by both technicians.

We note that any notion of verification from natural to for-
mal language cannot provide formal correctness guarantees,
since natural language itself is inherently informal and of-
ten ambiguous. However, as we demonstrate empirically, a
passing verification in our case indicates a near certain con-
fidence in the answer correctness since multiple independent
semantic relationships are consistently satisfied. In this re-
spect, our approach is akin to a consensus-based ensemble as
it is based on agreement between multiple independent pre-
dictors [Zhou, 2012]. However, rather than all predictors ad-
dressing the same task, we have a semantic ensemble of pre-
dictors that are addressing different but semantically related
tasks and the logical solver verifies the formal consistency
between these. We also note that unlike standard proposer-
verifier approaches, in our case there is no verifier that can
check correctness of a proposed formalization: our verifica-
tion is thus based on formal consistency between abstract and
concrete inferences.

Furthermore, having such a high precision verification
mechanism also allows us to improve the formalization it-
self, in two different respects. Firstly, any failing instantiation
can be used as concrete guidance to refine the formalization
further, as it can hint at potential errors. This is similar to
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Figure 3: Towards near-perfect reasoning: SSV achieves new SoTA
accuracy and 100% verification precision on the AR-LSAT law
school tests dataset (all systems using GPT-4 as base LLM).

error-based refinement in code generation techniques [Chen
et al., 2024], except that here we are guided by semantic er-
rors inferred from the instantiations rather than just syntactic
execution errors in the code. Secondly, with our verification
mechanism we can also explore the search space more exten-
sively: using temperature sampling to create multiple candi-
date formalizations and selecting ones that pass verification.

Our evaluation demonstrates how the SSV approach
achieves a significant increase in overall accuracy, as well as
a near-perfect precision (or selective accuracy) on the verified
cases. Figure 3 highlights the results for the most challenging
AR-LSAT law school tests dataset. Though better than direct
LLM inference and CoT, the accuracy of the best performing
existing system (the solver-augmented Logic-LM approach
by [Pan et al., 2023]) is at 43%, while SSV achieves a sig-
nificantly higher accuracy of 71.3%, which also surpasses the
average human performance. Moreover, the precision of the
21.7% of cases that it is able to verify is 100%. This means
that a 21.7% reduction in manual verification effort can po-
tentially be made on tasks of such high complexity. In our
full evaluation we also show higher accuracy and coverage of
verified cases on other standard reasoning datasets.

In summary, we make the following contributions in this
work: (1) We propose the problem formulation of returning
a boolean high-confidence verification indication in addition
to the answer, which can be used to reduce manual cost of
verification. (2) We present the novel technique of semantic
self-verification, which uses concrete instantiations to verify
the correctness of the problem formalization. (3) We show
how SSV can also improve the formalization itself through
instantiation-guided refinement and exploration of multiple
candidate formalizations. (4) We present an extensive evalua-
tion on five open benchmarks that shows a significant increase
in overall accuracy over SoTA, as well as near-perfect selec-
tive accuracy over a significant coverage of verified cases.1

2 Semantic Self-Verification
This section describes the semantic self-verification approach
for reasoning problems, which generates programs verified
and refined by concrete instantiations. Figure 5 presents the

1code & data available at http://github.com/mohammadraza4/ssv

(a) Incorrect formalization (uses Exists quantifier)

(b) Correct formalization (uses ForAll quantifier)

Figure 4: Semantic self-verification of a general constraint: the neg-
ative example fails for the wrong formalization (a), while both in-
stantiations are verified for the correct formalization (b)

main algorithm, illustrating the top-level flow and key com-
ponents. As formulated, the algorithm takes a question (Q),
such as the technicians problem in Figure 1, and outputs an
answer along with an indication of verification success. Fig-
ure 5 also details the algorithm’s configuration parameters:
the chosen LLM and solver, LLM temperature values, and
the maximum repair attempts. We first outline the general
algorithm before discussing its key phases in detail.

For each temperature value to be explored, the algorithm
first uses the LLM to infer a program P that the solver ex-
ecutes to answer the question Q, such as the program from
Figure 2. If an executable program is generated (P ̸= ∅),
the verification loop begins (line 4). The solver first executes
P to obtain an answer. Then, for verification, we infer con-
crete instantiations I, which are test cases for the program’s
constraints and options, such as the six constraints and five
options in Figure 2. The solver attempts to verify that each
instantiation is formally satisfiable and returns any failing in-
stantiation Ifail. For example, for the third constraint in the
technicians program, inferred instantiations (Figure 4a) may
yield the failing case: “Stacy and Yolanda cannot both repair
TVs.” If no failing instantiation is found (as in Figure 4b) and
P satisfies general well-formedness properties, the algorithm
returns its answer A along with verification success (line 12).

If verification fails, we attempt to repair the program P
using the LLM and any failing instantiation, which provides
insight into potential constraint implementation errors. For
example, the failing instantiation in Figure 4a may guide the
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LLM to assert the condition for all machine types using the
forall quantifier, as shown in Figure 4b. After obtaining the
repaired program, we repeat the verification loop. If no an-
swer is verified across all temperatures and repair attempts,
we exit the outer loop (line 16). If no executable program
was inferred, we fall back to direct inference using the LLM
with a chain-of-thought prompt, as in prior work [Pan et al.,
2023]. Otherwise, we return the best answer with verification
failure. We next discuss key algorithm phases in more detail.

Program generation. The GenProgram function in Fig-
ure 5 uses the LLM to generate a solver-executable program
for the given problem. A basic implementation relies on a
direct LLM prompt, but we incorporate techniques from the
code generation literature to improve quality. First, we use
error-based refinement: syntax or execution errors in the gen-
erated program are fed back to the LLM for repair, a common
approach in LLM-based code generation/reasoning domains
[Chen et al., 2024; Pan et al., 2023]. Second, if direct code
generation fails, we employ a compositional approach [Khot
et al., 2023; Pourreza and Rafiei, 2024], generating the pro-
gram incrementally for each identified constraint. This im-
proves code quality compared to direct prompting, which of-
ten produces syntax errors.

Semantic verification. While code generation ensures
an executable solver program, it does not address semantic
correctness—whether the program accurately implements the
problem’s intended constraints. SSV addresses this by gener-
ating and verifying concrete instantiations for each constraint
in the generated program. The GenInstantiations func-
tion first parses the program P to extract constraints and their
NL descriptions. Our program generation phase structures
programs in segments of the form Pinit + C1 + ... + CN +
O1 + ... + OM , where Pinit contains initial definitions, fol-
lowed by explicitly segmented constraints and options, each
annotated with NL comments (e.g. see “#CONSTRAINT:”
and “#OPTION:” segments in Figure 2). This structure al-
lows parsing constraints along with their NL descriptions.

We use the LLM to infer concrete instantiations for each
of the constraints, using their NL descriptions. For each con-
straint Ci, our implementation prompts the LLM for one posi-
tive and one negative instantiation, and both instantiations are
translated into solver expressions (Figure 4). Once all instan-
tiations I are obtained, the Verify function uses the solver
to check if each constraint is consistent with its respective in-
stantiations. For each constraint Ci, we it verifies its positive
instantiation Ip by constructing and executing the expression
Pinit + Ci + Ip and checking that the solver returns SAT.
For the negative instantiation In, it checks that the expression
Pinit + Ci + In is UNSAT. If this holds for all constraints,
the full program is considered verified. If verification fails, it
returns the first failing instantiation Ifail ∈ I.

Beyond verifying concrete instantiations, we also check
general logical well-formedness properties using the
IsWellFormed function, which ensures (1) the program
follows the specified structure, (2) it returns a single an-
swer, and (3) it avoids degenerate expressions—tautologies
or vacuous implications that introduce redundancies or
oversimplifications in the problem formalization.

Semantic program repair. If verification fails and a fail-

Require: Q // the question
Require: LLM // the language model
Require: Solver // the logical solver
Require: Temperatures // LLM temperatures to try
Require: MaxRepairs // maximum repair attempts

1: Abest ← ∅
2: for each T ∈ Temperatures do
3: P ← GenProgram(LLM, T, Solver, Q)
4: while P ̸= ∅ and under MaxRepairs do
5: A← ExecuteProgram(Solver, P )
6: if Abest = ∅ then
7: Abest ← A
8: end if
9: I ← GenInstantiations(LLM, T, P )

10: Ifail ← Verify(Solver, I, P )
11: if Ifail = ∅ and IsWellFormed(P ) then
12: return (A,True)
13: end if
14: if A = ∅ then
15: P ← RepairProgram(LLM, T, Q, P, Ifail)
16: end if
17: end while
18: end for
19: if Abest = ∅ then
20: Abest ← InferLLMAnswer(LLM, Q)
21: end if
22: return (Abest,False)

Figure 5: The Semantic Self-Verification Algorithm

ing instantiation Ifail is found, the RepairProgram function
attempts to repair the original program P , provided no an-
swer has been found. Unlike error-based program repair, this
is a semantic repair based on an instantiation inferred by the
LLM rather than an execution error. In our repair prompt, we
supply the initial definitions code, the constraint code with
its NL description, and the failing instantiation expression.
The LLM is prompted to first do a chain-of-thought analy-
sis to infer whether the error lies in the initial definitions, the
constraint code, or the instantiation itself, before inferring the
corrected code. The prompts used for code generation/refine-
ment, instantiation generation and semantic repair are avail-
able in [Raza and Milic-Frayling, 2025].

3 Evaluation
We evaluate our SSV technique on open benchmarks for log-
ical reasoning, focusing on two key aspects: (1) improving
the general accuracy of reasoning over existing baselines and
(2) assessing verification quality in terms of both precision
(correctness) and coverage (proportion of verified cases).

Datasets. We use five common datasets for logical reason-
ing. All datasets follow a multiple-choice format, where each
task includes a problem statement, a question, and answer op-
tions (e.g., Figure 1). PrOntoQA is a synthetic deductive rea-
soning dataset for LLM evaluation [Saparov and He, 2023].
We use its most challenging subset—fictional character tasks
requiring 5 reasoning hops—comprising 500 test examples
with 2 answer options (True/False). ProofWriter is a widely
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Dataset General Accuracy SSV Verification
Standard CoT Logic-LM SSV Coverage Precision

AR-LSAT 33.3 35.1 43.0 71.3 21.7 94.0 (100.0)
FOLIO 69.1 70.6 78.9 80.9 25.0 98.0 (100.0)

LogicalDeduction 71.3 75.3 87.6 89.7 43.7 100.0
PrOntoQA 77.4 98.8 83.2 100.0 66.0 100.0
ProofWriter 52.7 68.1 79.7 98.0 75.2 98.7 (100.0)

Table 1: General accuracy and SSV precision/coverage with GPT-4 base model. Values in brackets are actual values on corrected datasets.

used logical reasoning dataset [Tafjord et al., 2021]. We use
its open-world assumption subset with 5-hop reasoning tasks,
following [Pan et al., 2023], with 600 test examples and 3
answer options (True/False/Unknown). FOLIO is an expert-
crafted dataset for logical reasoning [Han et al., 2022], fea-
turing real-world knowledge problems phrased in natural lan-
guage and requiring complex first-order logic. We evaluate on
its full test set of 204 examples, each with 3 answer options
(True/False/Unknown). LogDeduction is a dataset from the
BigBench benchmark [Srivastava et al., 2023] involving ob-
ject sequence ordering based on given conditions. The full
test set contains 300 tasks with 3, 5, or 7 answer options.
AR-LSAT consists of analytical reasoning questions from
LSAT exams from 1991–2016 [Zhong et al., 2022]. This
challenging dataset has seen only marginally better-than-
random accuracy from existing approaches [Pan et al., 2023;
Liang et al., 2023]. The test set has 230 questions, each with
5 answer options.

Baselines. We compare our technique against three base-
lines, which represent approaches of reasoning using the
LLM alone, as well as the combination of formal logical
solvers with LLMs. Each of these baselines and our own sys-
tem is parametric in the LLM used, and in our experiments
we investigate all systems with both the GPT-4 model (a cur-
rent best general LLM for reasoning) as well as the weaker
GPT-3.5 model from Open AI. We use the baselines and their
results for these models as reported in [Pan et al., 2023]. The
baselines are as follows. Standard is the direct approach of
prompting the LLM, leveraging in-context learning to answer
the question. CoT (Chain-of-Thought) [Wei et al., 2022] fol-
lows a step-by-step reasoning process, generating explana-
tions before the final answer. Logic-LM is a state-of-the-art
method that integrates LLMs with solvers for formal reason-
ing [Pan et al., 2023], where the LLM is prompted to generate
a solver program to solve the task. SSV is our semantic self-
verification technique (Figure 5). Our implementation uses
the Z3 SMT solver [de Moura and Bjørner, 2008] and ap-
plies identical prompts for both models, with 1-4 few-shot ex-
amples drawn from training datasets (detailed in the Appen-
dices). Our full SSV implementation sets MaxRepairs = 2
and Temperatures = [0, 0.3, 0.4, 0.5] (covering low to mid-
range values), with parameter variations explored in the abla-
tion analysis.

3.1 Results
Main results Table 1 presents the main results, with all sys-
tems evaluated using GPT-4 as the underlying LLM. The ta-

Figure 6: Repair attempts and temperature variations on AR-LSAT

ble reports general accuracy as well as the precision and cov-
erage of SSV verification. General accuracy represents the
percentage of correct answers across the dataset. For SSV,
precision denotes the percentage of correct answers among
those flagged as verified, while coverage indicates the per-
centage of verified cases relative to the entire dataset. The
key observations are as follows:

1. SSV outperforms all baselines in general accuracy. Our
technique achieves a higher general accuracy over all base-
line systems across all datasets. We especially note the drastic
increase of 28.3% over the current best Logic-LM system on
the most difficult AR-LSAT dataset. This shows the strong ef-
fectiveness of our technique in producing robust problem for-
malizations in contrast to just a direct LLM translation from
the natural language description to the solver program.

2. SSV verification has perfect precision across all datasets.
With GPT-4 as base model, SSV achieves 100% verification
precision on all datasets. Notably, on AR-LSAT, FOLIO,
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and ProofWriter, our verification mechanism identified
erroneous cases where the datasets contained incorrect
answers. However, for comparison with baselines, in Table 1
we also report results based on the original datasets (showing
slightly lower precision due to mislabelled cases). See [Raza
and Milic-Frayling, 2025] for details of corrections. For
AR-LSAT cases we also verified our corrections against the
original test answers2. This empirically perfect precision
highlights SSV’s robustness on complex reasoning tasks.

3. SSV verification has significant coverage on all datasets.
Although the precision is very high, we know that SSV veri-
fication does not always succeed. However, we find that the
coverage is significant across all datasets, with the lowest
coverage of 21.7% on the most difficult AR-LSAT dataset.
As expected, we find the coverage increases on the relatively
easier datasets, with a verification coverage of up to 75.2%
on ProofWriter. This significant coverage of verification
shows that the SSV approach can help in avoiding manual
human verification in a significant proportion of cases to
reduce overall cost and effort.

Effect of semantic repair and temperature exploration.
Figure 6 shows the impact of varying semantic repair at-
tempts (MaxRepairs) and temperatures (Temperatures) on
the AR-LSAT dataset. We analyze overall accuracy, program
accuracy (how often program generation succeeds rather than
direct LLM answers), and verification coverage. Semantic
repair improves accuracy by 6.1%, while temperature ex-
ploration increases it by 10.0%. Verification coverage gains
5.2% with repair and more than doubles with temperature ex-
ploration, rising 12.2% above an initial 10.9%. Repair at-
tempts yield diminishing returns and cease to improve any
metric beyond three attempts, while temperature exploration
continues to show some gains up to 0.6. Additionally, the
gap between program accuracy and overall accuracy narrows
(from 9.8% to 5.2%, when averaged over both temperature
and repair attempts), indicating greater reliance on program
generation with these enhancements.

We also ran a full ablation on AR-LSAT without any repair
or temperature sampling (effectively replicating Logic-LM
but using compositional code generation). This scored 55.7%
vs. our 71.3% (Logic-LM: 43%), showing our novel features
add 15.6%, and other enhancements contribute 12.7%.

Evaluation on GPT-3.5. We also evaluated our system
and all baselines using GPT-3.5 as the underlying LLM. The
results are shown in Table 2. Firstly, we note that while the
general accuracy of all systems drops significantly with this
weaker model, our SSV system still performs best overall,
with an average accuracy of 56.2%. However, Logic-LM
performs better than SSV on FOLIO and LogicalDeduction
(this could be partly due to differences in the code generation
quality for the different solver languages that Logic-LM uses
for these datasets). Secondly, we observe that while the cov-
erage of SSV verification also drops significantly, with two
of the more difficult datasets (AR-LSAT and LogicalDeduc-
tion) having no coverage at all, the precision of SSV is very
minimally affected. On the three datasets where there is cov-
erage, we still see an average precision of 97%. This demon-

2https://img.cracklsat.net/lsat/pt/pt80.pdf

strates an important property of reliability of SSV verifica-
tion: even for weaker models, if verification succeeds then it
is still very reliable (and much more reliable than general ac-
curacy), though it may succeed much less often. In practical
terms, such reliability could even allow one to adopt a tiered
strategy to optimize costs: trying weaker (cheaper) models
for tasks first and fall-back on more expensive models if ver-
ification fails.

Verification failures We conducted a manual analysis on
a sample of cases where verification did not pass. Classifica-
tion of key reasons: program not well-formed (13.3%), pro-
gram incorrect (53.3%), example incorrect (10%), both incor-
rect (23.3%). Thus in most cases the program was incorrect,
which aligns with the expectation that examples inference is
generally simpler than abstract program formulation.

4 Limitations and Future Directions
Since natural language is informal, any verification approach
with NL specifications cannot guarantee full correctness.
While SSV verification achieves near-perfect empirical pre-
cision (100% with GPT-4), we discuss the kinds of errors
illustrated by some cases of incorrect verification observed
with GPT-3.5 (specifically, one case in PrOntoQA and four in
ProofWriter where incorrect answers passed verification).

1. Concrete instantiations are insufficient. Since verifica-
tion relies on concrete examples (test cases), these may not
cover all aspects of a general constraint, particularly corner
cases. This caused two failures with GPT-3.5. For instance,
in one case, the conditions “Gary is nice” and “Gary is kind”
were conflated into a single predicate “is kind(Gary)” in the
formalization. An instantiation asserting “Gary is nice but not
kind” could have detected this error.

2. Concrete instantiation and program are both mutu-
ally consistent but wrong. This is the unlikely case where
both the program and the test case have the same error and
therefore pass verification. We found only one such case
which was a rather confusingly trivial error: for some reason
the constraint “Fiona is quiet” was translated as its negation
“Not(is quiet(Fiona))” in both the program and the concrete
instantiation independently generated by GPT-3.5.

3. Missing or superfluous constraints. The LLM may omit
required constraints or introduce unintended ones. Since our
approach relies on explicitly demarcated constraints parsed
from the LLM-generated program, such errors can cause ver-
ification failures. Two GPT-3.5 failures resulted from super-
fluous constraints.

In general, such errors are rare, more common in weaker
LLMs, and expected to decrease as LLMs improve. Errors of
types (1) and (2) could be mitigated with a more exhaustive
examples inference strategy, as our implementation generates
only one positive and one negative example per constraint.
Class (3) errors arise from structural inconsistencies where
program constraints do not match the original problem. Such
cases may be addressed by training specialized modules to
more robustly enforce core structural properties.

Another potential limitation is that while industrial provers
like Z3 are effectively decidable for many practical problems
(we observed no failures due to the solver), in more complex

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://img.cracklsat.net/lsat/pt/pt80.pdf


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Dataset General Accuracy SSV Verification
Standard CoT Logic-LM SSV Coverage Precision

AR-LSAT 20.3 17.3 26.4 28.3 0 -
FOLIO 45.1 57.4 62.7 59.3 1.5 100.0

LogicalDeduction 40.0 42.3 65.7 48.3 0 -
PrOntoQA 47.4 67.8 61.0 72.8 4.2 95.2
ProofWriter 35.5 49.2 58.3 72.5 16.2 94.8 (95.9)

Table 2: General accuracy and SSV precision/coverage with GPT-3.5 base model. Values in brackets are actual values on corrected datasets.

cases our method will conservatively fail verification, as de-
cidability of first-order logic is undecidable in general. Future
work may also explore addressing this limitation using itera-
tive LLM reasoning to assist solver convergence.

5 Related Work
Reasoning with LLMs. Improving the robustness of reason-
ing in large language models is a very active area of research.
One direction of work is to fine-tune or train specialized mod-
els that show improved reasoning ability [Tafjord et al., 2022;
Clark et al., 2020; Yang et al., 2022]. Another direction is
to develop sophisticated prompting strategies to elicit bet-
ter reasoning from LLMs. Chain-of-thought prompting [Wei
et al., 2022] has shown how the quality of reasoning can
be improved by prompting the model to explicitly gener-
ate the steps of reasoning in natural language before arriv-
ing at the final answer. Other examples of prompting ap-
proaches include self-consistency [Wang et al., 2023], ana-
logical reasoning [Yu et al., 2024], and various modular ap-
proaches to address complex problems by decomposition to
simpler sub-problems [Zhou et al., 2023; Khot et al., 2023;
Creswell et al., 2023]. While these approaches show relative
improvements in accuracy, the reasoning is still based on in-
formal natural language and is prone to errors in the reasoning
steps. In contrast, we follow the approach of off-loading the
reasoning task to a formal solver that can guarantee correct-
ness of the reasoning steps. Our particular focus is on the key
challenge of ensuring correct formalization of the problem.

Tool-augmented reasoning. Integrating LLMs with spe-
cialized tools for performing various tasks is becoming in-
creasingly common [Schick et al., 2023]. This approach
has also been adopted to improve the reasoning quality by
augmenting the LLM with logical solvers or automated rea-
soning tools [Pan et al., 2023; Ye et al., 2023; Nye et al.,
2021]. The key challenge with these approaches is to en-
sure that the LLM correctly translates the reasoning prob-
lem from NL to the formal language of the solver. This is
the main focus of our work, where we show how verifica-
tion and refinement with respect to concrete instantiations
generated by the LLM can both improve accuracy and also
provide verification with near-perfect precision. [Kalyanpur
et al., 2024] also infer logic programs with test cases, but
their test cases are arbitrary logical expressions inferred to-
gether with the program, and thus prone to similar errors
the LLM may make in the program. In contrast, we gen-
erate concrete instantiations (literal assignments) indepen-
dently from the program constraints, which the LLM can

infer from the NL without any logical formulation. This
yields very high precision verification which we can offer as
a standalone feature, unlike any prior work. Tool-augmented
approaches have also been explored in the related areas of
planning [Kambhampati et al., 2024; Guan et al., 2024]
and auto-formalization [Wu et al., 2022; Jiang et al., 2023;
He-Yueya et al., 2023], where informal mathematical proofs
are translated to formal specifications defined in theorem
provers like Isabelle [Paulson, 1994] and Lean [de Moura et
al., 2015]. While our work focuses on logical reasoning, the
principle of consistency-based verificaion and refinement of
formalizations using concrete instantiations is also potentially
applicable to these other domains.

Self-verification approaches. Many related works have
also explored the notion of self-verification by LLMs [Weng
et al., 2023; Madaan et al., 2023; Xie et al., 2023; Ling et
al., 2023; Miao et al., 2024]. The general idea is that us-
ing the LLM to inspect and verify its own reasoning can
show improvements, though in some domains self-critiquing
has also shown diminished performance [Valmeekam et al.,
2023]. Our approach of verification is different: instead of
asking the LLM to verify the abstract chain of reasoning, we
only ask it to generate concrete examples of the general con-
straints in the problem. The task of verification is then done
with the solver to formally check that the examples are con-
sistent with the abstract formalization. Thus apart from not
relying purely on the LLM for verification, we also avoid the
more complex task of verifying an abstract chain of reasoning
which can itself be highly error-prone. We show how this ap-
proach provides a very high precision verification, as opposed
to just relative improvements in accuracy.

6 Conclusion
We have presented the Semantic Self-Verification approach,
which infers strong problem formalizations based on con-
crete instantiations, using a consistency-based verification
paradigm that leverages LLMs and logical solvers. Beyond
achieving state-of-the-art accuracy, SSV introduces a novel
verification feature that has near-perfect empirical precision.
As the reasoning power of LLMs continues to advance, such
near-certain verification can serve as a complementary di-
mension to general accuracy gains in order to ensure confi-
dence on arbitrarily complex tasks.
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