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Abstract

Classical information theory, a cornerstone of arti-
ficial intelligence, is fundamentally limited by its
local perspective, often analyzing pairwise interac-
tions while ignoring the larger, hierarchical archi-
tecture of complex systems. Structural entropy (SE)
presents a paradigm shift, extending Shannon en-
tropy to quantify information on a global scale and
measure the uncertainty embedded in a system’s
organizational hierarchy. Although its applications
have broadened significantly from its origins in com-
munity detection across diverse AI domains, a sys-
tematic synthesis of its theory, computational meth-
ods, and applications is currently lacking. This sur-
vey provides a comprehensive overview of SE to fill
this critical void in the literature. We offer a detailed
examination of its theoretical foundations, compu-
tational frameworks, and key learning paradigms,
with a focus on its integration with graph learning
and reinforcement learning. Through an exploration
of its diverse applications, we highlight the power
of SE to advance graph-based analysis and model-
ing. Finally, we discuss key challenges and future
research opportunities for incorporating SE princi-
ples into the development of more interpretable and
theoretically grounded AI systems.

1 Introduction
Information lies at the heart of artificial intelligence. From
Shannon’s entropy [Shannon, 1948] guiding learning algo-
rithms, to the Information Bottleneck [Tishby et al., 2000]
shaping representations–virtually every paradigm in AI can
be seen as either compressing, transferring, organizing, or
extracting meaning from information. Yet, while much of
classical information theory in AI is concerned with quanti-
ties of uncertainty or relevance at a local or pairwise level,
Structural Entropy (SE) offers a distinct and complementary
perspective: it captures the global structure and hierarchical
uncertainty embedded within complex information systems.
At its core, SE provides a rigorous method to quantify and

B Corresponding authors.

decode the uncertainty embedded in the architecture of a com-
plex system, modeled as a graph or matrix [Li and Pan, 2016].
Its significance for the AI community is twofold, offering both
a new metric and a constructive principle for optimization.

On one hand, SE serves as a fundamental metric to quantify
a system’s intrinsic uncertainty. A low SE signals a clear,
efficient hierarchical organization, implying greater functional
coherence and robustness. Conversely, a high SE indicates a
system that is difficult to decompose, approaching the behavior
of a random graph. This principle is directly applied in ar-
eas like privacy-preserving graph analysis, where community
structures are deliberately obscured by increasing structural
entropy [Liu et al., 2019]. This analytical power enables us to
measure properties like the amount of knowledge captured by
a model [Wang et al., 2023a], the emergence of collaboration
between agents [Su et al., 2025], or the safety and stability of
an AI system [Zeng et al., 2025b].

On the other hand, and perhaps more profoundly, SE pro-
vides a principled method to discover a system’s optimal
hierarchical structure. The theory’s central insight is that
minimizing structural entropy is an optimization process that
decodes a system’s most efficient information-theoretic ab-
straction, revealing a nested, hierarchical partitioning of its
components. This discovered hierarchy is not arbitrary; it
represents the most concise description of the system’s or-
ganization, akin to finding its “true” community structure
[Li and Pan, 2016] or its most effective decision hierarchy
[Zeng et al., 2025c]. This constructive capability has al-
ready found potent applications across the AI development
pipeline—from designing optimal pooling layers in Graph
Neural Networks (GNNs) [Wu et al., 2022; Zou et al., 2023;
Duan et al., 2024; Ren et al., 2024] and guiding data augmen-
tation [Wu et al., 2023; Wang et al., 2023b], to shaping re-
ward functions in reinforcement learning [Huang et al., 2024;
Zeng et al., 2023c; Zeng et al., 2024c] and learning more mean-
ingful representations [Yang et al., 2023; Zeng et al., 2023b;
Zeng et al., 2025c].

Despite the rapid proliferation and significant impact of SE-
based methods across various AI domains, a comprehensive
and systematic review that consolidates these advancements
is currently lacking. This paper aims to fill this critical gap.
We provide an extensive overview of the theoretical underpin-
nings of structural entropy, detail the computational methods
developed for its calculation and optimization, and survey the
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learning paradigms that leverage SE for enhanced graph learn-
ing and reinforcement learning. Furthermore, we explore its
diverse applications in fields such as bioinformatics, transport
and geoscience studies, social network analysis, and pattern
recognition, as illustrated in Figure 1.

The paper is structured as follows. Section 2 outlines the
basic concepts of SE. Section 3 delves into learning meth-
ods. Section 4 explores cross-domain applications. Section 5
concludes with future directions and open challenges.

2 Basic Concepts
Structural entropy offers a theoretical foundation for quantify-
ing the complexity and hierarchical organization of structured
data. At its core, this framework models a system as a finite
set of interacting elements, and characterizes its structural
regularities through a tree-based recursive partitioning. In this
section, we introduce the basic mathematical constructs of
encoding trees and the corresponding structural entropy.

2.1 Encoding Tree of a Finite Set
Let A be a finite set representing the entities in a complex
system, such as nodes in a network or data points in a dataset.
A natural approach to modeling the structure of such a system
is through hierarchical abstraction, in which elements are
recursively grouped into nested subsets. This leads to the
definition of an encoding tree, which organizes the elements
of A into a tree structure where each node corresponds to a
subset of A, and the leaves correspond to individual elements.

Definition 2.1 (Encoding Tree of a Finite Set). Given a finite
set A, an encoding tree of A is a rooted tree T satisfying the
following conditions.

First, the root node is denoted by the empty string λ, and
corresponds to the entire set: Tλ = A.

Second, for every node α ∈ T , there exists a nonempty sub-
set Tα ⊆ A. If α has children β0, β1, . . . , βl, then each child
is denoted as βj = α · j, where · denotes the concatenation of
the index sequence α with the integer j, forming a unique code
for the node in the encoding tree. The corresponding subsets
Tβ0 , . . . , Tβl

form a partition of Tα; that is, Tα =
⊔l

j=0 Tβj .

Third, each leaf node γ ∈ T corresponds to a singleton
subset of A, that is, Tγ = {a} for some a ∈ A.

Such a tree encodes a recursive decomposition of the set A,
forming a layered abstraction often referred to as a spectral
hierarchy or multiscale partition.

2.2 Basic Metrics on an Encoding Tree
Consider a non-negative, irreducible matrix A ∈ Rn×n

≥0 , which
represents an information system over n elements. Let V =
{1, 2, . . . , n} denote the index set of rows and columns in A,
corresponding to the objects in the system. An encoding tree
for this system is defined over the set V .

To measure the structural properties of a system, we asso-
ciate to A a stochastic process that models information flow.
Let π = (π1, . . . , πn) be the stationary distribution of the
Markov chain derived from A by row normalization. The
probability of transitioning from object x to object y is defined

by
pxy = πx · bxy, where bxy =

axy∑n
j=1 axj

.

Given a nonempty subset X ⊆ V , we define its volume as

VX =
∑
x∈X

πx,

which represents the stationary probability mass of X .
The incoming flow into X is defined by pX =∑
y/∈X

∑
x∈X pyx, representing the total probability of transi-

tions from outside X into X .
Similarly, the outgoing flow from X is given by qX =∑
x∈X

∑
y/∈X pxy, which quantifies the probability of escap-

ing from X to the rest of the system.
These quantities provide a probabilistic characterization of

how subsets of the system interact with each other under the
dynamics encoded by A.

2.3 Structural Entropy under an Encoding Tree
To evaluate how well a given encoding tree T reflects the
structure of the information system A, we define the structural
entropy of A under T , which captures the information cost of
describing the dynamics of A hierarchically along the tree.
Definition 2.2 (Structural Entropy under an Encoding Tree).
Let A be a non-negative, irreducible matrix, and let T be an
encoding tree over V . The structural entropy of A under T is
defined by

HT (A) = −
∑
α∈T

α−̸=λ

pα log2
Vα

Vα−
= −

∫
T

pα log2
Vα

Vα−
,

where Tα ⊆ V is the subset associated with node α, Vα =
VTα

is its volume, pα = pVα
is the incoming flow into Tα, and

α− denotes the parent node of α in the tree.
This quantity measures how well the tree structure aligns

with the natural flow of information in the system. Low en-
tropy indicates that the tree captures well-separated and coher-
ent groupings of elements.

To assess the intrinsic complexity of an information system,
we consider the optimal encoding tree that minimizes the
structural entropy.
Definition 2.3 (Structural Entropy of an Information System).
Given a non-negative, irreducible matrix A, the structural
entropy of the information system is defined as

H(A) = min
T

HT (A),

where the minimum is taken over all encoding trees T over V .
This value quantifies the minimal cost of encoding the sys-

tem under an optimal hierarchical abstraction. The dimension
of structural entropy is characterized by the depth of the encod-
ing tree T , representing the number of hierarchical partitioning
levels. A key example is the 1-dimensional structural en-
tropy (1D SE), corresponding to an encoding tree T1 of depth
one where the root is directly partitioned into leaf nodes rep-
resenting individual entities. In this case, 1D SE simplifies
to the Shannon entropy of the stationary distribution π, i.e.,
H1(A) = −

∑n
i=1 πi log2 πi.
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Theory

Foundational
Theoretical Works

Foundation SE [Li and Pan, 2016], ISPAI [Li, 2024]

Theoretic Analysis EntropyGap [Liu et al., 2022], Incre-2dSE [Yang et al., 2024b],
Togetherness [Zhang et al., 2021a]

Extension Work Directed [Zhang et al., 2024; Yao et al., 2019], Multi-relational [Cao et al., 2024a],
ITE [Zhang et al., 2023], SEPC [Huang et al., 2024]

Computational
Approaches

Heuristic dedoc [Li et al., 2018], SEAT [Chen and Li, 2022], HCSE [Pan et al., 2021]

Constrained SuperTAD [Zhang et al., 2021b], dedoc2 [Li et al., 2023], SuperTAD2 [Ling et al., 2024],
SSE [Zeng et al., 2024a], SSSE [Zeng et al., 2025a], CoDeSEG [Xian et al., 2025]

Gradient Descent LSENet [Sun et al., 2024], DeSE [Zhang et al., 2025]

Learning
Method

Graph Learning

Graph Pooling SEP [Wu et al., 2022], Hi-PART [Ren et al., 2024] , EDEN[Li et al., 2025]

Structure Augmentation SE-GSL [Zou et al., 2023], SEGA [Wu et al., 2023],
USER [Wang et al., 2023b], SeGSL [Duan et al., 2024]

Kernel & Dimension HAGK [Yang et al., 2024a], MGEDE [Yang et al., 2023]

Reinforcement Learning SIRD [Zeng et al., 2023b], SISA [Zeng et al., 2023c], SI2E [Zeng et al., 2024c], COLLAB [Su et al., 2025]

Cross-Domain
Application

Bioinformatics Cancer [Li et al., 2016], dedoc [Li et al., 2018], detoki [Li et al., 2021], SuperTAD [Zhang et al., 2021b],
SEAT [Chen and Li, 2022], dedoc2 [Li et al., 2023], SuperTAD-Fast [Ling et al., 2024]

Transport &
Geoscience Studies Multispan[Zou et al., 2024], SciXray [Li et al., 2022], KQI [Wang et al., 2023a]

Social Networks UnDBot[Peng et al., 2024], SIASM[Zeng et al., 2024b], Sebot[Yang et al., 2024c], SI2AF[Zeng et al., 2025b],
HISEvent [Cao et al., 2024b], ADP-SEMEvent [Yang et al., 2024d], HyperSED [Yu et al., 2025]

Pattern Recognition

Image Segmentation SLED [Zeng et al., 2023a], SIT-HSS [Xie et al., 2025]

Text Classification MASGCN [Huang et al., 2025], HiTIN [Zhu et al., 2023]

Speech Processing SECodec [Wang et al., 2025a], SEVC [Wang et al., 2025b]

Figure 1: A taxonomy of Structural Entropy works.

3 Theoretical Foundations
3.1 Foundational Theoretical Works
The theoretical framework of SE was established through pio-
neering works that formalized its mathematical principles and
later expanded them into a broader philosophy of information.

Foundation Theory The concept of SE was introduced
by [Li and Pan, 2016] as a principled, information-theoretic
framework for quantifying the complexity of a graph’s struc-
ture. This seminal work defined SE as the minimum code
length required to describe a network’s hierarchy under a
random walk process, effectively bridging graph theory with
Shannon’s information principles. It established that mini-
mizing SE reveals a graph’s intrinsic multi-scale organization.
Building on this, [Li, 2024] significantly broadened the the-
oretical landscape by situating SE within the “mathematical
principles of the information world.” This work frames SE
within the broader context of the Philosophy of AI, formulat-
ing fundamental information laws and the Information Science
Principles of AI (ISPAI), establishing axiomatic foundations
for a comprehensive structural information theory.

Theoretic Analysis Subsequent research has focused on elu-
cidating SE’s properties and forging connections with other es-
tablished graph-theoretic concepts. In social network analysis,
for example, [Zhang et al., 2021a] introduced a “togetherness”
metric that uses SE reduction to quantify the efficacy of net-
work integration when adding inter-community edges. From a
more fundamental perspective, [Liu et al., 2022] established
a significant theoretical link between SE and spectral graph

theory. Their work proved that for any undirected graph, the
difference between SE and the von Neumann graph entropy
(VNE) is bounded within the interval [0, γ], formally connect-
ing SE to the spectral properties of the graph Laplacian.

Extension Work Recognizing that the original formulation
targeted simple graphs, significant research has extended SE’s
principles to more complex network structures and dynamic
scenarios. To handle directed graphs, multiple approaches
have emerged; one introduced a localized 2D SE using a
flow-based algorithm for financial networks [Yao et al., 2019],
while another proposed a random walk-based entropy (RWE)
with a proven theoretical connection to VNE [Zhang et al.,
2024]. For heterogeneous relational data, multi-relational
SE was developed using a random surfing model that jointly
optimizes node and relation selection to enhance interpretabil-
ity [Cao et al., 2024a]. To handle evolving networks, [Yang et
al., 2024b] addressed the challenge of applying SE to dynamic
graphs by proposing incremental computation paradigms,
which include two distinct strategies for efficiently updat-
ing encoding trees and re-optimizing SE in response to net-
work changes. The applicability of SE has also expanded into
new domains, with extensions such as an “infected tree en-
tropy” for source localization in information cascades [Zhang
et al., 2023] and an SE-guided probabilistic coding variant
that regularizes embeddings in natural language understanding
tasks [Huang et al., 2024].

Discussion The evolution of SE from its core principles to a
broad family of specialized variants highlights its versatility.
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However, this expansion also introduces key challenges. Dif-
ferent SE formulations for various graph structures prioritize
different network properties, and their comparative efficacy
remains an open area of investigation. Incremental methods
for dynamic graphs are efficient but may have limitations
when faced with complex structural revolutions. A significant
challenge is the development of a unified SE framework that
can integrate these variants for complex, heterogeneous, and
dynamic networks. While the link to spectral entropy has
strengthened SE’s theoretical underpinnings, a deeper explo-
ration of its relationship with other graph-theoretic objectives—
such as modularity [Newman and Girvan, 2004], the map
equation [Rosvall and Bergstrom, 2008], and various central-
ity measures—is needed to fully situate it within network
science. Future research should prioritize comprehensive com-
parative analyses of existing SE variants and the development
of a unified framework applicable to a broader range of struc-
tures, including hypergraphs and multigraphs, to address the
complexity of modern information systems.

3.2 Computational Approaches
As illustrated in Table 1 and Figure 1, the practical algorithms
for SE minimization can be categorized by their optimization
strategies and the types of constraints they employ.

Heuristic Methods Initial approaches to SE minimization
relied on heuristic strategies to address various flat and hier-
archical clustering problems. The first SE-based chromatin
domain detector, deDoc, pioneered this area by employing a
greedy merging strategy to identify genomic structures [Li et
al., 2018]. This principle was adapted for single-cell omics
in the SEAT framework, which applies SE minimization to
cell-cell graphs to reveal nested subpopulations and analyze
functional diversity [Chen and Li, 2022]. In parallel, HCSE
emerged as a widely used, general-purpose hierarchical clus-
tering framework [Pan et al., 2021]. By recursively isolat-
ing the sparsest levels of a hierarchy through SE-guided op-
timization, HCSE automatically determines the appropriate
hierarchy depth without requiring hyperparameters. Its com-
petitive performance against established methods like LOU-
VAIN [Newman and Girvan, 2004] on real-world networks
validated heuristic SE minimization as a practical and effective
approach to graph clustering.

Constrained Optimization More recent advances in SE
minimization have incorporated domain-specific constraints
to tackle complex biological and computational challenges.
These methods can be systematically categorized by their
constraint-handling mechanisms. One major category enforces
spatial or index continuity constraints, which is crucial for ap-
plications like genomic domain detection where chromatin
regions have an inherent linear organization. SuperTAD estab-
lished this paradigm by combining interval dynamic program-
ming with SE minimization, ensuring that detected topologi-
cally associating domains (TADs) preserve genomic contigu-
ity [Zhang et al., 2021b]. To improve efficiency, SuperTAD2
introduced matrix discretization and approximation strategies,
achieving a significant speedup (e.g., 10x) while maintaining
spatial continuity [Ling et al., 2024]. The same continuity prin-
ciples were extended to single-cell analysis in deDoc2, which

uses dynamic programming to resolve contiguous domains
and capture cell cycle-dependent chromatin dynamics [Li et
al., 2023]. A second category integrates semi-supervised con-
straints, such as labels and pairwise relationships, to guide
the minimization process. The framework by [Zeng et al.,
2024a] unifies these constraints by reformulating SE to penal-
ize violations of must-link/cannot-link pairs during encoding
tree construction. To handle massive datasets, [Zeng et al.,
2025a] scaled this approach by introducing graph sampling
and incremental cluster insertion, reducing time complexity
from quadratic to nearly linear while preserving high accuracy
through theoretically guaranteed approximations.

Gradient-Based Optimization and Differentiable SE A
significant trend is the integration of SE principles with
gradient-based optimization, enabled by the development
of differentiable SE variants compatible with deep learning.
These approaches typically transform the discrete nature of
SE into a continuous objective by using soft assignment ma-
trices, which represent cluster memberships probabilistically.
This innovation allows SE to guide end-to-end learning via
standard backpropagation. LSEnet exemplifies this by creat-
ing a differentiable SE formulation within hyperbolic space,
facilitating cluster-free hierarchical partitioning [Sun et al.,
2024]. Similarly, the DeSE framework pioneers a “soft assign-
ment structural entropy” that enables the co-design of graph
topology and cluster assignments within a unified end-to-end
model [Zhang et al., 2025]. By making SE differentiable,
these methods bridge the gap between information-theoretic
clustering and deep learning, allowing for simultaneous opti-
mization of representations and hierarchical structures.

Discussion The evolution of SE minimization algorithms re-
veals a fundamental trade-off between the efficiency of heuris-
tics, the domain specificity of constrained optimization, and
the integrative power of gradient-based methods. Heuristic
approaches like HCSE and deDoc offer scalability and gen-
erality but provide less flexibility for incorporating complex
domain knowledge. In contrast, constrained methods like Su-
perTAD and semi-supervised frameworks integrate specific
knowledge to enhance relevance and accuracy, though some-
times at the cost of broader applicability. The emergence
of gradient-based techniques such as LSEnet and DeSE sig-
nals a promising convergence, allowing SE to be integrated
directly into deep learning pipelines. While these methods
can jointly optimize representations and partitions, they in-
troduce considerations of model complexity, hyperparameter
sensitivity, and the interpretability of the learned structures.
Distinct from these paradigms, game-theoretic approaches like
CoDeSEG offer another promising direction, leveraging game
theory for near-linear-time community detection [Xian et al.,
2025]. Ultimately, open challenges persist in achieving an op-
timal balance of scalability, performance, and interpretability,
particularly for dynamic or heterogeneous networks. Future
progress may lie in hybridizing these computational paradigms
to harness their respective strengths.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm (Ref) Levels Constrain Time Complexity Github Lang
HCSE [Pan et al., 2021] h Unconstrained O(n2) Link Python
deDoc [Li et al., 2018] 2/3 Unconstrained O(n log2 n) or O(n2) Link Java
deDoc2 [Li et al., 2023] h Unconstrained O(n2) Link Java
SSE [Zeng et al., 2024a] h Label, Pairwise O(h(m log n+ n)) Link Python
SSSE [Zeng et al., 2025a] h Label, Pairwise O(n log2 n+ nkt) Link Python
SuperTAD [Zhang et al., 2021b] h Contiguity O(n4k2h) Link C++
SuperTAD-Fast [Ling et al., 2024] h Contiguity O(n4k2h) Link C++
PYSEAT [Chen and Li, 2022] h Contiguity O(n log n) Link Python
LSENet [Sun et al., 2024] 2 Unconstrained O(nm) Link Python
CoDeSEG [Xian et al., 2025] 2 Overlapping O(nt) Link C++

Table 1: Summary of Algorithms. Here, n denotes the number of nodes, m is the number of edges, t is the number of iterations, k is the
number of flat clusters (i.e., the number of parent nodes directly above the leaf nodes in the encoding tree). The Levels column indicates
the number of hierarchies the algorithm can generate; h signifies that the algorithm can construct an encoding tree with an arbitrary number
of levels. Pairwise: Specifies relationships between data points, including Must-Link (same cluster) and Cannot-Link (different clusters).
Label: Pre-assigns specific data points to clusters as known labels. Contiguity: Ensures nodes in the same cluster have continuous indices.
Unconstrained: No constraints are applied, allowing fully flexible clustering. Overlapping: Nodes can belong to multiple clusters.

4 Learning Methods via Structural Entropy
4.1 Graph Learning Paradigms
SE has emerged as a powerful information-theoretic tool for
graph representation learning, enabling novel architectures and
frameworks. It provides a principled, quantitative measure of a
graph’s inherent hierarchical organization, addressing a funda-
mental challenge in the field: how to learn from unstructured
relational data in a robust and meaningful way.

Graph Pooling In graph-level tasks, pooling operations are
essential for downsampling nodes to create a compact repre-
sentation of the entire graph. However, traditional methods
often suffer from information loss and limited expressiveness.
Since the essence of a graph’s function is often encoded in
its multi-level community structure, methods that iteratively
pool local nodes risk destroying this larger organizational map.
SE Pooling [Wu et al., 2022] directly addresses this by using
global SE minimization to generate all cluster assignments
simultaneously, preventing the cumulative damage to local
structures seen in stepwise pooling. Further advancing this,
the Hi-PART framework [Ren et al., 2024] employs SE to
construct Hierarchical Partition Trees. This approach explic-
itly models the nested, multi-scale nature of graph structures,
enabling it to capture richer detail and surpass the expressive
power of the standard Weisfeiler-Lehman test.

Structure Augmentation Graph structure augmentation, a
cornerstone of modern self-supervised learning on graphs, in-
volves creating altered “views” of a graph to teach a model
what features are essential versus what is noise. Random aug-
mentations risk discarding crucial information, so SE provides
a principled way to guide this process by identifying and pre-
serving the graph’s intrinsic, low-entropy structure. A stable
“anchor view” representing the graph’s core semantic informa-
tion is created. SEGA [Wu et al., 2023] constructs such a view
by finding an encoding tree with minimal SE, thus filtering out
noise while maintaining the essential community hierarchy for
more effective contrastive learning. Similarly, USER [Wang et
al., 2023b] incorporates SE directly into its objective function

to learn an “innocuous graph.” By minimizing SE, it seeks
an intrinsic structure with well-defined communities that is
robust to perturbations. Other methods use SE in a multi-stage
optimization to refine graph structures. SE-GSL [Zou et al.,
2023] first maximizes 1D SE to enhance information content,
then minimizes high-dimensional SE to abstract the graph
into robust hierarchical trees, and finally uses deduction SE to
guide an adaptive graph reconstruction. Extending this, [Duan
et al., 2024] also uses SE to build minimal-SE encoding trees,
leveraging this core structure to guide the fusion of multiple
graph views based on community influence.

Graph Kernels & Embedding Dimensions SE has also
enhanced classical graph analysis tools. Graph kernels that
measure similarity between graphs often struggle to capture
complex structural patterns. The Hierarchical Abstract Graph
Kernel (HAGK) [Yang et al., 2024a] leverages SE to generate
multi-level, abstract representations of each graph’s intrinsic
organization. The kernel then compares these SE-derived
hierarchical structures, offering a more profound similarity
measure than one based on local features alone. Furthermore,
SE provides a principled solution to a persistent challenge in
graph learning: determining the optimal embedding dimension.
MGEDE [Yang et al., 2023] calculates a novel high-level
SE from multi-order adjacency matrices and minimizes it
alongside attribute entropy. This process explicitly determines
the most suitable number of embedding dimensions, balancing
representational capacity with model complexity.

Discussion SE provides a unifying, information-theoretic
foundation for graph learning, shifting the paradigm from
heuristic-driven methods to a more principled approach fo-
cused on quantifying and optimizing a graph’s inherent or-
ganization. By minimizing structural uncertainty, SE acts
as a powerful regularizer, guiding models to learn from the
essential hierarchical information within data while filtering
out stochastic noise. This approach underpins diverse ad-
vancements, from constructing robust anchor views in SEGA
to enabling expressive structural comparisons in kernels like
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HAGK. Future work will likely focus on bridging SE with
other theoretical frameworks and scaling these methods to
handle the dynamics of massive real-world networks.

4.2 Reinforcement Learning Integration
Integrating SE principles into reinforcement learning RL of-
fers novel approaches to address long-standing challenges in
hierarchical learning, exploration, and multi-agent coordina-
tion. This integration equips RL agents with a mechanism to
perceive and decompose complex problems, moving beyond
flat state-action spaces toward a more structured, human-like
understanding of their environment.

SE-Guided RL Frameworks SE provides a formal tool to
automatically discover hierarchical structure in the fundamen-
tal components of an RL problem. To address the “curse of
dimensionality” in State & Action Abstraction, SE helps clus-
ter vast state or action spaces into manageable, hierarchical
abstractions. The SISA framework [Zeng et al., 2023c] auto-
matically uncovers this structure by optimizing an encoding
tree from a state graph, using SE to create an efficient and
task-relevant state representation. In the multi-agent domain,
SIRD [Zeng et al., 2023b] reframes role discovery as hierar-
chical action space clustering by using SE minimization on an
action graph to define distinct roles. For Intrinsic Motivation
for Exploration, the SI2E framework [Zeng et al., 2024c] for-
mulates an intrinsic reward by maximizing value-conditional
SE. This reward, derived from an SE-minimized state-action
graph, encourages the agent to explore states where its actions
lead to the greatest reduction in uncertainty about the envi-
ronment’s causal structure. More comprehensive frameworks
like SIDM [Zeng et al., 2025c] utilize SE at multiple stages to
structure the entire Decision-Making and Skill Discovery pro-
cess. COLLAB-MARL [Su et al., 2025] uses SE to quantify
interaction complexity, revealing emergent coalition structures
by minimizing the SE of a dynamic agent interaction graph.

Discussion The integration of SE into reinforcement learn-
ing allows for a departure from “black-box” agents that learn
through brute-force trial and error. It provides the mathe-
matical tools to build a cognitive architecture for an agent,
enabling it to parse its world into a hierarchy of concepts,
skills, and goals. A structured understanding allows an agent
to reason abstractly, plan over longer horizons, and transfer
knowledge between related tasks—hallmarks of intelligent
behavior. Frameworks like SISA and SIRD demonstrate how
SE can automate the discovery of abstractions, a task that has
historically required significant human engineering. Methods
like SI2E show that exploration need not be random; it can
be a deliberate process of information seeking aimed at re-
solving structural uncertainty. This results in agents that are
not only more sample-efficient but also more interpretable.
Looking forward, a key direction is scaling these methods to
more complex, partially observable environments. Further-
more, incorporating SE into meta-RL and curriculum learning
is a particularly promising frontier. This would enable agents
to autonomously identify the hierarchical structure across a
distribution of tasks, allowing them to learn how to learn by
recognizing and adapting to shared structures. This could be

a critical step toward developing more general and adaptive
artificial intelligence.

5 Cross-Domain Applications
5.1 Bioinformatics
SE has demonstrated notable effectiveness in biological sys-
tem analysis by enabling the precise detection of hierarchical
structures and patterns.

The application of SE minimization in genomics began
with foundational work in cancer subtyping, which correlated
entropy-minimized gene expression patterns with clinical out-
comes [Li et al., 2016]. This principle was soon extended to
the analysis of 3D genomic architecture. A major area of im-
pact has been the identification of TADs from Hi-C data. The
first SE-based detector, deDoc, pioneered this by identifying
large-scale TAD-like structures [Li et al., 2018]. Subsequent
methods focused on refining this process. SuperTAD, for
instance, employed dynamic programming to better resolve
hierarchical chromatin domains [Zhang et al., 2021b], and its
successor, SuperTAD2, significantly accelerated this process
through matrix discretization [Ling et al., 2024].

The focus on hierarchical analysis has naturally translated to
the higher resolution of single-cell omics. In this domain, tools
like SEAT minimize global uncertainty in cell-cell graphs to
improve pseudo-time inference by detecting hierarchical sub-
populations across various omics datasets [Chen and Li, 2022].
SE has also been crucial for decoding chromatin dynamics at
the single-cell level. deTOKI uses SE principles to analyze
regulatory dynamics within individual cells [Li et al., 2021],
while the more recent deDoc2 uses dynamic programming to
resolve how single-cell chromatin hierarchies change with the
cell cycle, a significant advance in the field [Li et al., 2023].

5.2 Transport and Geoscience Studies
SE minimization is also being applied to complex systems
in transportation and geoscience, offering novel methods for
spatio-temporal modeling and knowledge quantification.

In transportation, the transformer-based MultiSPANS frame-
work improves traffic forecasting by using SE minimization
to optimize its spatial attention mechanism. This approach
generates hierarchical encoding trees of the road network,
enhancing the model’s interpretability and ability to capture
multi-range spatial dependencies [Zou et al., 2024].

In geoscience, SE provides a structural lens for analyzing
the evolution of scientific knowledge. The “Scientific X-ray”
method, for example, constructs “idea trees” from citation
networks to visualize how scientific ideas are inherited and
to identify high-potential research directions [Li et al., 2022].
Building on this structural approach, another framework re-
defines knowledge quantification by measuring differences in
hierarchical disorder within these same networks. This method
produces a robust Knowledge Quantification Index that suc-
cessfully identifies overlooked but influential works and Nobel
Prize-winning topics. By focusing on information structure
over semantic content, it provides a more objective measure
of scientific impact that is less susceptible to manipulation
[Wang et al., 2023a].
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5.3 Social Networks
SE minimization principles provide interpretable, hierarchy-
aware frameworks that have significantly advanced foren-
sic analysis, adversarial modeling, and knowledge discovery
within social networks.

In bot detection, SE is applied in diverse ways. UnDBot
offers an unsupervised approach, leveraging heterogeneous
SE on multi-relational graphs to decode bot networks through
community labeling [Peng et al., 2024]. For greater robust-
ness against adversarial attacks, SEBot integrates SE with
multi-view contrastive learning to reduce uncertainty via hier-
archical community encoding [Yang et al., 2024c]. Moving
from detection to proactive attack modeling, the SIASM frame-
work uses conditional SE minimization to optimize follower
selection, thereby maximizing a socialbot’s influence while
simultaneously evading detection [Zeng et al., 2024b].

SE is also pivotal for analyzing information dissemination
and system resilience. The SI2AF framework, for instance,
evaluates the robustness of news detection systems by analyz-
ing uncertainty and community hierarchies in user-post inter-
actions. It introduces an SE-based influence metric that com-
bines content relevance with community structure, enabling
more realistic adversarial simulations [Zeng et al., 2025b].

For social event detection, SE facilitates the identification
of emergent topics without predefined event counts. HISEvent
achieves this by incrementally building message graphs with
1D SE and then hierarchically detecting events using 2D SE
optimization [Cao et al., 2024b]. Addressing privacy, ADP-
SEMEvent integrates adaptive differential privacy into the 2D
SE minimization process, enabling accurate event detection
while protecting user data [Yang et al., 2024d]. To further
improve performance, HyperSED models social messages in
hyperbolic space, employing differentiable, SE-guided parti-
tioning to significantly enhance both the accuracy and speed
of event detection over previous methods [Yu et al., 2025].

5.4 Pattern Recognition
SE has driven significant advances across pattern recognition
by providing a principled way to model and optimize hierar-
chical structures in visual, textual, and speech data.

In visual computing, SE enhances feature preservation and
segmentation. For object detection, SLED is an unsupervised
framework that detects skin lesions by minimizing the entropy
of multiscale superpixel graphs, using the resulting structural
information to isolate outliers [Zeng et al., 2023a]. For general-
purpose segmentation, SIT-HSS first constructs a graph and
then performs iterative merging, resulting in superior hierar-
chical superpixel segmentations that outperform other unsu-
pervised methods [Xie et al., 2025].

In natural language processing, SE enables the effective
integration of syntactic structures into text models. HiTIN,
a hierarchy-aware tree isomorphism network, leverages SE
to inject the syntactic hierarchy of a sentence directly into
its graph-based representation for more accurate hierarchical
text classification [Zhu et al., 2023]. Similarly, MASGCN ap-
plies an SE-based loss function to guide a graph convolutional
network in capturing syntactic features for the specific task
of aspect-based sentiment analysis, achieving state-of-the-art
performance [Huang et al., 2025].

In speech processing, SE has spurred innovations in both
compression and voice conversion by identifying meaningful,
cluster-based structures in audio signals. SECodec introduces
a compressive speech representation by applying SE to cluster
feature nodes, which allows for efficient compression with
reduced distortion [Wang et al., 2025a]. In a similar spirit, the
SEVC framework for voice conversion uses 2D SE to group
reference speech frames into semantic clusters. By mapping
a source speaker’s frames to these target clusters, it ensures a
high-fidelity speaker transformation [Wang et al., 2025b].

6 Conclusion

This survey has systematically charted the landscape of SE,
consolidating its theoretical underpinnings, computational
methodologies, and burgeoning applications across the field
of artificial intelligence. By tracing its evolution from a novel
information-theoretic measure for graph complexity to a ver-
satile optimization principle integrated into advanced learning
paradigms, we have aimed to fill a critical void in the literature.
Our review reveals that SE offers a distinct and powerful lens
for AI, shifting the focus from local, pairwise interactions
to the global, hierarchical organization of complex systems.
We have detailed how minimizing SE serves as a constructive
principle to uncover a system’s most efficient information-
theoretic abstraction, a capability that has been effectively har-
nessed in graph learning for tasks like pooling and structure
augmentation, and in reinforcement learning for discovering
hierarchical state-action spaces and guiding exploration. The
diverse cross-domain applications—from decoding genomic
architectures in bioinformatics to modeling influence in social
networks and enhancing pattern recognition—underscore SE’s
broad utility and impact.

In conclusion, Structural Entropy provides more than just a
new set of tools; it offers a principled way of thinking about
information and structure in a hierarchical world. By providing
a rigorous method to quantify and optimize the organizational
uncertainty within data, SE holds the potential to guide the
development of AI systems that are not only more powerful
but also more interpretable, robust, and theoretically grounded.
As the complexity of our models and the systems they interact
with continues to grow, the principles of Structural Entropy
will be indispensable in our quest to build the next generation
of artificial intelligence.
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