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Abstract
Recent advancements in radiology report genera-
tion have utilized deep neural networks such as
CNNs and Transformers, achieving notable im-
provements in generating accurate and detailed re-
ports. However, their practical adoption is hin-
dered by the challenge of balancing global depen-
dency modeling with computational efficiency. The
state space model, particularly its enhanced variant
Mamba, offers promising linear-complexity solu-
tions for long-range dependency modeling. Despite
its strengths, Mamba’s fixed positional encoding
limits its ability to effectively capture complex spa-
tial dependencies. To address this gap, we propose
RRG-Mamba, an advanced framework for efficient
radiology report generation. Within the RRG-
Mamba, we enhance the vanilla Mamba by inte-
grating rotary position encoding (RoPE), enabling
dynamic modeling of relative positional informa-
tion in visual feature sequences. Furthermore, we
design a global dependency learning module to op-
timize long-range visual feature sequence model-
ing. Extensive experiments on publicly available
datasets, including IU X-Ray and MIMIC-CXR,
demonstrate that RRG-Mamba achieves a 3.7% im-
provement in BLEU-4 score over existing mod-
els, along with significant gains in computational
and memory efficiency. Our code is available at
https://github.com/Eleanorhxd/RRG-Mamba.

1 Introduction
Automatic radiology report generation (RRG) has emerged
as an influential research area in medical imaging, driven by
the increasing demand for efficient and accurate diagnostic
tools [Hou et al., 2023; Bu et al., 2024]. Traditional radiol-
ogy report generation relies on radiologists’ expertise, mak-
ing it time-consuming and susceptible to errors such as mis-
diagnoses or missed findings [Yan and Pei, 2022; Wang et
al., 2023]. This challenge has led to growing interest in lever-
aging deep learning technologies to automate extracting crit-
ical information from medical images and generate profes-

∗Corresponding author.

sional reports, which can significantly enhance the efficiency
of medical service delivery, optimize diagnostic accuracy, and
alleviate the heavy workload of radiologists [Li et al., 2022b;
Tanida et al., 2023; Bu et al., 2024].

Recent advancements in image captioning and encoder-
decoder frameworks have driven significant progress in RRG.
By leveraging convolutional neural networks (CNNs) for
image encoding [Zhang et al., 2020; Huang et al., 2023;
Bu et al., 2024] and Transformer models for report decod-
ing [Li et al., 2022a; Li et al., 2023; Wang et al., 2023],
these systems [Yan et al., 2021; Wang et al., 2023] aim to
provide comprehensive and precise insights for timely and
accurate medical diagnosis. This task involves two distinct
modalities: visual (image) and textual (report) information.
To facilitate cross-modal alignment and semantic integration,
several approaches [Chen et al., 2020; Chen et al., 2021;
Shen et al., 2024] incorporate a memory matrix mechanism
that effectively integrates key features from both modali-
ties, allowing the model to retain critical interactions be-
tween the images and the generated text, thereby improv-
ing the accuracy and consistency of the reports. Addition-
ally, given the highly technical and medically specialized na-
ture of radiology reports, recent studies [Zhang et al., 2020;
Wang et al., 2022a; Yang et al., 2023; Huang et al., 2023]
have focused on integrating multi-source medical knowledge,
such as posterior-and-prior knowledge [Liu et al., 2021],
medical knowledge graphs [Hou et al., 2023], and dynamic
knowledge graphs [Li et al., 2023] to better understand medi-
cal image content, improving the visual feature representation
and enhancing the overall report generation process.

Despite the significant progress in recent RRG methods,
they still have several limitations. Traditional methods utiliz-
ing pre-trained CNNs [Zhang et al., 2020; Huang et al., 2023;
Bu et al., 2024] focus on local feature extraction but strug-
gle to model global context and long-range dependencies due
to their limited receptive fields [Zhu et al., 2024; Liu et al.,
2024]. Vision Transformers (ViT) address the above limi-
tations by employing self-attention mechanisms to capture
global dependencies [Li et al., 2022a; Wang et al., 2022b;
Li et al., 2023]. However, this comes at the cost of increased
computational resources and storage requirements, particu-
larly on large-scale datasets. The self-attention mechanism
requires computing correlations between all positions in the
input sequence, leading to a quadratic growth in parameter
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Figure 1: Accuracy and effiency comparison of RRG-Mamba with
different RRG models (i.e. R2GenCMN (CMN), DCL) on the IU
X-Ray dataset: (a) accuracy comparision, (b) time and parameter
complexity comparision.

count with sequence length. Consequently, the trade-off be-
tween global context modeling and computational efficiency
in the RRG task remains an unresolved challenge.

To fill the gap, we propose RRG-Mamba, a novel frame-
work that leverages Mamba’s capability for global informa-
tion modeling in radiology report generation. Furthermore,
RRG-Mamba introduces rotary position encoding (RoPE) to
optimize the vanilla Mamba, improving its flexibility and ef-
ficiency in capturing relative positional information and long-
range dependencies from the visual feature sequences. Build-
ing on this, we design a global dependency learning mod-
ule that dynamically captures relative positional information
while effectively modeling complex spatial relationships. Fi-
nally, comprehensive experiments have demonstrated the ef-
fectiveness of RRG-Mamba. As shown in Figure 1, this ap-
proach not only alleviates the model’s computational over-
head but also preserves its accuracy, achieving a superior
trade-off between efficiency and performance.

The main contributions in the paper are as follows:

• We identify a key challenge in radiology report gener-
ation: the inherent trade-off between effectively captur-
ing global dependencies and maintaining computational
efficiency. To our knowledge, this work marks the pio-
neering attempt to apply Mamba for addressing this crit-
ical issue within the task.

• We propose RRG-Mamba, a novel framework for effi-
cient visual representation. Additionally, RRG-Mamba
designs a global dependency learning module that in-
tegrates rotary position encoding, enhancing the vanilla
Mamba for effectively modeling of long-sequence visual
feature dependencies.

• We conduct comprehensive experiments across two pub-
lic datasets, meticulously evaluating the performance of
our proposed RRG-Mamba. The results demonstrate
RRG-Mamba’s superior efficacy over multiple baselines
and establish new performance benchmarks, while also
improving computational and memory efficiency.

2 Related Work
2.1 Radiology Report Generation
RRG is a critical task in medical artificial intelligence, which
aims to automatically generate descriptive and clinically rel-
evant reports from medical images. In recent years, re-

searchers [Huang et al., 2023; Xue et al., 2024; Shen et al.,
2024; Hou et al., 2025] have made significant progress in
RRG. [Chen et al., 2021] used a shared memory matrix in
the encoder to fully explore the association between medi-
cal images and texts, thereby promoting the interaction be-
tween cross-modal information. [Li et al., 2023] proposed a
dynamic knowledge graph-enhanced model for radiology re-
port generation that integrates medical knowledge to improve
visual feature representations and optimizes dynamic graph
retrieval through contrastive learning, thereby enhancing re-
port accuracy. [Wang et al., 2023] employed a Vision Trans-
former as an encoder to extract visual features. They intro-
duced multiple learnable “expert” tokens in both the encoder
and decoder to interact with visual tokens, thereby enhancing
the model’s attention to fine-grained lesion areas. Although
these methods have made significant progress in RRG, they
still face limitations in extracting fine-grained pathological
features and enhancing the representation of key lesion areas.

2.2 State Space Models
Recently, state space models (SSMs) [Hui et al., 2019;
Gu et al., 2021; Gu et al., 2022] have received widespread
attention due to their potential in sequence modeling. In par-
ticular, the enhanced Mamba model, leveraging the SSM, sig-
nificantly accelerates inference speed while effectively mod-
eling long-range dependencies in sequential data through a
hardware-aware parallelization strategy [Gu and Dao, 2023].
Inspired by Mamba, multiple models have demonstrated re-
markable advantages across diverse applications. For exam-
ple, [Liu et al., 2024] proposed a state-space model with a
global receptive field, incorporating multi-directional scan-
ning and hierarchical networks to comprehensively capture
information at every position within the input sequence. [Yue
and Li, 2024] utilized grouped convolutions and channel
shuffling to achieve efficient and generalized medical im-
age classification while significantly reducing computational
overhead. Similarly, [Zhu et al., 2024] employed a bidirec-
tional state-space model to effectively capture global infor-
mation, complemented by a position embedding module for
local semantic feature perception. The successful applica-
tion of SSM to complex sequence modeling tasks underscores
their efficacy and offers valuable insights that pave the way
for further advancements in medical image analysis.

3 Preliminary
State Space Models. The SSM-based models, e.g., Mamba,
map the one-dimensional input sequence x(t)∈R to the out-
put sequence y(t)∈R, capturing their relationship through a
hidden state h(t)∈RN for sequence modeling and prediction.
The calculation process is as follows:

h
′
(t) = Ah(t) +Bx(t),

y(t) = Ch(t),
(1)

where A∈RN×N is evolution parameter, B∈RN×1 and
C∈RN×1 refer to the projection parameters.

To adapt SSM for deep learning, it is necessary to convert
it from a continuous-time model to a discrete-time model by
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Figure 2: RRG-Mamba overall architecture, including visual extractor, global dependency learning module (GDLM) and report generator.
GDLM combines rotary position encoding (RoPE) with 2D selective scan (SS2D) layer to capture relative position information and model
long-distance dependencies. The CM-adapter is cross-modal adapter and ⊙ is element-wise multiplication. The DPB is dynamic position bia
and SiLU is an activation function.

introducing a time scale parameter ∆ and applying the zero-
order hold (ZOH) discretization rule, as follows:

Ā = exp(∆A), (2)

B̄ = (∆A)−1(exp(∆A)− I) ·∆B, (3)

where Ā and B̄ denote the discrete parameters.
After discretization, the Eq.(1) is written as follows:

hk = Āhk−1 + B̄xk,

yk = Chk.
(4)

Finally, the SSM model utilizes a global convolution to
compute the output:

K̄ = (CB̄,CĀB, ...,CĀL−1B̄),

y = x ∗ K̄,
(5)

where K̄∈RL and ∗ denote a structured convolutional kernel
and the convolution operation, respectively. L represents the
length of the input sequence x(t).

Radiology Report Generation. RRG involves au-
tomatically generating descriptive and accurate re-
ports R={w1, w2, ..., wNR

} based on medical imaging
I={i1, i2, ..., iNI

}, where NR and NI are the number of
tokens in reports and the number of images, respectively.

4 Method
This section details RRG-Mamba, comprising the visual ex-
tractor, global dependency learning module, and report gen-
erator, as illustrated in Figure 2.

4.1 Visual Extractor
For each image i, the corresponding visual features
v∈RH×W×C=Vencoder(i) are extracted through the visual
encoder, where H and W represent the spatial dimensions
of the feature map, and C is the number of channels.
Vencoder(·) denotes the visual encoder.

Subsequently, the visual feature v generates two distinct
visual representations: the global visual feature representa-
tion vG∈RHW×C and the serialized token feature represen-
tation vS∈RHW×C . The detailed computation procedure is
outlined as follows:

vG = AvgPool(v),
vS = LN(Proj(Flat(v))),

(6)

where ‘AvgPool’, ‘LN’, ‘Proj’ and ‘Flat’ represent global av-
erage pooling, layer normalization, projection and flattening
operations, respectively.

4.2 Global Dependecy Learning Module
Due to the limitations of CNNs’ local receptive field, we de-
sign the global dependecy learning module (GDLM), lever-
aging the SSM backbone to effectively model long-range de-
pendencies within medical image sequences and capture crit-
ical lesion features. Additionally, we integrate rotary posi-
tion encoding (RoPE) [Su et al., 2023] to enhance the vanilla
Mamba, improving its efficiency and flexibility in capturing
relative positional information from visual feature sequences.

Specifically, inspired by dynamic position bias (DPB) [Chu
et al., 2023], we first use DPB to adjust the spatial infor-
mation of the serialized tokens vS , thereby enhancing RRG-
Mamba’s sensitivity to the spatial regions of visual features
and capturing spatial structural information. The calculation
process is as follows:

vP = vS + DPB(vS), (7)

where vP∈RHW×C is the visual feature sequence adjusted
by DPB.

Then, to enhance the correlation between various positions
in medical images, we input the feature vP adjusted by DPB
into the convolution operation Conv(·) to extract richer local
spatial features and strengthen global dependency modeling:

vcon = Conv(vP ), (8)

where vcon is the feature representation obtained after the
convolution operation.
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To further capture global long-term dependencies and con-
textual relationships within the visual feature sequence, we
enhance Mamba by integrating rotary positional encoding
(RoPE), which improves the model’s ability to preserve spa-
tial positions and rotational invariance. The specific calcula-
tion process is as follows:

vmcon = SiLU(DWConv(Linear(LN(vcon)))),

vscon = SiLU(Linear(LN(vcon))),
(9)

vrp = (Rd
Θ,mWqv

m
con,m)⊤(Rd

Θ,nWkv
m
con,n), (10)

vM = Linear(vscon ⊙ Norm(SS2D(vrp))), (11)
where vmcon and vscon represent the intermediate features ob-
tained by projecting to the hidden space. vmcon,m, vmcon,n are
the m-th and n-th visual embedding vectors in the input se-
quence vmcon, respectively. Rd

Θ,m and Rd
Θ,n are orthogonal

matrices. Wq and Wk are weight matrices. vrp is the feature
sequence obtained by the RoPE, and vM represents the out-
put of the improved Mamba. ‘SiLU’, ‘DWconv’, ‘Linear’,
‘Norm’and ‘SS2D’ represent activation function, depthwith
convolution, linear layer, normalization layer and 2D selec-
tive scan, respectively. The ⊙ is element-wise multiplication.

Finally, we concatenate vG and vM to obtain the output of
the GDLM:

v
′

G = Concat(vG, vM ), (12)

where v
′

G∈RHW×C is the global visual features obtained by
GDLM and ‘Concat’ denotes the concatenate operation.

In Eq.(11), SS2D is a pivotal component of the Mamba
framework, with its structure depicted in Figure 2. In this
process, visual features are initially partitioned into non-
overlapping patches, then scanned along four distinct paths,
generating four independent sequences. Each sequence is
subsequently processed by the selective scan space state se-
quential model (S6) [Gu and Dao, 2023], which extracts
spatial information from various directions while effectively
preserving critical contextual features. Finally, the four se-
quences are merged to form the consolidated 2D visual fea-
ture representation. This multi-path scanning and selective
spatial processing enable RRG-Mamba to effectively capture
richer spatial dependencies, which are essential for accurately
modeling the complex visual patterns in medical images.

4.3 Report Generator
Cross-modal Adapter. We introduce cross-modal adapter to
enhance the interaction and fusion of features across modal-
ities. Specifically, inspired by [Wang et al., 2024], we em-
ploy Chexpert [Irvin et al., 2019] to generate pseudo labels y
for each visual feature v

′

G, automatically annotating the pres-
ence of 14 prevalent diseases in medical images. This process
strengthens the semantic alignment between visual and tex-
tual features, improving cross-modal consistency. The label
generation is formalized as:

{y1, y2, . . . , yNC
} = Φ(softmax(Wc · v

′

G)), (13)

where NC is the number of disease categories and Wc is
weight parameter. Φ(·) is the label generation function.

Then, we apply a projection layer to projects the visual fea-
ture sequence vlG fused with the pseudo labels and the hidden

state H from the decoder layer into a shared feature space,
obtaining the cross-modal feature M, as follows:

M = Proj(vlG,H). (14)

Encoder-Decoder. We employ a Transformer-based model
to generate radiology report. Specifically, at time step T , the
encoder maps the visual features v

′

G into intermediate feature
representations hi∈R1×d. Next, we use the embedding layer
to obtain the word embedding ji∈R1×d of each word token
wi in the report R. d denotes the dimensionality of the hidden
states. Then, the decoder generates the output of the current
time step. In this cycle, a complete radiology report is gradu-
ally generated. The process is as follows:

{h1, h2, ..., hNS
} = Encoder(v

′

G), (15)

{j1, j2, ..., jT−1} = Embed(w1, w2, ..., wT−1), (16)
pT = Decoder(h1, h2, ..., hNS

;M; j1, j2, ..., jT−1), (17)
where wi and pT are the i-th word in the ground truth and the
predicted word at time step T , respectively. NS denotes the
number of the intermediate features. The ‘Embed’ is embed-
ding layer.

4.4 Objective Function
The cross-entropy loss function LCE is utilized to measure
the divergence between the predicted report {pi}NR

i=1 and the
corresponding ground truth {wi}NR

i=1, thereby enhancing the
model’s ability to predict accurately, as follows:

LCE = − 1

NR

NR∑
i=1

wi · log(pi). (18)

5 Experiments and Analysis
5.1 Experiment Settings
Datasets. We evaluate our model on two publicly available
RRG datasets: IU X-Ray [Shin et al., 2016] and MIMIC-
CXR [Johnson et al., 2019]. IU X-Ray is a public radiol-
ogy report generation dataset released by Indiana University.
MIMIC-CXR is a large-scale chest X-ray dataset, which is
widely used in tasks such as medical image processing.

Metrics. We use natural language generation (NLG) met-
rics to evaluate the quality of generated medical reports, in-
cluding BLEU [Papineni et al., 2002], METEOR [Denkowski
and Lavie, 2011], and ROUGE-L [Lin, 2004]. These met-
rics can measure the fluency and accuracy of the generated
report and evaluate its similarity with the reference report,
thereby effectively reflecting the generated report’s language
quality and content consistency. To assess the clinical utility
of generated reports, we employ clinical efficacy (CE) met-
rics, including precision, recall, and F1-score. The evaluation
focuses on disease-specific keywords derived from radiology
reports, where we convert unstructured radiologist narratives
into 14 structured labels.

Implementation Details. Following [Yan and Pei, 2022;
Shen et al., 2024], we adopt the pre-trained DenseNet-121
[Huang et al., 2017] as the visual encoder. We provide sev-
eral other variants of visual encoders, including ResNet-101
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Type Models IU X-Ray MIMIC-CXR
BL-1 BL-2 BL-3 BL-4 M R BL-1 BL-2 BL-3 BL-4 M R

R2Gen 0.470 0.304 0.219 0.165 0.187 0.371 0.353 0.218 0.145 0.103 0.142 0.277
ResNet R2GenCMN 0.475 0.309 0.222 0.170 0.191 0.375 0.353 0.218 0.148 0.106 0.142 0.278

PromptMRG 0.401 - - 0.098 0.160 0.281 0.398 - - 0.112 0.157 0.268
R2Gen-Mamba 0.482 0.315 0.228 0.176 0.208 0.382 0.352 0.222 0.152 0.110 0.141 0.284

PPKED 0.483 0.315 0.224 0.168 - 0.376 0.360 0.224 0.149 0.106 0.149 0.284
DenseNet MAN 0.501 0.328 0.230 0.170 0.213 0.386 0.396 0.244 0.162 0.115 0.151 0.274

Clinical-BERT 0.495 0.330 0.231 0.170 0.209 0.376 0.383 0.230 0.151 0.106 0.144 0.270

BLIP 0.492 0.314 0.222 0.169 0.193 0.381 0.350 0.219 0.152 0.109 0.151 0.283
ViT DCL - - - 0.163 0.193 0.383 - - - 0.109 0.150 0.284

METransformer 0.483 0.322 0.228 0.172 0.192 0.380 0.386 0.250 0.169 0.124 0.152 0.291

ViT-B/32 0.506 0.322 0.228 0.165 0.207 0.371 0.387 0.234 0.149 0.104 0.145 0.277
ViT-B/16 0.505 0.327 0.237 0.179 0.194 0.395 0.389 0.239 0.150 0.110 0.144 0.284

Ours ResNet-101 0.507 0.334 0.248 0.192 0.198 0.401 0.392 0.245 0.156 0.113 0.146 0.285
DenseNet-121 0.528 0.368 0.271 0.207 0.215 0.408 0.406 0.253 0.169 0.121 0.154 0.293

Table 1: Comparing the performance of our proposed RRG-Mamba with other competitive models on the publicly available IU X-Ray
and MIMIC-CXR datasets, with the best performing scores highlighted in bold. BL, M, and R refer BLEU, METEOR, and ROUGE-L,
respectively, and ViT refers to Vision Transformer.

Models Precision Recall F1

R2Gen 0.333 0.273 0.276
R2GenCMN 0.334 0.275 0.278
METansformer 0.364 0.309 0.311
DCL 0.471 0.352 0.373
MAN 0.411 0.398 0.389

Ours 0.498 0.453 0.475

Table 2: Clinical efficacy metrics comparison of RRG-Mamba and
other models on the MIMIC-CXR dataset.

[He et al., 2016], ViT (ViT/B-16 and ViT/B-32) [Dosovit-
skiy, 2020] to further explore the performance of different
visual encoders in RRG tasks. We configure the word iden-
tification ratio as k=0.5, thereby controlling the proportion
of significant words. According to [Gu et al., 2022], we de-
sign three versions of GDLM with different structures (tiny,
samll and base) to explore the impact of model capacity on
RRG-Mamba.

5.2 Main Experiment
Overall Performance. We evaluate the performance of our
proposed model by comparing it with state-of-the-art (SOTA)
methods on both datasets. These methods are categorized
based on their visual encoders: ResNet-101 (R2Gen [Chen et
al., 2020], R2GenCMN [Chen et al., 2021], PromptMRG
[Jin et al., 2024], R2Gen-Mamba [Sun et al., 2025]),
DenseNet-121 (PPKED [Liu et al., 2021], Clinical-BERT
[Yan and Pei, 2022], MAN [Shen et al., 2024]), and Vision
Transformer (ViT) (BLIP [Li et al., 2022a], DCL [Li et al.,
2023], METransformer [Wang et al., 2023]).

Table 1 summarizes the experimental results of our model
on both datasets. The findings indicate that our model con-
sistently outperforms most SOTA methods for the radiol-

RRG-Mamba #Param(MB) T/e(min) T(h) B/e

ViT-B/32 134.33 2.29 3.82 35
ViT-B/16 126.43 2.53 4.21 42
ResNet-101 176.76 2.04 3.40 18
DenseNet-121 66.56 1.33 2.22 16

Table 3: Analysis of RRG-Mamba on different visual encoder com-
plexity on IU X-Ray. The #Param, T/e, T and B/e represent the
number of training parameters, the time for one training epoch, the
total training time and the number of epochs with the best result.

ogy report generation task across various evaluation met-
rics. Specifically, on the IU X-Ray dataset, compared to
the MAN model (DenseNet-121), RRG-Mamba achieves no-
table improvements in BLEU{1-4} scores by 2.7%, 4.0%,
4.1%, and 3.7%, respectively, as well as enhancements in
METEOR and ROUGE-L scores by 0.2% and 2.2%, respec-
tively. Similarly, on the MIMIC-CXR dataset, RRG-Mamba
(DenseNet-121) demonstrates superior performance, further
validating its efficacy. Additionally, R2Gen-Mamba directly
combines the vanilla Mamba with ResNet-101 to improve
training and inference efficiency. In contrast, our proposed
RRG-Mamba extends Mamba further by introducing RoPE
to enhance relative position representation and incorporating
a DPB to strengthen the model’s ability to capture spatial po-
sitional information. These technical advancements lead to
significant performance gains, with our method outperform-
ing R2Gen-Mamba by 4.6% and 5.4% in BLEU-1 scores on
two benchmark datasets. Next, we analyze the superiority of
our proposed method from the following three perspectives.

Analysis on Visual Encoders. Table 1 shows the ex-
perimental results of our model RRG-Mamba using differ-
ent visual encoders (ViT-B/32, ViT-B/16, ResNet-101, and
DenseNet-121) on both datasets. Table 1 presents RRG-
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Dataset Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

w/o CMA 0.502 0.340 0.248 0.188 0.207 0.404
IU w/o GDLM 0.491 0.328 0.236 0.182 0.193 0.395

X-Ray w/o RoPE 0.496 0.325 0.241 0.180 0.195 0.369
w/o CMA+GDLM 0.451 0.289 0.209 0.159 0.175 0.365
RRG-Mamba 0.528 0.368 0.271 0.207 0.215 0.408
w/o CMA 0.386 0.241 0.163 0.115 0.148 0.281

MIMIC w/o GDLM 0.375 0.226 0.155 0.108 0.142 0.275
-CXR w/o RoPE 0.382 0.235 0.153 0.105 0.138 0.278

w/o CMA+GDLM 0.324 0.203 0.138 0.100 0.135 0.276
RRG-Mamba 0.406 0.253 0.169 0.121 0.154 0.293

Table 4: Ablation study results of RRG-Mamba on the IU X-Ray and MIMIC-CXR datasets.

Model BL-1 BL-4 METEOR ROUGE-L

GDLM-T 0.496 0.182 0.205 0.385
GDLM-S 0.516 0.198 0.208 0.396
GDLM-B 0.528 0.207 0.215 0.408

Table 5: Results of different versions of global dependecy learning
module (GDLM) on IU X-Ray. The T, S, B denotes Tiny, Small,
Base, respectively.

Mamba outperforms the Vision Transformer when using pre-
trained CNNs, particularly with DenseNet-121. This suggests
that RRG-Mamba effectively extracts local pathological fea-
tures from medical images through multi-level convolutional
operations and captures global context information via global
dependency learning module. Consequently, RRG-Mamba
acquires rich semantic representations that significantly en-
hance the discriminative power of medical image features.

Analysis on Clinical Efficacy Metrics. We evaluate the
clinical accuracy and effectiveness of the generated medical
reports using the CE metrics. Table 2 compares the perfor-
mance of RRG-Mamba with existing models on the MIMIC-
CXR dataset. The results show that RRG-Mamba achieves
notable improvements of 8.7%, 5.5%, and 8.6% in precision,
recall, and F1-score, respectively, compared to the MAN.
These enhancements may be attributed to RRG-Mamba’s
ability to effectively capture fine-grained lesion features, re-
sulting in reports with higher clinical accuracy and relevance.

Analysis of Model Complexity. Table 3 presents the
model complexity experimental results of RRG-Mamba us-
ing different visual encoders on the IU X-Ray. A compara-
tive analysis of the performance across various encoders re-
veals that the pre-trained CNN-based encoder offers superior
reasoning capabilities and training efficiency compared to the
ViT-based encoder. Specifically, the CNN-based encoder re-
quires fewer training parameters, considerably reduces train-
ing time, and shows faster convergence during training.

Although the ViT excels in global context modeling, the
SSM-based design of RRG-Mamba effectively mitigates the
computational challenges inherent in ViT. Our approach not
only efficiently captures long-range dependencies but also
significantly enhances inference efficiency and accelerates
training speed. This highlights the advantage of combining

global dependency learning with optimized visual extraction,
leading to both improved performance and reduced computa-
tional overhead.

5.3 Ablation Study
We perform an ablation study to validate the effectiveness of
RRG-Mamba’s core components on both datasets. Four vari-
ants are tested: w/o GDLM, which removes the global depen-
dency learning module (GDLM) and omits long-range visual
feature modeling; w/o RoPE, which excludes rotary position
encoding within the GDLM, thereby neglecting relative po-
sitional information; w/o CMA, which eliminates the cross-
modal adapter and adopts a simplistic approach for cross-
modal feature fusion; and w/o CMA+GDLM, which ablates
both the GDLM and CMA, relying solely on the model’s ba-
sic structure for report generation.

Table 4 presents the results of the ablation study. The re-
moval of the GDLM leads to a marked performance drop,
underscoring its role in capturing long-range dependencies
in visual features. Excluding RoPE diminishes performance,
highlighting the importance of modeling relative positional
information. The ablation of the CMA results in a significant
decline, emphasizing the critical role of effective cross-modal
interaction in improving overall performance. Finally, the si-
multaneous removal of both modules yields the lowest perfor-
mance, further reinforcing the essential contributions of these
two core components.

Analysis of Different Versions of Global Dependency
Learning Module. Table 5 shows the experimental results
of different versions of the GDLM (tiny, small and base)
with varying model capacities on the IU X-Ray. Among
these, GDLM-B achieves the best performance, with BLEU-
1, BLEU-4, METEOR, and ROUGE-L scores of 0.528,
0.207, 0.215, and 0.408, respectively.

These results underscore the critical role of model capacity
in effective global dependency learning for medical images.
GDLM-B, with its more sophisticated network architecture,
is better equipped to model long-range dependencies, captur-
ing both complex global and local features within medical
images. These findings demonstrate that increasing model
capacity can significantly improve the performance of global
context modeling, enabling precise and comprehensive anal-
ysis of medical images.
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Original 
Image

Two images of the chest shows a small consolidation at the right base most consistent with 
pneumonia . there are no other consolidations . there is no evidence of interstitial edema . 
there are no pleural effusions . the heart size is at the upper limits of normal . the mediastinal 
contours are normal . there are sternotomy wires in place.

Ground 
Truth

heart chest  contours

Two images of the chest shows a small consolidation at the right base like pneumonia. There  
are no some consolidations. The interstitial edema does not exist. The heart size is within the 
upper normal range and mediastinal contours are normal. Sternotomy wires are present.R

2G
en

C
M

N

heart lung effusion

Frontal and lateral views of the chest were obtained .The two images shows there is  a small 
consolidation at the right bases similar to pneumonia.  No other consolidations. There is no 
indication of interstitial edema. the right lung is otherwise clear . No pneumothorax or pleural 
effusions seen. Cardiac and mediastinal contours are unremarkable. The heart size limits of 
normal. There are sternotomy wires in place.R

R
G

-M
am
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1.0

0.0

heart base right

Two images shows there is a consolidation at the right base. There are no consolidations. No 
pleural effusions existed. The heart is in normal size. 
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Figure 3: Visualize the reports and attention heatmaps generated by RRG-Mamba and different models (Transformer, R2GenCMN) on
MIMIC-CXR. The orange font represents the organ or related disease, the blue denotes the semantic description similar to the ground truth.
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Figure 4: Performance for varying hyperparameter k on IU X-Ray
and MIMIC-CXR datasets.

5.4 Hyperparameter Study
We analyze the impact of the hyperparameter k (represent-
ing the word identification ratio) on RRG-Mamba’s perfor-
mance across both datasets. k quantifies the proportion of key
terms identified in the generated text, optimizing the model’s
ability to effectively capture critical terms and control infor-
mation redundancy. As depicted in Figure 4, RRG-Mamba
achieves peak performance at k=0.5. However, increasing k
beyond this value leads to performance degradation, likely
due to the inclusion of redundant high-frequency terms (e.g.,
“the” “there”), which introduce noise and disrupt the cross-
modal integration process, thereby impairing the accuracy of
the generated reports. Conversely, excessively low k values
may omit critical medical terms (e.g., “heart”), undermining
the comprehensiveness and clinical relevance of the gener-
ated reports. Thus, the selection of k is crucial for optimizing
report quality and enhance model performance.

6 Case Study
To explore the efficacy of RRG-Mamba, we randomly se-
lect a case from the MIMIC-CXR for detailed analysis. Fig-
ure 3 shows the medical reports and image-to-text attention
heatmaps generated by the RRG-Mamba model and other

comparison models (Transformer and R2GenCMN). We use
orange fonts to mark organs or diseases and blue fonts to
mark semantic descriptions similar to ground truth. It can
be intuitively observed from Figure 3, the radiology reports
generated by the RRG-Mamba can accurately identify the key
feature areas in medical images and generate descriptions that
contain professional terms and are in line with clinical reality.

Specifically, compared with the Transformer model, the
RRG-Mamba model can capture subtle lesions (such as “a
small consolidation” and “interstitial edema”) and generate
more accurate semantic descriptions. In contrast, the Trans-
former model has a weaker recognition ability for these le-
sions, and the generated reports are more general and lack
detailed support. Compared with the RRG-Mamba, the
R2GenCMN model lacks detailed descriptions and semantic
richness, making it less effective in comprehensively analyz-
ing medical images. Differently, RRG-Mamba model gen-
erates more comprehensive results, which not only identifies
specific lesions (“a small consolidation”) but also captures
subtle findings in medical images and exclude other potential
pathological features (“the right lung is otherwise clear. No
pneumothorax or pleural effusions seen”).

7 Conclusion
We propose RRG-Mamba, a novel framework that leverages
Mamba’s capability for global information modeling in radi-
ology report generation. Additionally, RRG-Mamba designs
a global dependency learning module that integrates rotary
position encoding, enhancing the vanilla Mamba for effec-
tive modeling of long-sequence visual feature dependencies.
At last, we conduct extensive experiments on two publicly
available datasets, demonstrating RRG-Mamba’s superior ef-
fectiveness compared to representative baselines and estab-
lishing new performance benchmarks. Furthermore, RRG-
Mamba exhibits significant computational and memory effi-
ciency advantages over prevailing neural network architec-
tures, such as CNNs and Transformers.
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Ré. Efficiently modeling long sequences with struc-
tured state spaces. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022, 2022.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770–778, 2016.

[Hou et al., 2023] Xiaodi Hou, Zhi Liu, Xiaobo Li, Xing-
wang Li, Shengtian Sang, and Yijia Zhang. MKCL: Med-
ical Knowledge with Contrastive Learning model for radi-
ology report generation. Journal of Biomedical Informat-
ics, 146:104496, 2023.

[Hou et al., 2025] Xiaodi Hou, Xiaobo Li, Zhi Liu, Sheng-
tian Sang, Mingyu Lu, and Yijia Zhang. Recalibrated
cross-modal alignment network for radiology report gener-
ation with weakly supervised contrastive learning. Expert
Systems with Applications, page 126394, 2025.

[Huang et al., 2017] Gao Huang, Zhuang Liu, Laurens Van
Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
4700–4708, 2017.

[Huang et al., 2023] Zhongzhen Huang, Xiaofan Zhang, and
Shaoting Zhang. Kiut: Knowledge-injected u-transformer
for radiology report generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19809–19818, 2023.

[Hui et al., 2019] Zheng Hui, Xinbo Gao, Yunchu Yang, and
Xiumei Wang. Lightweight image super-resolution with
information multi-distillation network. In Proceedings
of the 27th acm international conference on multimedia,
pages 2024–2032, 2019.

[Irvin et al., 2019] Jeremy Irvin, Pranav Rajpurkar, Michael
Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute, Henrik
Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpan-
skaya, et al. Chexpert: A large chest radiograph dataset
with uncertainty labels and expert comparison. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 33, pages 590–597, 2019.

[Jin et al., 2024] Haibo Jin, Haoxuan Che, Yi Lin, and Hao
Chen. Promptmrg: Diagnosis-driven prompts for medi-
cal report generation. In Thirty-Eighth AAAI Conference
on Artificial Intelligence, AAAI 2024, pages 2607–2615,
2024.

[Johnson et al., 2019] Alistair EW Johnson, Tom J Pollard,
Seth J Berkowitz, Nathaniel R Greenbaum, Matthew P
Lungren, Chih-ying Deng, Roger G Mark, and Steven
Horng. MIMIC-CXR, a de-identified publicly available
database of chest radiographs with free-text reports. Sci-
entific data, 6(1):317, 2019.

[Li et al., 2022a] Junnan Li, Dongxu Li, Caiming Xiong,
and Steven Hoi. Blip: Bootstrapping language-image
pre-training for unified vision-language understanding and
generation. In International conference on machine learn-
ing, pages 12888–12900. PMLR, 2022.

[Li et al., 2022b] Mingjie Li, Wenjia Cai, Karin Verspoor,
Shirui Pan, Xiaodan Liang, and Xiaojun Chang. Cross-
modal clinical graph transformer for ophthalmic report

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

generation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
20656–20665, 2022.

[Li et al., 2023] Mingjie Li, Bingqian Lin, Zicong Chen,
Haokun Lin, Xiaodan Liang, and Xiaojun Chang. Dy-
namic graph enhanced contrastive learning for chest x-
ray report generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 3334–3343, 2023.

[Lin, 2004] Chin-Yew Lin. Rouge: A package for automatic
evaluation of summaries. In Text summarization branches
out, pages 74–81, 2004.

[Liu et al., 2021] Fenglin Liu, Xian Wu, Shen Ge, Wei Fan,
and Yuexian Zou. Exploring and distilling posterior and
prior knowledge for radiology report generation. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 13753–13762, 2021.

[Liu et al., 2024] Yue Liu, Yunjie Tian, Yuzhong Zhao,
Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and
Yunfan Liu. Vmamba: Visual state space model. CoRR,
abs/2401.10166, 2024.

[Papineni et al., 2002] Kishore Papineni, Salim Roukos,
Todd Ward, and Wei-Jing Zhu. Bleu: a method for au-
tomatic evaluation of machine translation. In Proceedings
of the 40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318, 2002.

[Shen et al., 2024] Hongyu Shen, Mingtao Pei, Juncai Liu,
and Zhaoxing Tian. Automatic radiology reports gener-
ation via memory alignment network. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38,
pages 4776–4783, 2024.

[Shin et al., 2016] Hoo-Chang Shin, Kirk Roberts, Le Lu,
Dina Demner-Fushman, Jianhua Yao, and Ronald M Sum-
mers. Learning to read chest x-rays: Recurrent neural
cascade model for automated image annotation. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 2497–2506, 2016.

[Su et al., 2023] J Su, Y Lu, S Pan, A Murtadha, B Wen, and
Y Liu Roformer. Enhanced transformer with rotary po-
sition embedding., 2021. DOI: https://doi. org/10.1016/j.
neucom, 2023.

[Sun et al., 2025] Yongheng Sun, Yueh Z Lee, Genevieve A
Woodard, Hongtu Zhu, Chunfeng Lian, and Mingxia Liu.
R2gen-mamba: A selective state space model for radi-
ology report generation. In 2025 IEEE 22nd Interna-
tional Symposium on Biomedical Imaging (ISBI), pages 1–
4. IEEE, 2025.

[Tanida et al., 2023] Tim Tanida, Philip Müller, Georgios
Kaissis, and Daniel Rueckert. Interactive and explainable
region-guided radiology report generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 7433–7442, 2023.

[Wang et al., 2022a] Song Wang, Liyan Tang, Mingquan
Lin, George Shih, Ying Ding, and Yifan Peng. Prior
knowledge enhances radiology report generation. In AMIA

Annual Symposium Proceedings, volume 2022, page 486.
American Medical Informatics Association, 2022.

[Wang et al., 2022b] Tao Wang, Junlin Lan, Zixin Han, Zi-
wei Hu, Yuxiu Huang, Yanglin Deng, Hejun Zhang, Jian-
chao Wang, Musheng Chen, Haiyan Jiang, et al. O-net: a
novel framework with deep fusion of cnn and transformer
for simultaneous segmentation and classification. Fron-
tiers in neuroscience, 16:876065, 2022.

[Wang et al., 2023] Zhanyu Wang, Lingqiao Liu, Lei Wang,
and Luping Zhou. Metransformer: Radiology report gen-
eration by transformer with multiple learnable expert to-
kens. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11558–
11567, 2023.

[Wang et al., 2024] Jun Wang, Abhir Bhalerao, Terry Yin,
Simon See, and Yulan He. Camanet: class activation
map guided attention network for radiology report genera-
tion. IEEE Journal of Biomedical and Health Informatics,
2024.

[Xue et al., 2024] Youyuan Xue, Yun Tan, Ling Tan, Jiaohua
Qin, and Xuyu Xiang. Generating radiology reports via
auxiliary signal guidance and a memory-driven network.
Expert Systems with Applications, 237:121260, 2024.

[Yan and Pei, 2022] Bin Yan and Mingtao Pei. Clinical-
BERT: Vision-language pre-training for radiograph diag-
nosis and reports generation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pages
2982–2990, 2022.

[Yan et al., 2021] An Yan, Zexue He, Xing Lu, Jiang Du,
Eric Chang, Amilcare Gentili, Julian McAuley, and Chun-
Nan Hsu. Weakly supervised contrastive learning for chest
x-ray report generation. In Findings of the Association for
Computational Linguistics: EMNLP 2021, pages 4009–
4015. Association for Computational Linguistics, 2021.

[Yang et al., 2023] Shuxin Yang, Xian Wu, Shen Ge,
Zhuozhao Zheng, S Kevin Zhou, and Li Xiao. Radi-
ology report generation with a learned knowledge base
and multi-modal alignment. Medical Image Analysis,
86:102798, 2023.

[Yue and Li, 2024] Yubiao Yue and Zhenzhang Li. Med-
mamba: Vision mamba for medical image classification.
arXiv preprint arXiv:2403.03849, 2024.

[Zhang et al., 2020] Yixiao Zhang, Xiaosong Wang, Ziyue
Xu, Qihang Yu, Alan Yuille, and Daguang Xu. When ra-
diology report generation meets knowledge graph. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 12910–12917, 2020.

[Zhu et al., 2024] Lianghui Zhu, Bencheng Liao, Qian
Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang.
Vision mamba: Efficient visual representation learning
with bidirectional state space model. arXiv preprint
arXiv:2401.09417, 2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


