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Abstract

Self-supervised monocular depth estimation has at-
tracted significant attention due to its broad appli-
cations in autonomous driving and robotics. Al-
though significant performance improvement has
been achieved by learning the relative distance of
objects with the introduction of Self Query Layer
(SQL), it struggles with zero-shot generalization
due to the lack of geometric features and the fixed
number of query size. To address these problems,
we propose a diffusion-augmented self-supervised
depth estimation framework, dubbed DiffSQL, to
learn the geometric priors for feature augmenta-
tion. We also introduce a dynamic self-query layer
that implicitly computes the relative distances be-
tween objects by adjusting the query size accord-
ing to the feature distribution. Experimental results
on the KITTI dataset show that DiffSQL outper-
forms SQLdepth by 1.03% in terms of AbsRel and
2.79% in terms of SqRel. Furthermore, our ex-
periments demonstrate that DiffSQL is superior in
zero-shot generalization.

1 Introduction

Monocular depth estimation is a fundamental challenge in
computer vision, with broad applications in autonomous driv-
ing [Geiger et al., 2013], augmented reality [Newcombe et
al., 2011], and robotics [Achtelik et al., 2009]. The main ob-
jective of this task is to predict the depth of each pixel from
a single RGB image. Traditional supervised learning meth-
ods rely on sparse ground truth depth data, typically obtained
from sensors like LIDAR. However, collecting large amounts
of depth data is both costly and time-consuming. Addition-
ally, due to sparse supervision, these methods face difficulties
during optimization and struggle with new, unseen scenes due
to the lack of zero-shot generalization.
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Figure 1: Typical examples of our predictions on images from the
KITTI [Geiger er al., 2013] dataset. Compared with Monodepth2
[Godard et al., 2019b] and SQLdepth [Wang et al., 2024], DiffSQL
is able to predict depth with more fine-grained details, particularly
for thin, small, and distant objects.

In recent years, self-supervised methods have gained con-
siderable attention due to their ability to eliminate reliance on
costly ground truth depth data. SQLdepth [Wang et al., 2024]
leverages motion cues and the Self Query Layer (SQL) to in-
fer depth information. However, like many existing meth-
ods [Godard et al., 2019b], it uses convolutional neural net-
works (CNNs) as the backbone for feature extraction, which
lack essential spatial geometric features during the construc-
tion of the self-query layer. This limitation leads to the ne-
glect of important geometric details in distant and small ob-
jects, hindering the model’s ability to understand scene struc-
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Figure 2: Framework Overview: (1) DepthNet: The system initiates with a hybrid convolution-diffusion feature encoder that processes the
input frame [; to produce multi-scale visual embeddings. These hierarchical features are enhanced by integrating coarse-level diffusion
outputs through a Self- Attention mechanism (visualized in Fig. 3) to output the final depth prediction D;. (2) PoseNet: A conventional
pose estimation subnetwork computes the inter-frame transformation matrix 73/ _,; between the target frame /; and adjacent reference frame
I;/. This geometric relationship is exclusively utilized during training for view synthesis through differentiable warping operations. (3)
Differentiable Image Warping: In this step, pixels from the reference frame I7 are used to reconstruct the current frame I; by leveraging
the depth map D, and the relative pose T} _,; through a differentiable image warping process [Jaderberg et al., 2015]. The loss function is
constructed based on the difference between the warped image I;/_,; and the source image I;.

ture. The coarse-grained query objects generated in this man-
ner fail to adequately represent the scene structure, result-
ing in suboptimal depth map accuracy. Recent studies have
demonstrated that diffusion models [Wolleb et al., 2022],
such as Stable Diffusion (SD)[Rombach et al., 20211, excel
at feature extraction, effectively capturing high-level seman-
tic information and learning geometric features. Motivated
by these advancements, we propose DiffSQL, a novel self-
supervised monocular depth estimation framework that lever-
ages the powerful semantic extraction capabilities of diffu-
sion models to improve the model’s ability to learn and aug-
ment features with prior knowledge, thereby enhancing scene
understanding.

As shown in Fig. 2, we designed a plug-and-play feature
fusion module that integrates texture and semantic features
at different scales to improve the model’s ability to capture
spatial features of distant and small objects. Furthermore, we
propose an adaptive self-querying layer that dynamically se-
lects features extracted by the diffusion model using a self-
attention mechanism to construct coarse-grained scene object
representations. By calculating the correlation between the
fused feature map and the coarse-grained object representa-
tions, we obtain implicit relative distance information, ulti-
mately resulting in high-precision depth maps.

Our key contributions are as follows:

* We design a plug-and-play diffusion-augmented module
that uses the powerful semantic extraction capabilities
of diffusion models to complement spatial structure fea-
tures, enhancing the model’s ability to capture distant
and small objects.

* We introduce an adaptive self-querying layer that em-

ploys attention features extracted by the diffusion model
as coarse-grained object representations. By dynami-
cally selecting query objects using a self-attention mech-
anism, this approach significantly improves depth esti-
mation accuracy, particularly for distant and small ob-
jects.

Through experiments on the KITTI dataset, we show
that DiffSQL outperforms existing self-supervised
methods in accuracy and efficiency. Zero-shot evalu-
ation on the Make3D dataset further demonstrates the
excellent generalization, especially for thin, small and
distant objects.

2 Related Works

2.1 Monocular Depth Estimation

Monocular depth estimation (MDE) deduces 3D depth from
a single 2D image. The task’s ill-posed nature stems from
infinite plausible 3D scene representations per image. Cur-
rent approaches bifurcate into supervised and self-supervised
frameworks.

Supervised Depth Estimation. Supervised learning em-
ploys ground-truth depth maps as supervisory signals for pre-
cise prediction. Eigen [Eigen et al., 2014] pioneered multi-
scale CNN architectures for depth estimation. Regression-
based approaches [Huynh er al., 2020] predict contin-
uous depth yet suffer convergence instability, whereas
classification-based frameworks [Diaz and Marathe, 2019;
Fu et al., 2018] enhance optimization stability via discretized
depth representation. AdaBins [Bhat er al., 2021] innova-
tively unifies classification-regression dual pathways. Re-
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Figure 3: Framework Details of DiffSQL with Diffusion-Augmented Feature Fusion.

cent breakthroughs involve: neural window CRFs optimiz-
ing computational efficiency [Yuan et al., 2022], variational
constraints strengthening spatial coherence [Liu et al., 20231,
and decoupled surface normal/distance estimation [Shao et
al., 2023], collectively advancing accuracy and robustness.

Self-Supervised Depth Estimation. Self-supervised ap-
proaches circumvent ground-truth dependency by generat-
ing supervision from stereo/monocular sequences. Zhou et
al. [Zhou et al., 2017] pioneered co-training depth-pose net-
works with view synthesis losses, incorporating explainabil-
ity masks for dynamic objects. Subsequent works [Godard et
al., 2019a] enhanced robustness via auto-masking and mini-
mum reprojection losses. Garg et al. [Garg et al., 2016] estab-
lished photometric consistency for stereo pairs, later refined
with left-right consistency [Godard et al., 2017]. Cutting-
edge developments include continuous disparity prediction
[Garg et al., 2020] and hybrid CNN-Transformer architec-
tures [Zhang et al., 2023]. Current methodologies diverge in
feature extraction: pure CNN implementations coexist with
multi-network integrated architectures, synergistically boost-
ing performance and robustness.

2.2 Diffusion Model

Diffusion models have demonstrated substantial break-
throughs in conditional/unconditional image generation [Ho
et al., 2020; Dhariwal and Nichol, 2021]. By modeling com-
plex data distributions through progressive denoising, these
models excel in text-to-image synthesis [Koh et al., 2024] and
cross-domain image translation [Saharia e al., 2022], achiev-
ing superior detail reconstruction. Their hierarchical feature
extraction capabilities extend to discriminative tasks includ-
ing image segmentation [Wolleb et al., 2022] and object de-
tection [Chen et al., 20231, effectively capturing multi-scale
semantic patterns. Chen et al. [Chen ez al., 2024] innovatively
redesigned the tokenizer with linear decay mechanisms, vali-

dating diffusion models’ potential as universal feature extrac-
tors. Leveraging pre-trained Stable Diffusion’s cross-modal
representations, our work achieves efficient zero-shot monoc-
ular depth estimation via single-pass inference, balancing
precision and computational efficiency.

3 Methodology

To improve the zero-shot generalization, we propose a
diffusion-augmented self-supervised depth estimation frame-
work, dubbed DiffSQL, to learn the geometric priors for
feature augmentation and capture the relative distances with
dynamic self-cost volume. As shown in Fig. 2, DiffSQL
consists of two key components: (1) a diffusion-augmented
encoder-decoder to take advantages of pre-trained diffusion
models for feature representation; and (2) a dynamic self-
query layer that uses a self-attention mechanism to dynam-
ically select coarse-grained query objects to quantify the rel-
ative distances between feature distributions.

3.1 Diffusion Encoder for Feature Augmentation

For the feature extraction of images, prior studies mainly
rely on convolutional operations and downsampling to learn
the latent representation. The typical feature encoders in-
clude ResNet. However, existing feature encoders are not in-
formative.During monocular self-supervised training, ResNet
demonstrates limitations in capturing geometric features ef-
fectively, often neglecting information about distant and
small objects, as shown in Fig. 4. Recently, several stud-
ies have demonstrated that diffusion-based encoder shows
impressive performance for feature extraction [Namekata et
al., 2023; Baranchuk et al., 2021]. Accordingly, we con-
duct comparative studies to investigate the differences of
ResNet50 and diffusion models for feature extraction. Specif-
ically, used the k-means algorithm on feature maps ex-
tracted by ResNet50 (used in SQLDepth) and our diffusion-
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Figure 4: A visual comparison of features extracted from ResNet50
and our proposed (DiffSQL), using k-means clustering examples
(k=8), demonstrates that our approach is more effective to learn the
geometric structure of distant and small objects.

augmented feature extractor. The number of cluster centers
was set to 8.

Inspired by these observations, we propose a diffusion-
augmented encoder-decoder framework that leverages pre-
trained diffusion models to enhance feature representation.
As shown in Fig. 3, the method extracts multi-scale fea-
tures from the diffusion model, encompassing its ResNet and
self-attention modules. The diffusion model captures global
semantic information through its encoder and decoder while
preserving local patterns and fine details, achieving an effec-
tive balance between global semantics and local features.

The approach obtains multi-scale features from the dif-
fusion model, including its ResNet and self-attention mod-
ules. Through its encoder and decoder, the diffusion model
captures global semantic information while maintaining lo-
cal patterns and details, balancing effectively between global
semantics and local features.

The input image, with an initial size of (h,w), is pro-
cessed by the VAE encoder to downsample the feature map
to (h/8,w/8). The ResNet module further processes this
feature map, maintaining the resolution (h/8,w/8). Concur-
rently, the self-attention module processes the latent represen-
tation at an initial resolution of (h x w/64), which is subse-
quently resized to (h/8,w/8). This process generates multi-
scale local and global features within the diffusion model,
forming the basis for feature fusion.

To effectively integrate the extracted multi-scale features,
we designed a feature fusion module. First, a 1 x 1 convo-
lution is applied to the local features from the ResNet mod-
ule and the global features from the self-attention module to
unify their channel dimensions. These features are then con-
catenated along the channel dimension, followed by a sec-
ond 1 x 1 convolution to reduce channel dimensionality, op-
timizing the feature representation and minimizing computa-
tional overhead. This fusion process is repeated across the en-
coder, latent, and decoder stages of the diffusion model, with
skip connections incorporated to produce the final diffusion-
augmented features. This design maximizes the potential of
the diffusion model by seamlessly integrating its local and
global features, resulting in a more expressive feature repre-
sentation.

Furthermore, as shown in the red box in Fig. 2, we con-
catenate features extracted from the SD model with those
from the U-Net-CNN backbone at the fourth down-sampling
stage along the channel dimension to further enhance feature
representation. The fused features are processed through an
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Figure 5: Dynamic query selection process for generating adaptive
query vectors from coarse-grained query vectors extracted by the SD
model.

up-sampling strategy to generate the network output, result-
ing in a feature map enriched with spatial geometric details.
Figure 4 provides a visual analysis of the feature fusion re-
sults.

3.2 Dynamic Self Query Layer

Monocular depth estimation benefits from geometric cues,
such as relative distance, to enhance accuracy. A self-cost
volume [Wang et al., 2024] to capture relative distances
within the same image is an effective approach but incurs a
high computational complexity of O(h? x w?) when directly
applied to high-resolution feature maps. Previous methods
address this by using coarse-grained queries to represent ob-
jects, reducing complexity. However, when the feature map
S fails to capture sufficient semantic or structural details, the
effectiveness of coarse-grained queries diminishes, leading to
poor model performance.

To overcome this, we replace the self-attention vectors
from the Vision Transformer (ViT) with those extracted from
the pre-trained Stable Diffusion (SD) model, which excels
in capturing global semantic information and contextual re-
lationships. The SD model, trained on diverse datasets, offers
rich feature representations that are more suitable for con-
structing coarse-grained queries. In addition, we introduce a
dynamic query selection mechanism, as shown in Fig. 5, to
further enhance query flexibility. Given the input feature map
H; € RBXLXC where B is the batch size, L the sequence
length, and C' the feature dimension, we compute a global
context vector g through global average pooling, as formu-
lated in Eq. (1):

L
1
g:ZZHiJ, g € RP*C. (1)
j=1

This vector is adjusted by a lightweight network (e.g., 1 x 1
convolution) to produce Zagjusted, as shown in Eq. 2:

Sadjusted = fadjust(g)a Sadjusted € RBXC- (2)
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Figure 6: Additional qualitative results on the KITTI eigen benchmark.

The adjusted vector is added to the base query vectors
Quase € R *C to generate dynamic queries Qgynamic defined
in Eq. (3):

BxKxC
Qdynamic = Qbase + adjusted s Qdynamic €R X . (3)

These dynamic queries are used to compute attention
scores with the input hidden state H; via dot product accord-
ing to Eq. (4):

T BxKxL
Aiaj . Qdynamic,i : Hi,ja A € RPXHXE, (4)
The attention scores are normalized using Softmax, as
shown in Eq. (5):

exp(Ai,;) BxKxXL
Asoftmax,i,j = =1 . O Asoftmax eER .

>y exp(Ai )
®)]

The normalized attention scores are then used to compute
the output query vectors by performing a weighted sum over
the input hidden state, as described in Eq. (6):

L
_ § BxKxC
Qoutput,i - Asoftmax,i,j : Hi,jv Qoutput ER 2
j=1

(6)
Finally, the dynamic query vectors are used to construct the
self-cost volume V according to Eq. (7):

Vviy]',k = Q(—ll;/namic,i.sj,kv Vie [LQ]? JE [Lh]a ke [].,’LU]

(N
In our previous work, we proposed a self-cost volume-
based method for continuous depth estimation, where depth
distributions (depth bins) are redefined as statistical distribu-
tions of depth values. This approach leverages softmax and
weighted sum operations to aggregate latent depth informa-
tion and compute the statistical distribution according to Eq.
(8), where b represents the statistical depth distribution vec-
tor.

Q (hw)

b=MLP >~}

i=1 (5,k)=(1,1)

softmax(V;) k- Sjk |, (8

To generate the final depth map, we combine these depth
distributions using a probabilistic method. First,a 1 x 1 con-
volution maps the self-cost volume V' to a D-plane volume,
where D matches the depth bin dimension. A plane-wise
softmax operation is then applied to obtain the probabilistic
map p; ; » for each plane, as shown in Eq. (9):

Pi gk = softmax(V); jr, 1<i<Q. )

The final depth value for each pixel is computed as a prob-
abilistic linear combination of the bin centers in Eq. (10),
where c(b;) represents the center depth of the i-th depth bin
in Eq. (11):

d=> clbi)pije, 1<j<h 1<k<w,  (10)

=1

bi i—1
¢(bi) = dmin + (dmax = din) | 5+ _bj |- (D)
j=1

This approach effectively aggregates latent depth informa-

tion from the self-cost volume to enable precise depth estima-
tion, particularly for continuous depth prediction tasks.

3.3 Loss Functions

Objective Functions. Following the methodologies of
[Godard et al., 2019a]. and their extensions, we utilize the
standard photometric error p. as the primary objective func-
tion. This combines L1 loss with SSIM to evaluate photomet-
ric consistency, as shown in Eq. (12), where « is a balancing
parameter.

pellosTy) = 0 5 (1 =SS0, 1))+ (1 o)l — Ty,

(12)

To regularize depth in textureless regions, we include an
edge-aware smoothness loss in Eq. (13):

Lo = |0,d e 1% 1) 419, df |e =101l (13)
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Method Train Test HxW  AbsRel] SqRel, RMSE| RMSElog] 6 <1.257 §<1.2521 §<1.25%¢
PackNet-SfM[Guizilini et al., 20201 M 1 640x192  0.111 0.787  4.601 0.189 0.878 0.960 0.982
HR-Depth[Lyu et al., 2021] MS 1 640x192  0.107 0.785  4.612 0.185 0.887 0.962 0.982
MonoDepth2[Godard et al., 2019b] ~ MS 1 640x192  0.106 0.861  4.699 0.185 0.889 0.962 0.982
ManyDepth[Watson et al., 2021] M 1 640x192  0.099 0.773 4434 0.178 0.895 0.965 0.983
MonoDiffusion[Shao et al., 2024] M 1 640x192  0.099 0.702 4385 0.176 0.899 0.965 0.983
SQLdepth[Wang et al., 2024] M 1 640x192  0.097 0.718 4376 0.172 0.900 0.966 0.983
Ours(DiffSQL) M 1 640x192  0.096 0.698  4.338 0.171 0.902 0.966 0.984
Ours(DiffSQL) MS 1 640x192  0.094 0.684  4.306 0.169 0.902 0.967 0.984

Table 1: Performance comparison on the KITTI [Geiger et al., 2013] Eigen benchmark. M denotes monocular training, MS combines
monocular videos with stereo pairs. Testing uses single-frame input (marked 1). Best results in bold, with self-supervised methods applying

[Eigen and Fergus, 2015]’s median scaling for depth scale recovery.

Method Train Test HxW AbsRel] SqRel] RMSE|] RMSElog| §<1.257 40< 1.252T 6 < 1.253T
PackNet-SfM[Guizilini et al., 2020] M 1 640x192 0.078 0.420 3.485 0.121 0.931 0.986 0.996
MonoDepth2[Godard et al., 2019b] MS 1 640x 192 0.080 0.466 3.681 0.127 0.926 0.985 0.995
CADepthNet[Yan et al., 2021] M 1 640x 192 0.080 0.442 3.639 0.124 0.927 0.986 0.996
AQUANEet[Bello et al., 2024] M 1 640x192 0.073 0.374 3.572 0.115 0.935 0.985 0.996
Dynamic Depth[Feng et al., 2022] M 2(-1,0) 640x192 0.068 0.362 3.454 0.111 0.943 0.988 0.996
SQLdepth[Wang er al., 2024] M 1 640x192 0.068 0.359 3.347 0.105 0.944 0.989 0.997
Ours (DiffSQL) M 1 640x 192 0.067 0.343 3.312 0.107 0.946 0.989 0.997
Ours (DiffSQL) MS 1 640x 192 0.065 0.338 3.259 0.105 0.947 0.990 0.998

Table 2: Performance comparison using KITTI improved ground truth from [Uhrig ez al., 2017].

Masking Strategy. To address challenges in self-
supervised depth estimation, we propose an auto-masking
strategy that filters out stationary pixels and low-texture
regions by leveraging temporal photometric differences. The
mask p is defined as Eq. 14.
= H}}npe(jtv-[t’ﬁt) < Hgnpe(ft,fv) (14)
Final Training Loss. The total loss function defined in Eq.
(15) combines the photometric loss, the smoothness loss, and
the auto-masking strategy. Here A balances the two loss
terms.
L:M'Lphoto+)\'Ls (15)

4 Experiments

We evaluated DiffSQL on two public datasets, KITTI and
Make3D, and use widely adopted metrics [Eigen and Fergus,
2015] to quantify performance. The model’s generalization
ability is assessed through zero-shot evaluation.

4.1 Datasets and Experimental Protocol

KITTI. The KITTI stereo dataset [Geiger et al., 2013]
comprises 61 driving scenarios acquired by synchronized
stereo cameras and LiDAR (resolution 1242x375). Adopt-
ing Eigen’s benchmark split [Eigen er al., 20141, we utilize
39,810 monocular triplets for training and 4,424 for valida-
tion. The test set contains raw LiDAR measurements (697
frames) and sparsity-corrected ground truth [Uhrig et al.,
2017] (652 frames).

Make3D. The Make3D dataset [Saxena et al, 2008]
validates DiffSQL’s cross-dataset generalization capability
by employing zero-shot evaluation with KITTI-pre-trained
weights.

Method Type AbsRel] SqRel] RMSE] logiol
Monodepth S 0.544 10.94 11.760  0.193
Zhou M 0.383 5.321 10470 0478
DDVO M 0.387 4.720 8.090 0.204
Monodepth2 M 0.322 3.589 7.417 0.163
SQLdepth M 0.314 3.374 7.285 0.161
DiffSQL(Ours) M 0.310 3.013 7.019 0.159

Table 3: Make3D results

4.2 Implementation Details

The results in Table 1 show that DiffSQL outperforms all ex-
isting self-supervised methods, including those that use stereo
pairs or multiple frames. A comparative analysis with Mon-
odepth2 and SQLDepth demonstrates that DiffSQL excels at
preserving details of distant and small objects, as shown in
Fig. 1 and Fig. 6. Furthermore, with improved ground
truth from KITTI [Uhrig et al., 2017], DiffSQL outperforms
SQLdepth [Wang et al., 2024] on all metrics in Table 2.

4.3 Zero-Shot Generalization on Make3D

For zero-shot evaluation, we used KITTI-pretrained weights
to test on the Make3D dataset [Saxena et al., 2008]. Fol-
lowing [Godard er al., 20171, we tested on a center-cropped
image with a 2:1 aspect ratio. As shown in Table 3 and Fig.
7, DiftSQL generates sharper depth maps with more accurate
scene details, demonstrating strong zero-shot generalization.

4.4 Ablation Study

This section conducts ablation studies to examine the effects
of different modules on DiffSQL, such as diffusion-based fea-
ture fusion, various layers of the SD model, and the dynamic
query mechanism.
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Figure 7: Qualitative Make3D results (Zero-shot).

Ablation AbsRel| SqRell RMSE|
ResNet18 0.112 0.878 4.602
ResNet50 0.103 0.758 4.499
ResNet18 + StableDiffusion 0.099 0.704 4.436
ResNet50 + StableDiffusion 0.096 0.698 4.333

Table 4: The impact of feature fusion modules based on different
convolutional network architectures on depth maps.

Effect of Diffusion-based Feature Fusion. As shown in
Table 4, we investigate the effect of combining Stable Dif-
fusion (SD) with convolutional networks on model perfor-
mance. The results in 4 reveal that the "ResNet50 + Stable
Diffusion” configuration surpasses the base ResNet50 model
in all evaluation metrics (AbsRel, SqRel, RMSE). This im-
provement highlights the ability of SD to capture fine-grained
scene details, especially distant and small objects. By fus-
ing the features extracted by ResNet and stable diffusion, we
achieve superior performance with minimal error. This show-
cases that SD’s strong feature extraction and image refine-
ment capabilities and validating the potential of generative
models in depth estimation tasks.

Effect of Different SD Model Layers. As shown in Ta-
ble 5, we investigate the impact of various SD model layers
on depth estimation. Three settings are compared: Mid Block
(0), Up Block (1), and Up Block (0). The extracted features
from various SD layers, utilized as coarse-grained query ob-
jects, markedly influence the accuracy of depth estimation.
Notably, the Up Block (0) configuration excels in capturing
fine details and enhancing depth accuracy, underscoring the
importance of the SD model layer selection in depth estima-
tion.

Effect of Dynamic Query Layer. As shown in Table 6, we
compare the effects of dynamic query mechanisms and fixed
queries on DiffSQL. The dynamic query mechanism adapts
queries to the scene features, enhancing depth-interval flex-
ibility. Experimental results demonstrate that this mecha-
nism allows the model to focus on key regions within coarse-
grained query objects, improving the capture of distant and
small objects. This adaptive strategy improves depth map ac-
curacy and improves performance in complex scenes.

Ablation AbsRel] SqRel] RMSE]
Mid Block (0) 0.100 0.732 4.565
Up Block (1) 0.098 0.712 4.547
Up Block (0) 0.096 0.698 4.333

Table 5: The influence of features extracted from different layers of
the SD model on depth maps.

Ablation AbsRel| SqRel] RMSE]
No queries 0.105 0.788 4.623
Fixed queries 0.101 0.748 4.512
Dynamic queries 0.096 0.698 4.333

Table 6: The effect of dynamic query layer on depth maps.

5 Conclusion

In this study, we propose DiffSQL, a framework that lever-
ages the generative priors of Stable Diffusion to augment ge-
ometric feature extraction in convolutional networks while
integrating an adaptive query modulation mechanism. The
synergistic architecture demonstrates superior performance in
capturing geometric details of distant and small-scale objects
compared to existing approaches. Systematic benchmarking
on standard datasets reveals marked improvements in both
depth accuracy and cross-domain generalization. This work
illuminates the transformative potential of generative models
such as Stable Diffusion in addressing the inherent challenges
of monocular depth estimation.
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