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Abstract
Federated learning (FL) enables collaborative train-
ing among multiple clients while preserving data
privacy. However, its practical application is sig-
nificantly limited by two major challenges: statis-
tical heterogeneity and data distribution drift. Sta-
tistical heterogeneity causes the direction of local
model updates to deviate from the global train-
ing objective, while data distribution drift leads to
a mismatch between local models and their clus-
ter models. To address these challenges, this pa-
per proposes an adaptive clustered federated learn-
ing framework, Fed-CM. Initially, by capturing the
dynamic patterns of personalized layer parameters
in clients’ models, Fed-CM effectively character-
izes the correlations and distributional similarities
among clients, reflecting the underlying statistical
heterogeneity. Subsequently, this framework lever-
ages client similarities to construct an undirected
graph and adaptively performs effective cluster dis-
covery with minimal dependence on hyperparam-
eters. Furthermore, a monitoring strategy tracks
the deviation between clients’ update directions
and the dominant update direction of their clusters
and then adaptively migrates clients experiencing
data drift. Such a dynamic strategy helps maintain
intra-cluster homogeneity and addresses the mis-
match between local models and their cluster mod-
els. Compared to other state-of-the-art methods,
experimental results on multiple datasets demon-
strate that the proposed Fed-CM framework effec-
tively addresses the challenges posed by statistical
heterogeneity and data drift, significantly improv-
ing the performance and robustness of federated
learning models.

1 Introduction
Federated learning (FL) [McMahan et al., 2017] is a piv-
otal distributed machine learning paradigm that enables col-
laborative training among multiple clients while preserving
data privacy, thus demonstrating significant potential in areas

∗Corresponding authors.

such as healthcare, financial risk control, and intelligent trans-
portation. However, the practical deployment of FL faces two
major challenges: statistical heterogeneity and data dis-
tribution drift. Specifically, statistical heterogeneity refers
to the non-independent and identically distributed (Non-IID)
nature of data across clients, which results in significant dif-
ferences in data distributions among clients, consequently af-
fecting the convergence speed and performance of the global
model [Ma et al., 2022a]. Meanwhile, data distribution drift
refers to the changes in data distributions of clients over time,
which causes local models to become mismatched with their
respective cluster models, thus impairing the training effec-
tiveness of cluster models and potentially leading to model
divergence and complete breakdown [Li et al., 2024a].

Recently, Clustered federated learning (CFL) [Ghosh et al.,
2022] has been introduced to tackle statistical heterogeneity
in federated learning. The core concept of CFL is to parti-
tion clients into different clusters based on the similarity of
their data distributions and train a shared model within each
cluster. By doing so, CFL leverages intra-cluster similarity
to improve local model training and accelerate global model
convergence. CFL is particularly effective in scenarios with
significant disparities in clients’ local data distributions.

However, existing CFL methods still suffer from the fol-
lowing limitations: 1) limited similarity characterization:
current methods typically measure client similarity based on
static model parameters or feature representations, failing to
capture the adaptation of clients on their respective datasets.
This leads to the inability to accurately capture the inherent
differences among clients caused by statistical heterogeneity,
thus affecting clustering effectiveness [Beltrán et al., 2023].
2) heavy reliance on prior knowledge: existing CFL methods
heavily rely on prior knowledge of clustering hyperparame-
ters, such as the number of clusters or distance thresholds,
which requires extensive hyperparameter tuning and limits
the flexibility and scalability. 3) lack of dynamic migration:
conventional methods lack effective client dynamic migra-
tion mechanisms to address data distribution drift. Although
some methods have attempted to use the Wasserstein distance
to measure data distribution differences for client migration,
they require access to clients’ local data, posing privacy risks
and involving high computational complexity [Duan et al.,
2022]. These limitations raise a critical question: how can
we accurately characterize similarities in data distributions
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across clients while adaptively achieving client clustering
and dynamically responding to data distribution drift?

In this paper, we provide an answer to this key question and
propose an efficient and adaptive federated learning frame-
work: Fed-CM. The framework comprises three key com-
ponents: 1) a client similarity calculation method based on
personalized layer gradient paths, which captures the adapta-
tion process and inherent similarities of clients during local
training; 2) an adaptive graph-based cluster discovery algo-
rithm, which constructs an undirected graph using the client
similarity matrix and enables the adaptive discovery of cluster
structures; and 3) a client migration strategy based on update
angles, which adaptively identifies and migrates clients with
data distribution drift by detecting the deviation of client up-
date angles.

Based on the above design, the Fed-CM framework has
the following advantages: 1) it enables dynamic model-
ing of client similarities through personalized layer gradient
paths, thereby capturing the differences in client data dis-
tributions more accurately, leading to higher clustering ac-
curacy and model performance; 2) the adaptive cluster dis-
covery algorithm effectively avoids strong reliance on hyper-
parameters, enabling more flexible and efficient clustering;
3) the dynamic migration mechanism based on update an-
gles addresses data distribution drift in a timely and effec-
tive manner, improving model stability; and 4) the calculation
of both similarity and update angles only requires clients to
upload gradients, protecting the privacy of client data. Ex-
perimental results on multiple datasets demonstrate that the
Fed-CM framework can effectively handle federated learning
scenarios with statistical heterogeneity and data distribution
drift. Specifically, the model performance on the CIFAR-10
dataset improves by 2 percentage points over the state-of-the-
art, while in scenarios with data distribution drift, it exhibits
strong robustness, with a performance degradation of merely
1‰ to its peak accuracy.

2 Related Work
2.1 Personalized Federated Learning
To address the challenge of ineffective convergence of the
global model in FedAvg [McMahan et al., 2017] under data
heterogeneity, researchers have proposed Personalized Fed-
erated Learning (PFL). PFL aims to train customized mod-
els for each client, thereby achieving better adaptation to
local data distributions. FedPer [Arivazhagan et al., 2019]
achieves personalization by decoupling the model and em-
ploying distinct aggregation strategies. Per-FedAvg [Fallah
et al., 2020] incorporates the concept of meta-learning, using
fine-tuning to realize personalized models. pFedMe [T Dinh
et al., 2020] utilizes the Moreau envelope function to better
decouple the optimization of global and personalized mod-
els. pFedHN [Shamsian et al., 2021] leverages hypernet-
works to generate personalized models for each client, reduc-
ing communication costs. More recently, FedSelect [Tamirisa
et al., 2024] achieves personalization of parameters and struc-
tures by dynamically expanding personalized sub-networks.
RIPFL [Qin et al., 2023] selects and partitions clients from a
social learning perspective, integrating individual and global

information. FedAS [Yang et al., 2024] addresses inconsis-
tencies through parameter alignment and client synchroniza-
tion strategies. pFedFDA [Mclaughlin and Su, 2024] treats
representation learning as a generative modeling task, gen-
erating personalized models based on local feature distribu-
tions.

2.2 Clustered Federated Learning
In contrast to PFL, which focuses on customizing models
for each client, Clustered Federated Learning (CFL) is dedi-
cated to partitioning similar clients into distinct clusters and
conducting more effective model training within each clus-
ter, thereby mitigating the impact of data heterogeneity. The
IFCA [Ghosh et al., 2022] algorithm performs clustering by
iteratively estimating the cluster identities of clients and op-
timizing the model parameters of the clusters. The FMTL
[Sattler et al., 2021] framework groups clients based on the
geometric properties of the federated learning loss surface.
FL+HC [Briggs et al., 2020] introduces a hierarchical clus-
tering step, clustering clients based on the similarity of their
local updates. PACFL [Vahidian et al., 2023] identifies dis-
tributional similarities between clients by analyzing the prin-
cipal angles of the client data subspaces. FlexCFL [Duan et
al., 2022] groups clients based on the similarity of their op-
timization directions and supports flexible client migration
to address data distribution drift. FedCCFA [Chen et al.,
2024], designed for data heterogeneity under distributed con-
cept drift, alleviates feature space inconsistencies using clas-
sifier clustering and feature alignment. CFL-Gb [Kim et al.,
2024] achieves robust clustering and learning performance by
clustering clients based on the similarity of their model up-
dates.

3 Preliminaries
3.1 Federated Learning
Federated Learning (FL) aims to train a global model f(·; θ)
parameterized by θ ∈ Rd across N clients, each holding a lo-
cal dataset Dk ∼ Pk, without sharing these datasets. Clients
perform local training using SGD and the server aggregates
their updates, typically using FedAvg. The overall goal is to
minimize the global loss:

min
θ

N∑
k=1

pkE(x,y)∼Dk
[ℓ(f(x; θ), y)]. (1)

Here, ℓ is the loss function and pk is the weight of client
k. At each round, the server selects a subset of clients,
distributes the current global model, and aggregates their
updated models. Local training typically involves multiple
epochs of SGD: θ(t,e+1)

k = θ
(t,e)
k − η∇θℓ(f(xi; θ

(t,e)
k ), yi),

where (xi, yi) is a data sample (or mini-batch) drawn from
Dk, θ(t,1)k is initialized with the global model, and η is the
learning rate.

3.2 Problem Definition
Statistical Heterogeneity
Statistical heterogeneity stems from the discrepancies in
client data distributions. Different clients may have data
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Figure 1: Overview of the Personalized Gradient Path Similarity Framework: (1) Warm-up training to obtain personalized gradient vectors;
(2) Visualizing personalized gradient vectors over training iterations; (3) Calculating Gradient Path Similarity using cosine similarity; (4)
Cluster Detection Algorithm for dynamic client grouping based on similarity.

drawn from different distributions, causing the directions of
their local model updates to deviate from the global train-
ing objective. Formally, assume N clients each possess a
dataset Dk ∼ Pk, where k ∈ {1, 2, . . . , N}. Statistical het-
erogeneity implies that the data distributions are not identical,
i.e., there exist i ̸= j such that Pi ̸= Pj . This discrepancy
can lead to deviations between the optimal solutions of each
client’s local loss function Lk(θ) and the global loss function
L(θ) =

∑N
k=1 pkLk(θ).

Data Distribution Drift
Data distribution drift refers to the phenomenon where the
data distribution of a client changes during the training pro-
cess. Recent studies have investigated this issue in the context
of federated learning [Li et al., 2024b; Wang et al., 2024a;
Wang et al., 2024b; Zhou et al., 2024]. This drift can be
caused by various factors, such as changes in user behavior
or environment. Formally, the data distribution of client k at
time t is denoted as P (t)

k . Data distribution drift implies that
for some client k, there exist time steps t1 and t2 such that
P

(t1)
k ̸= P

(t2)
k . This can lead to a mismatch between a client’s

local model and the model of its cluster, affecting the perfor-
mance of the global model. To address this issue, Fed-CM in-
troduces an update angle-based client migration mechanism
to detect data distribution drift and migrate affected clients to
more appropriate clusters.

4 Methodology
Our framework consists of two key stages: (1) One-Shot Ini-
tial Clustering: A single clustering step performed before fed-
erated training to establish an initial client grouping using our

personalized gradient path similarity and cluster detection al-
gorithm. (2) Migration Strategy: Employed during subse-
quent training rounds to refine the initial clustering by adjust-
ing a few outlier clients.

4.1 Personalized Gradient Path Similarity
To more accurately capture the inherent differences in client
data distributions, we propose a gradient-path-based dynamic
similarity metric. The core idea of this method is to track the
evolution trajectory of model parameters during local client
training to capture their intrinsic correlation under specific
data distributions, thereby quantifying the dynamic similar-
ity between clients. Unlike previous studies that directly
use overall model parameters for similarity measurement, we
focus on the personalized layer parameters of the model,
which more effectively reflect client data characteristics. A
significant body of research in representation learning has
demonstrated that the classification layer of the model can
effectively reflect the individuality of the model [Li et al.,
2023; Kang et al., 2020; Hu et al., 2023; OH et al., 2022;
Zhang et al., 2024; Chen et al., 2023; Xie et al., 2024;
Ma et al., 2022b; Luo and Wu, 2022; Liu et al., 2023;
Yi et al., 2024]. Therefore, we utilize the classification layer
as the personalized layer to construct our gradient-path simi-
larity metric.

As depicted in Figure 1, we first distribute the same initial
model parameters to every client. Following this, each client
performs warm-up training on their respective local dataset.
During training, we record the gradient vector of each client’s
personalized layer parameters at every iteration and concate-
nate these gradient vectors to create a gradient vector path.
Specifically, for client i, we record the gradient paths of L in-
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dividual personalized layer parameters after local training T

rounds. Let (w(t)
i,l ) denote the parameter of the l th personal-

ization layer of client i after the t round of local training, then
the vector of gradient paths is denoted as:

∆w
(t)
i,l = w

(t)
i,l −w

(t−1)
i,l . (2)

Stack the gradient path vectors of all personalized layers of
client i into a gradient path matrix ( Pi), denoted as:

Pi =


∆w

(1)
i,1 · · · ∆w

(1)
i,L

...
. . .

...
∆w

(T )
i,1 · · · ∆w

(T )
i,L

 . (3)

To quantify the degree of similarity between clients, we ex-
pand the gradient path matrix ( Pi) and use cosine similarity
to quantify the gradient path similarity ( sij ) between clients
i and j:

sij =

∑T
t=1

∑L
l=1 ∆w

(t)
i,l ·∆w

(t)
j,l√∑T

t=1

∑L
l=1 ||∆w

(t)
i,l ||22

√∑T
t=1

∑L
l=1 ||∆w

(t)
j,l ||22

.

(4)

4.2 Cluster Detection Algorithm
To address the challenge that existing clustering federation
learning methods rely on strong hyperparameters and are dif-
ficult to generalize to different scenarios, we design an adap-
tive cluster discovery algorithm inspired by heuristic com-
munity discovery algorithms. The algorithm aims to adap-
tively classify clients into clusters with similar data distribu-
tions without the need for presetting hyperparameters, thus
improving the flexibility and robustness [Ghosh et al., 2019]
of clustering federation learning.

Our algorithm first constructs an undirected graph G =
(V,E) based on the similarity of the clients, where the clients
are the nodes V of the graph, and the similarity between the
clients is the weights of the edges E. In the initial state, each
client independently forms a cluster. Next, the algorithm fo-
cuses on clustering clients into groups where the similarity
is high and the overall modularity can be improved. Specif-
ically, the algorithm iteratively considers moving a client to
other clusters. If a client has high similarity with the clients
in the target cluster, and moving to that cluster increases the
overall modularity, then the move is accepted. Through this
iterative optimization process, the algorithm spontaneously
aggregates clients that are similar and contribute to a higher
modularity.

To quantify the clustering effect, we use the modularity Q
as an evaluation metric, which is calculated as:

Q =
1

2m

∑
c∈C

∑
i,j∈c

wij −
1

2m

(∑
i∈c

ki

)2
 , (5)

where C denotes the set of all clusters, c denotes the current
cluster, wij denotes the weight of the edges between nodes i

Algorithm 1: Adaptive Graph Clustering Algorithm
Input: Client similarity graph G = (V,E)
Output: Cluster partition C∗
Initialization: C ← {{v}|v ∈ V },
Q(C) = 1

2m

∑
c∈C

(∑
i,j∈c wij − 1

2m

(∑
i∈c ki

)2)
;

while changed← false; true do
for vi ∈ V do

Find c∗ = argmaxcj ∆Q(vi, cj), where
∆Q(vi, cj) = Q(Cnew)−Q(C);

if ∆Q(vi, c
∗) > 0 then

Move vi to c∗, changed← true, Update C,
Update Q(C);

end
end

end
return Optimal cluster partition C∗

and j in the cluster c, ki denotes the degree of node i, and m
is the total weight of all the edges in the graph. The detailed
process of our algorithm is shown in Algorithm 1.

4.3 Migration Strategy Based on Update Angles
To address the non-stationarity of client data distributions
over time in federated learning scenarios, we propose an
adaptive client migration strategy based on update angles.
The core idea of this strategy is to monitor the dynamic
changes in client model parameter update directions, quantify
the degree of deviation from the typical pattern represented by
their assigned cluster, and subsequently migrate clients with
significant deviations to clusters with more fitting feature dis-
tributions (see Figure 2). This enables the federated learning
framework to dynamically adapt to the evolving data land-
scape. Specifically, for each client i participating in federated
learning, during each global iteration t, we calculate the up-
date angle of its personalized layer parameters as the normal-
ized difference between the parameters after and before the
current iteration:

θt
i =

wt
i −wt−1

i

||wt
i −wt−1

i ||2
. (6)

Subsequently, for each cluster c, we compute its global av-
erage update direction θ̄

t
c, which is defined as the normalized

weighted average of the update angles of all clients within
that cluster, with the weights being the L2 norm of each
client’s parameter update magnitude:

θ̄
t
c =

∑
j∈Ct

c
||∆wt

j ||2 · θ
t
j

||
∑

j∈Ct
c
||∆wt

j ||2 · θ
t
j ||2

. (7)

To accurately measure the deviation between a client’s up-
date direction and the representative direction of its assigned
cluster, we calculate the cosine similarity between the client’s
update angle θt

i and the cluster’s average update direction θ̄
t
c:

S(θt
i, θ̄

t
c) = (θt

i)
T θ̄

t
c. (8)
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Figure 2: Illustration of the client migration strategy based on
update angles.

When this similarity falls below a predefined threshold τ ,
we identify the client as an outlier, indicating a potential sig-
nificant drift in its data distribution. Having identified an
outlier client, we employ a computationally efficient greedy
strategy to migrate this client to the cluster whose average up-
date direction is most similar to its current update direction.
Specifically, client i will be reassigned to cluster c′, where

c′ = arg max
k∈{1,2,...,K}

(θt
i)

T θ̄
t
k. (9)

Here, K represents the total number of clusters. It is worth
emphasizing that this entire migration process relies solely on
the gradient information uploaded by clients, without requir-
ing access to their local sensitive data, thus ensuring client
data privacy. Through this adaptive migration mechanism,
we aim to dynamically maintain the homogeneity of data dis-
tributions within clusters, effectively enhancing the robust-
ness and generalization performance of the federated learn-
ing framework in the face of statistical heterogeneity and data
drift challenges.

5 Experiments
5.1 Experimental Setup
Datasets and Model
For a fair comparison with existing work, we followed the
experimental setup in the PACFL[Vahidian et al., 2023]
and used four commonly used image classification datasets:
Fashion-MNIST (FMNIST) [Xiao et al., 2017], SVHN [Net-
zer et al., 2011], CIFAR-10 [Krizhevsky, 2009] and CIFAR-
100 [Krizhevsky, 2009]. These datasets cover a wide range
of image complexity and number of categories and are able

to fully validate the Fed-CM framework in various scenar-
ios. We use the classical LeNet-5 [LeCun et al., 1998] as the
model architecture.

Baselines
To fully evaluate the performance of the Fed-CM framework,
we compare it with a series of representative federated learn-
ing algorithms. These baselines include several global meth-
ods, such as the canonical FedAvg [McMahan et al., 2017]
and its variants aimed at handling heterogeneity like FedProx
[Li et al., 2020], FedNova [Wang et al., 2020], and Scaf-
fold [Karimireddy et al., 2020]. We also benchmark against
prominent personalized approaches, including FedPer [Ari-
vazhagan et al., 2019], Per-FedAvg [Fallah et al., 2020], and
pFedMe [T Dinh et al., 2020]. Finally, we conduct extensive
comparisons with state-of-the-art clustered federated learning
methods, namely IFCA [Ghosh et al., 2022], PACFL [Vahid-
ian et al., 2023], FedCCFA [Chen et al., 2024], and CFL-Gb
[Kim et al., 2024]. In our experimental setup, we assume that
there are 100 clients and 10 clients are randomly selected to
participate in the training in each round, with the global round
number set to 200, and 10 local training epochs for each se-
lected client.

5.2 Overall Performance
To comprehensively evaluate the effectiveness and robustness
of the proposed Fed-CM framework in addressing the chal-
lenges of statistical heterogeneity and data distribution drift,
we conducted extensive experiments under diverse settings.
For statistical heterogeneity, we adopted the standard Non-
IID label skew and a more challenging pathological label
skew setting, where clients possess mutually exclusive label
sets, to simulate the complex heterogeneity arising in real-
world scenarios. In addition, we visually analyzed the dis-
tinctions between gradient path similarity and other similarity
metrics, and benchmarked our clustering algorithm against
clustering methods with strong hyperparameter dependency.
For data distribution drift, we simulated scenarios where
client data distributions evolve over time and evaluated the
performance degradation mitigation of Fed-CM compared to
other methods employing client migration strategies. The
experimental results demonstrate that Fed-CM consistently
outperforms state-of-the-art baselines across various settings,
highlighting its effectiveness and robustness in handling both
statistical heterogeneity and data distribution drift.

5.3 Performance in Statistical Heterogeneity
This section provides an in-depth analysis of the experimental
results under statistical heterogeneity. We begin by introduc-
ing the experimental setup: In the label skew setting, each
client can only access ϱ% of the total label classes. Under the
standard label skew, data is randomly distributed to clients.
In contrast, under the pathological label skew, the data labels
accessible to clients are mutually exclusive (orthogonal). We
conducted experiments for both settings with ϱ = 20%. Ta-
ble 1 presents the experimental results for both pathological
and standard label skew at ϱ = 20%. Figure 4 illustrates the
accuracy of different methods over training rounds under the
pathological label skew setting with ϱ = 20%.
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Algorithm CIFAR-10 FMNIST CIFAR-100 SVHN

Pathological Random Pathological Random Pathological Random Pathological Random

FedAvg 38.30 41.31 81.13 85.81 22.61 24.07 79.90 82.69
Fedprox 45.27 49.77 77.50 85.70 22.61 24.43 78.18 84.07
Fednova 45.65 48.88 77.58 85.50 22.48 24.46 78.76 84.35
scaffold 30.29 33.41 69.50 81.30 28.75 30.40 51.31 63.30
FedLG 81.77 84.51 99.07 97.75 34.06 34.59 93.85 92.94

Per-FedAvg 85.41 88.05 98.87 97.20 44.65 47.91 95.67 95.65
pFedMe 86.31 87.43 99.34 97.77 39.41 37.94 96.41 94.34

IFCA 88.37 87.73 99.61 98.39 50.48 46.47 97.14 96.27
FlexCFL 83.81 85.43 94.49 96.86 34.25 34.43 94.49 93.18
PACFL 88.91 87.63 99.19 98.47 49.84 36.63 97.14 96.42

FedCCFA 79.44 82.32 97.76 94.95 27.81 29.27 88.76 90.14
CFL-Gb 84.05 86.07 99.16 97.20 31.27 31.90 95.46 94.39
Fed-CM 90.94 89.97 99.65 98.56 50.72 48.08 97.48 96.42

Table 1: Test accuracy comparison across different datasets (CIFAR-10, FMNIST, CIFAR-100, and SVHN) and Non-IID settings (patholog-
ical and random label skew with ϱ = 20%). For each algorithm, the average of final local test accuracy over all clients is reported. Each
algorithm was run 200 communication rounds, with 10 local epochs per round for selected clients. The best and second-best results are
highlighted in dark gray and light gray, respectively.

Algorithm Performance Best

K-means N = 2
89.32

N = 3
90.43

N = 4
90.58

N = 5
90.94

N = 6
90.41 90.94

Hierarchical L = 0.3
81.71

L = 0.5
83.16

L = 0.7
87.89

L = 0.9
90.84

L = 1
89.10 90.84

Fed-CM - - - - - 90.94

Table 2: Performance comparison of clustering algorithms on the
CIFAR-10 dataset under the pathological setting with ϱ = 20%.

As can be seen from Table 1, the global federated learning
methods FedAvg, FedProx, FedNova, and SCAFFOLD per-
form poorly in heterogeneous data scenarios. This strongly
suggests that under statistical heterogeneity, local models de-
viate from the global optimization objective, leading to dif-
ficulties in the convergence of the global model and, conse-
quently, low accuracy. Among the clustered federated learn-
ing algorithms, our method, Fed-CM, also outperforms other
current SOTA methods. Notably, on the CIFAR-10 dataset
with the pathological label skew setting at ϱ = 20%, Fed-CM
achieves an accuracy of 90.94%, surpassing IFCA, FlexCFL,
PACFL, FedCCFA, and CFL-Gb by +2.6%, +7.1%, +2%,
+11.5%, and +6.9%, respectively. This significant improve-
ment can be attributed to our gradient path similarity, which
more accurately captures client relationships, and our adap-
tive clustering algorithm, which discovers the optimal group-
ing without manual hyperparameter tuning. Figure 4 demon-
strates that Fed-CM exhibits superior convergence speed and
final accuracy compared to all baseline models.

5.4 Visualization Analysis of Gradient Similarities
We further demonstrate the superiority of the personalized
layer gradient path similarity used in Fed-CM through vi-
sual comparisons with other similarity metrics. As shown
in Figure 3, the personalized layer gradient path similarity
(Figure 3a) exhibits clearer and more stable boundaries com-
pared to other metrics. Non-personalized layer parameters,

(a) (b) (c) (d)

Figure 3: Visualization of different similarity metrics on the CIFAR-
10 dataset under the pathological label skew setting with ϱ = 20%.

whether gradients or gradient path (Figure 3c and Figure 3d),
fail to capture the inherent differences between client data
distributions caused by statistical heterogeneity, displaying a
nearly random pattern of low similarity. While personalized
layer gradients (Figure 3b) show some ability to differenti-
ate clients, the boundaries are blurred and lack clarity. In
contrast, the personalized layer gradient path similarity em-
ployed by Fed-CM effectively captures the adaptation pro-
cess of client models on diverse data distributions during lo-
cal training. This results in a more accurate representation
of the intrinsic similarities in data distributions across clients,
as evidenced by the distinct clusters and sharp boundaries in
Figure 3a. This advantage enables more effective client clus-
tering and ultimately leads to improved model performance.

5.5 Analysis of Clustering Algorithms
In addition to the visualization analysis, we also compared
the clustering algorithm used in Fed-CM with other cluster-
ing algorithms that rely on pre-defined parameters. Table 2
presents the performance comparison of different clustering
algorithms on the CIFAR-10 dataset under the pathological
label skew setting with ϱ = 20%. We compared the K-means
algorithm (which requires pre-setting the number of clusters,
N) and the hierarchical clustering algorithm (which requires
pre-setting the distance threshold, L). For a fair comparison,
we tested the performance of these algorithms under differ-
ent parameter settings and reported their best performance.
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Figure 4: Test accuracy versus the number of communication rounds for our method and baseline methods under a 20% pathological label
skew on the CIFAR-10, CIFAR-100, FMNIST, and SVHN datasets.

Algorithm Test Acc.
(Stable)

Test Acc. After drift
∆ (‰)(R60) (R61) (R200)

IFCA 88.37 85.40 69.68 87.95 5
FlexCFL 83.81 81.93 50.75 83.44 5
PACFL 88.91 87.16 53.82 86.21 30
FedCCFA 79.44 75.37 48.24 79.11 4
CFL-Gb 86.50 86.00 80.00 85.50 12
Fed-CM* 90.94 88.87 74.88 88.42 27
Fed-CM 90.94 89.09 73.53 90.82 1

Table 3: Test accuracy comparison under data distribution drift and
impact analysis. ”Fed-CM*” denotes our method without the migra-
tion mechanism.

The experimental results show that the graph-based adaptive
clustering algorithm used in Fed-CM achieves an accuracy
of 90.94% without requiring any pre-set parameters, which
is on par with the best performance of K-means (N=5) and
outperforms the best performance of hierarchical clustering
(L=0.9). This fully demonstrates the effectiveness and adapt-
ability of the clustering algorithm used in Fed-CM, avoiding
the tedious parameter tuning process and enhancing the prac-
ticality and scalability of the algorithm.

5.6 Performance in Data Distribution Drift
This section delves into the performance of the proposed Fed-
CM framework and baseline methods under data distribution
drift. Table 3 presents a comparative analysis of test accuracy
before and after the introduction of a data distribution drift.
To visually complement these quantitative results, Figure 5
illustrates the accuracy trends over communication rounds for
our method (with and without migration) and PACFL under a
20% pathological data drift scenario on CIFAR-10.

As evident from Table 3 and visually reinforced by Figure
5, all methods experience a notable decrease in test accuracy
immediately following the data distribution drift at round 61,
underscoring the challenge posed by such drift. However, by
round 200, most methods demonstrate some level of recov-
ery. Significantly, our proposed method exhibits the smallest
∆ value of 1‰, indicating its superior resilience to data dis-
tribution drift and its ability to effectively recover its perfor-
mance. Comparing ”Fed-CM” with ”Fed-CM*” (our method
without the migration mechanism, which has a ∆ of 27‰)
clearly demonstrates the crucial contribution of the migration
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PACFL Performance Degradation
Our Method Degradation (No Migration)

Figure 5: Fed-CM vs. PACFL under 20% drift on CIFAR-10.

mechanism in mitigating the impact of data distribution drift.
In contrast, other methods like PACFL and IFCA show larger
∆ values, suggesting a more significant impact from the dis-
tribution drift, even after adaptation. These results highlight
the effectiveness of Fed-CM in maintaining performance sta-
bility even under dynamic data conditions.

6 Conclusions
To address the challenges of statistical heterogeneity and
data distribution drift in federated learning, this paper pro-
poses Fed-CM, a novel framework that features: 1) a client
similarity metric based on personalized layer gradient paths
for precise characterization of data distribution differences;
2) an adaptive graph-based clustering algorithm for efficient
client grouping; and 3) a dynamic client migration mecha-
nism based on update angle deviations to tackle data dis-
tribution drift. Fed-CM significantly enhances model accu-
racy, stability, and robustness. Extensive experiments on var-
ious datasets and under diverse settings demonstrate its supe-
rior performance over state-of-the-art methods, establishing a
solid foundation for practical federated learning applications.
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