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Abstract

Heterophily emerges as a critical challenge in
Graph Anomaly Detection (GAD). Recent studies
reveal that neighborhood distributions, rather than
heterophily itself, are the fundamental factor for
the expressive power of Graph Neural Networks
(GNNs). However, two key challenges remain un-
resolved. First, the overlap in neighborhood dis-
tributions between anomalous and normal nodes
poses significant difficulties in distinguishing them
effectively. Second, the dispersion in neighbor-
hood distributions within the same class prevents
the application of a fixed aggregation strategy to
accommodate the diverse patterns within the class.
To tackle the aforementioned challenges, we pro-
pose a novel Graph Neural Network model called
Neighborhood Adaptive Aggregation and Spectral
Tuning (NAAST-GNN). Specifically, we first de-
sign a neighborhood adaptive aggregation module
that adjusts the message passing mechanism based
on the predicted probabilities for different node
classes, ensuring that nodes from distinct classes
but with similar neighborhood distributions derive
unique aggregated neighborhood information. We
then present a spectral tuning module that dynam-
ically selects and combines spectral filters based
on the predicted neighborhood distribution, ensur-
ing adaptability to the diverse neighborhood distri-
butions of nodes within the same class. Compre-
hensive experimental results demonstrate that our
method outperforms state-of-the-art baselines.

1 Introduction

With the rapid advancements in information technology,
anomaly detection has become crucial in areas such as net-
work security [Zhang er al., 2019], financial transactions
[Lin et al., 2021], and social networks [Deng et al., 2023].
However, traditional anomaly detection methods struggle to
keep pace with the growing complexity and scale of graph-
structured data. Graphs, by effectively capturing intricate
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relationships between data points, have emerged as a pow-
erful tool for anomaly detection. In particular, the rise of
Graph Neural Networks (GNNs) has attracted significant at-
tention, as they offer strong representation learning capa-
bilities, making them ideal for addressing the difficulties of
Graph Anomaly Detection (GAD).

Recent studies [Gao et al., 2023a; Wang et al., 2023;
Xu et al., 2024] emphasize the significance of heterophily
in anomaly graphs. They observe that anomalous nodes
in such graphs exhibit a high degree of heterophily, which
makes GNNs based on the homophily assumption [McPher-
son et al., 2001] unsuitable for capturing this characteristic,
resulting in suboptimal performance. However, some works
[Ma et al., 2022; Luan et al., 2022; Chen et al., 2023a] ar-
gue that heterophily does not necessarily constrain the ex-
pressive power of GNNs and may not always be detrimen-
tal. Further studies [Luan et al., 2023; Gao et al., 2024;
Wang et al., 2024] analyze heterophily through the lens
of neighborhood distributions, which typically quantified as
the probability distribution of neighbor categories, revealing
a positive correlation between node distinguishability after
graph convolution and the Euclidean distance between neigh-
borhood distributions. In essence, the core challenge of het-
erophily stems from neighborhood distributions, which fun-
damentally hinder GNNs performance in GAD. This limita-
tion arises from the message-passing mechanism of GNNs,
where the semantic information learned for a node is inher-
ently influenced by the category distribution of its neighbors.

Building on this foundation, we revisit GAD methodolo-
gies from the perspective of neighborhood distributions in
both spatial and spectral domains. Spatial methods [Zhuo
et al., 2024; Liu et al., 2021] focus on edge trimming or
neighbor aggregation mechanisms, which essentially aim to
enhance the distinguishability of neighborhood distrubutions
between anomalous and normal nodes during the message-
passing process of GNNs, enabling the learning of distin-
guishable representations for different classes (normals and
anomalies). Spectral methods [Xu ef al., 2024; Tang et
al., 2022], since nodes with similar neighborhood distrubu-
tions but different classes exhibit different frequency compo-
nents [Gao et al., 2024], employ polynomial filters to retain
the high-frequency signals of anomalous nodes and the low-
frequency signals of normal nodes.

Although previous methods have made some progress, as
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Figure 1: The neighborhood distribution when the neighboring nodes are normal, i.e., NDg.

shown in Figure 1, two key challenges remain: (1) Over-
lap of Inter-class Neighborhood Distrubutions: There is
significant overlap in the neighborhood distrubutions be-
tween normal and anomalous nodes, making it difficult for
GNNs to learn distinguishable representations for different
classes. Existing methods [Liu et al., 2021; Dou et al.,
2020] that determine message passing between nodes based
on features can easily lead to errors being propagated to
the results, causing suboptimal performance. (2) Disper-
sion of Intra-class Neighborhood Distrubutions: The intra-
class neighborhood distribution exhibit significant dispersion
in some cases. Fixed GNN aggregation strategies or fil-
ters struggle to adapt to such complex scenarios, causing
learned representations within the same class to still demon-
strate differences. Current approaches [Tang er al., 2022;
Gao er al., 2024] fail not specifically address the diverse
neighborhood distrubutions within the same class of nodes.
Overall, the impact of these two challenges varies across dif-
ferent datasets. For instance, for YelpChi, it is primarily the
former, whereas for T-Finance, it is mainly the latter.

To address the aforementioned challenges, we propose the
GNN with Neighborhood Adaptive Aggregation and Spectral
Tuning for graph anomaly detection (NAAST-GNN). The
core idea is to dynamically adjust graph convolution propa-
gation mechanisms based on node-specific predicted proba-
bilities. Each layer consists of two key modules: The neigh-
borhood adaptive aggregation module operates in the spatial
domain, addressing the challenge of overlapping neighbor-
hood distributions between anomalous and normal nodes. It
constructs edge weights based on the predicted probabilities
of nodes from the previous epoch, emphasizing a dynamic
adjustment of edge weights. Specifically, this module assigns
higher weights to homophilous edges and lower weights to
heterophilous ones, ensuring that the aggregated neighbor-
hood information remains distinct and discriminative, even
when nodes from different classes share similar neighbor-
hood distributions. The spectral tuning module operates in
the spectral domain to address the dispersion in neighborhood
distributions within the same class. By dynamically selecting
and combining spectral filters based on the predicted neigh-
borhood distribution, this module ensures adaptability to the
diverse neighborhood characteristics within the same class.
Finally, the learned spatial and spectral representations are
integrated as inputs for the next layer.

The main contributions of this paper are summarized as:

* We identify two key challenges in GAD: the overlap of

intra-class neighborhood distributions and the dispersion
of inter-class neighborhood distributions.

* We propose the GNN with neighborhood adaptive ag-
gregation and spectral tuning for graph anomaly de-
tection (NAAST-GNN), which dynamically adjusts the
graph convolution propagation mechaism based on pre-
dicted node probabilities.

* Extensive experiments on four public datasets demon-
strate that our proposed method NAAST-GNN outper-
forms the state-of-the-art baselines.

2 Preliminaries

We present the notations and problem definition, and then
delve into the concepts of homophily and heterophily, along
with an analysis of neighborhood distributions.

2.1 Notations and Problem Definition

An anomaly graph is denoted as G = {V, X, £}, where V
is the node set with size N = |V, £ is the edges set, and
X € RV*4 denotes the node attributes matrix, with X,, € R?
representing the attribute vector of node v.

The GAD is usually formalized as a binary node classifi-
cation task (normal and anomalous), where normal nodes are
labeled as 0 and anomalous nodes as 1. Given a graph G, the
target of GAD is to train a classifier f(-) that can infer the
labels of unlabeled nodes based on the known labels of some
nodes. This process can be represented as:

f(ga YTTain) — Y/Test- (1)

2.2 Homophily/Heterophily and Neighborhood

Distribution
The homophily coefficient H_,, is usually used to measure
the degree of homophily of the node v, defined as:
S N vy Yu = Yo
oo {u|u Yu = Yo}| )
Nl

where N, denotes the set of neighbors of node v. Thus, the
heterophily of the node v can be definedas 1 — H_ ..

Then, the Neighborhood Distribution (VD) of a node v,
which represents the probability of its neighboring nodes

belonging to category c, can be calculated as:

|{7.L ‘ U ENvayu = C}|
W

NDY — 3)
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Figure 2: The architecture of the proposed NAAST-GNN.

Figure 1 shows the neighborhood distribution of each
dataset when the neighboring nodes are normal, i.e., ND.
Since GAD involves only two types of nodes, the neighbor-
ing anomalous node case, i.e., ND7, equals 1 — NDg, and its
illustration is omitted here due to space constraints.

3 Methodology

We first provide an overview of the proposed NAAST-GNN,
followed by a detailed description of its two key components:
the neighborhood adaptive aggregation and spectral tuning
module. Finally, we discuss the model optimization.

3.1 Overview

Figure 2 illustrates the detailed architecture of our proposed
NAAST-GNN. The model operates iteratively, where the
message-passing mechanism of the graph convolution relies
on the node prediction probabilities from the previous epoch.
Each convolutional layer consists of two core modules: the
neighborhood adaptive aggregation and spectral tuning mod-
ule. To address the issue of overlapping neighborhood distri-
butions between anomalous and normal nodes, the neighbor-
hood adaptive aggregation module constructs edge weights
in the graph based on the predicted node probabilities. This
ensures that nodes with similar neighborhood distributions
but belonging to different classes aggregate distinct neighbor-
hood information. Then, to tackle the challenge posed by sig-
nificant intra-class variations in neighborhood distributions,
the spectral tuning module dynamically combines different
spectral information. This approach adapts to the diverse
neighborhood characteristics of nodes, enabling the model
to handle various neighborhood situations effectively. The
two modules collaboratively address these challenges from
spatial and spectral perspectives, respectively. Finally, the
aggregated representations are transformed through a multi-
layer perceptron (MLP), generating updated representations
that serve as input for the subsequent layer.

3.2 Neighborhood Adaptive Aggregation Module

Most traditional GNNs are based on the homophily assump-
tion [McPherson et al., 20011, which indiscriminately aggre-
gates information from all neighbors. However, the neigh-
borhood distributions of normal and anomalous nodes over-
lap significantly in GAD. This causes traditional GNNs to
learn representations that fail to effectively distinguish be-
tween normal and anomalous nodes. To this end, we propose
a neighborhood adaptive aggregation strategy that selectively
aggregates information from relevant neighbors. Specifically,
we utilize the classification probabilities ¢ of the nodes at
both ends of an edge from the previous epoch to compute
the edge weights. This approach ensures that, for any given
node, edges connecting neighbors of the same class are as-
signed larger weights, while edges connecting neighbors of
different classes are assigned smaller weights. As a result,
our method facilitates the learning of more distinguishable
representations, even when the neighborhood distributions of
different classes exhibit significant similarity.

First, for any central node v, we determine its category
based on the comparison between its predicted probability ¥,
in the previous epoch and the threshold . If the probability is
less than the adaptive adjustment parameter £, the instance is
classified as normal; otherwise, it is considered an anomaly.
Then, we adopt different strategies to construct edge weights
based on their categories:

— ?;UQZH :QU 25
Wou = {(1 — )1 =), o< @

Empirically, anomalous nodes tend to exhibit § ~ 1, while
normal nodes usually have § ~ 0. When a central node v is
classified as anomalous (i.e., g, > &), the edge weight is de-
fined as w,,, = Yy Yu, Which assigns higher weights to edges
connecting v with anomalous neighbors (where ¢, =~ 1),
and lower weights to edges connecting v with normal neigh-
bors (where ¢, =~ 0). Conversely, when v is classified
as a normal node (i.e., 9, < &), the weight is defined as
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Wyy, = (1 = §,)(1 — §,), thereby strengthening the connec-
tions with other normal neighbors and weakening those with
anomalous ones. By constructing edge weights in this man-
ner, even if the neighborhood distrubutions of anomalous and
normal nodes overlap, the edge weights built for these two
types of nodes are completely different, enabling the GNN to
effectively handle different types of node scenarios.

Since § € (0,1), to prevent gradient vanishing and im-
prove training robustness, we normalize the edge weights of
the central node v using edge softmax:

D exp(Wyy,)
o Zue/\/(v) exp(wvu) '

&)

Finally, based on the normalized edge weights «,,,, the fi-
nal spatial domain representation is obtained:

W =R AW Y T Bl ©6)
ueEN,

where h!~! represents the embedding of node v in layer [ — 1,
with hY = X, and W'~ is a learnable parameter matrix.

3.3 Spectral Tuning Module

Considering that even among nodes belonging to the same
category, substantial differences in neighborhood distribu-
tions may exist. Previous approaches [Tang et al., 2022;
Zhuo et al., 2024] often rely on predefined spectral convo-
lution kernels or fixed aggregation strategies, which fail to
adapt effectively to the unique neighborhood distributions of
individual nodes. To this end, we propose a method to de-
sign convolution kernels in the spectral domain, tailored to
the neighborhood distributions of the nodes.

According to [Gao er al., 2024; Wang et al., 2024], the
distinguishability of node representations of different classes
after applying GNNs is positively correlated with the Eu-
clidean distance between their neighborhood distrubutions.
Simultaneously, nodes of different classes with similar neigh-
borhood distrubutions will retain different frequency compo-
nents. Therefore, we can infer that for a given node, if there
are more nodes of the same class in its neighborhood, more
low-frequency information should be retained. Conversely,
if there are more nodes of different classes in its neighbor-
hood, more high-frequency information should be retained.
Thus, the spectral tuning module will adjust the low- and
high-frequency components in the spectral filters according
to the node-level neighborhood distrubutions.

Specifically, we first determine the neighborhood distribu-
tion of each node v based on the predicted probability of the
node in the previous epoch:

EuENU ]I(Z}u 25)

NDY_, =
ND" = u N, 0
V_ Tuew, [0.<9)
ND(—g = =5

where the indicator function I(-) equals 1 if the condition in-
side the parentheses is true, and 0 otherwise. Here again, we
utilize the relationship between the node probability 7, and
the adaptive adjustment parameter £ to determine the neigh-
borhood distrubution of nodes.

Then, based on the previous analysis, we adjust the spectral
information of the filter according to the category of node
v and its neighborhood distrubution. The final learned node
representation in the spectral domain is:

pli-1 — {NDg_oHP(hi;l) + NDo_  LP(hi7h), Gy > €
vf = \NDI_yLP(h") + NDI_  HP(hY), , <&
(8)
where normalized Laplacian matrix L and its complement I —
L are employed here as high- and low-pass filters [Wang and
Zhang, 2022], respectively. It is worth mentioning that other
high- and low-pass filters can also be utilized in this context.

We analyze the case when the central node v is anomalous,
i.e., when g, > £. The more neighbors of the same type it
has, i.e., the higher the anomalous distribution of the neigh-
borhood distrubution NDY is, according to the previous anal-
ysis, the more low-frequency information should be retained,
making node v more similar to its neighbors. For the node v
being normal, the situation is similar, but the retained spectral
information is exactly the opposite. Through the spectral tun-
ing module, we can ensure that nodes of the same class are
well-tuned to their respective spectral information even when
they have different neighborhood distrubutions.

Finally, the spatial representation hi;tl from the neighbor-
hood adaptive aggregation module and the spectral represen-
tation hfjfl from the spectral tuning module are transformed
as the input for the next layer:

B, = MLP [0 )

where [-||-] denotes the concatenation operation, and MLP
transforms the concatenated representations.

3.4 Model Optimization

We utilize the node representation h from the final layer of
the model to perform classification, generating a predicted
value ¢,, which represents the probability of node v being
classified as anomalous:

gy = Sigmoid (hSW + ), (10

where W and b represent a learnable parameter matrix and
bias, respectively. Our model adopts an iterative optimization
strategy, where ¢,, serves as both the output of the current
epoch and the input for the next epoch.

Then, to mitigate the class imbalance between normal and
anomalous nodes, we minimize the weighted cross-entropy
loss, defined as:

Loss ==Y [yyulogdy + (1 —y,)log (1 —§,)]. (1)
veyY

where 1 is the ratio of the number of normals to anomalies.
During the model optimization process, the classification
probabilities ¢, of the nodes are not available during the first
epoch of training. For this purpose, we initialize the prob-
abilities randomly for all nodes. In subsequent epochs, as
the training loss decreases, the prediction probabilities are it-
eratively refined, becoming increasingly accurate with each
epoch. The predictive objectives and the model’s sophisti-
cated design synergize effectively: higher prediction accu-
racy enhances the functionality of the neighborhood adaptive
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Dataset ‘ #Nodes  Anomaly(%) #Edges #Features
YelpChi 45,954 14.53 3,846,979 32
Amazon 11,944 6.87 4,398,392 25
T-Finance | 39,357 4.58 21,222,543 10
T-Social | 5,781,065 3.01 73,105,508 10

Table 1: Statistics of datasets.

aggregation and spectral tuning modules, while improved ca-
pabilities in these modules, in turn, boost the model’s overall
prediction accuracy. This reciprocal relationship ultimately
enhances the model’s performance.

Finally, for the parameter £, we initialize it to 0.5 at the
start of the first epoch. During model training, its value is
dynamically adjusted to the threshold that maximizes the F1-
Macro score on the validation set [Tang et al., 2022].

4 Experiments

In this section, we perform experiments on four datasets and
report results of our models and state-of-the-art baselines to
show the effectiveness of NAAST-GNN.

4.1 Experimental Setup

Dataset. We conduct experiments on four datasets related
to graph anomaly detection, the statistics of which are shown
in Table 1. Among them, YelpChi [Rayana and Akoglu,
2015] and Amazon [McAuley and Leskovec, 2013] are two
public spam review datasets for opinion fraud detection.
YelpChi aims to identify reviews that unfairly promote or dis-
parage specific products or businesses. Amazon focuses on
detecting users who provide deceptive product reviews in the
musical instruments category on the Amazon website and get
paid for it. T-Finance and T-Social [Tang et al., 2022] aim to
identify anomalous accounts in transaction networks and so-
cial networks, respectively. They share 10-dimensional fea-
tures related to the number of days since registration, login
activity, and interaction frequency. In T-Finance, edges rep-
resent transaction records between accounts. If a node is as-
sociated with categories such as fraud, money laundering, or
online gambling, human experts label it as anomalous. In T-
Social, nodes are connected if they have maintained a friend-
ship for over three months.

Baselines. We evaluate NAAST-GNN against state-of-the-
art baselines, which are categorized into three groups. The
first group comprises conventional GNNs, including GCN
[Kipf and Welling, 20171, GraphSAGE [Hamilton et al.,
20171, and GAT [Velickovic et al., 2018]. The second group
focuses on spectral heterophilic methods, such as AMNet
[Chai et al., 2022], LSGNN [Chen er al., 2023b], BWGNN
[Tang et al., 2022], GHRN [Gao et al., 2023al, SEC-GFD
[Xu et al, 2024], and BioGNN [Gao et al., 2024]. The
third group encompasses spatial heterophilic methods, in-
cluding CARE-GNN [Dou et al., 2020], PC-GNN [Liu et
al., 20211, H2-FDetector [Shi et al., 2022], GDN [Gao et al.,
2023b], GAGA [Wang et al., 2023], CONSISGAD [Chen et
al., 2024], and PMP [Zhuo et al., 2024].

Metrics. Since GAD is a class-imbalanced classification
task, we select two widely used evaluation metrics: F1-Macro
and AUC. F1-Macro calculates the mean F1 score across all
classes, ensuring equal significance to each class by balanc-
ing precision and recall. AUC quantifies a model’s capacity to
differentiate between positive and negative examples through
the area under the ROC curve. Higher values for these two
metrics indicate better performance.

Implementation Details. The training, validation, and test
sets for all datasets are split in a 0.4/0.2/0.4 ratio, with ex-
perimental results reported as the average of five runs. For
our proposed NAAST-GNN, the layer number is set to 2. The
hidden layer dimension is set to 32 for YelpChi, Amazon,
and T-Finance. Due to the large scale of the T-Social, its hid-
den layer dimension is set to 10. The choice of parameter
¢ is discussed at the end of Section 3.4. We use the Adam
optimizer and tune the hyperparameters using grid search,
with the learning rate ranging from {5e-4, le-3, 5e-3, le-2}
and the weight decay ranging from {le-3, le-4, le-5}. For
GCN, GAT, and GraphSAGE, we implement these models
using DGL [Wang et al., 2019b]. For other baseline meth-
ods, we utiliz the source code provided by their respective
authors. Due to the unavailability of the source code for SEC-
GFD and BioGNN at the time of manuscript submission and
our experimental settings are consistent with those outlined
in their original publications, we present the results directly
from the respective papers.

4.2 Experimental Results

We conduct a comprehensive comparison of our method
against homophilous GNN models, state-of-the-art spectral
and spatial heterophilous GNNs. The results are summarized
in Table 2. Traditional GNNs based on the homophily as-
sumption perform poorly on heterophilous anomaly graphs
due to their inability to effectively model heterophilous struc-
tures. Recent spectral and spatial heterophilous GNNs intro-
duce mechanisms to address heterophily, achieving some de-
gree of performance improvement. However, they fail to fully
consider the key factor of neighborhood distribution, which
led to suboptimal performance.

Our proposed model consistently achieves superior per-
formance in most cases. Specifically, NAAST-GNN outper-
forms the best baseline methods on YelpChi, T-Finance, and
T-Social by 1.48%, 1.20%, and 4.26% in terms of Fl-macro,
and by 1.19%, 0.74%, and 2.17% in terms of AUC, respec-
tively. These results underscore the efficacy of our neigh-
borhood adaptive aggregation and spectral tuning modules in
addressing the challenges posed by inter-class neighborhood
distribution overlap and intra-class neighborhood distribution
dispersion. Notably, the performance of NAAST-GNN on the
Amazon dataset is relatively less competitive, ranking as the
second best. This may be attributed to the complex structural
characteristics of Amazon, where excessive interaction com-
plexity partially hampers the model’s ability to distinguish
neighborhood distributions effectively.

4.3 Ablation Study

To better verify the effectiveness of each module in NAAST-
GNN, we conduct ablation studies on the neighborhood adap-
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Dataset YelpChi Amazon T-Finance T-Social
Metric F1-Macro AUC | F1-Macro AUC | F1-Macro AUC | FI-Macro AUC
GCN 55.32 58.15 64.61 82.11 70.58 63.44 63.35 79.78
GraphSAGE 60.44 69.98 66.53 78.85 53.70 69.15 61.71 74.01
GAT 57.07 60.15 68.67 89.59 55.77 76.61 73.60 88.54
AMNet 69.31 84.17 91.82 88.62 88.19 93.72 77.76 93.76
LSGNN 72.27 82.49 91.05 96.45 87.96 94.37 90.28 96.94
BWGNN 76.21 90.16 91.51 97.48 88.34 95.13 90.10 95.96
GHRN 77.95 90.97 92.32 97.63 89.64 96.70 91.53 96.55
SEC-GFD* 71.73 91.39 92.35 98.23 89.86 96.32 87.74 96.11
BioGNN* 76.32 89.20 93.68 97.48 90.47 96.39 81.40 93.25
CARE-GNN 64.20 79.73 87.03 92.27 73.81 92.26 55.20 85.03
PC-GNN 65.79 89.55 88.43 96.44 62.69 91.28 47.76 87.63
H2-FDetector 69.37 88.33 83.87 96.34 OOM OOM
GDN 76.34 90.08 90.13 96.89 84.89 93.27 74.25 93.52
GAGA 80.02 91.85 91.58 96.75 90.25 95.46 ooT
CONSISGAD 76.43 90.57 92.26 97.41 91.08 96.21 83.60 95.77
PMP 80.17 91.77 91.95 97.61 91.26 96.29 00T
NAAST-GNN \ 81.36 92.95 \ 92.48 97.82 \ 92.36 97.11 \ 95.43 98.65

Table 2: Performance Results (%). The best results for all methods are in bold and the second best results are underlined. Results marked
with “*” are reproduced from original publications. OOM: out of memory; OOT: out of time (running time > 1 day).

tive aggregation (w/o NAA) and spectral tuning (w/o ST)
modules. Additionally, for our proposed neighborhood adap-
tive aggregation, we replace it with GAT (w/ GAT), which dy-
namically aggregates neighborhood information through an
attention mechanism based on node features. For the spec-
tral tuning module, we design two variants, which replace
it with situations that only retain high-frequency information
(w/ HP) or low-frequency information (w/ LP), respectively.

As shown in Table 3, NAAST-GNN achieves the best per-
formance in its complete state, indicating that each module
contributes to its effectiveness. Compared to YelpChi and
T-Social, we observe that for YelpChi, the removal of the
NAA module has a more significant impact on performance
than the removal of the ST module. In contrast, for T-Social,
the removal of the ST module has a greater impact than that
of the NAA module. This disparity can be attributed to the
differing primary factors influencing their performance: for
YelpChi, it is the overlap of inter-class neighborhood distru-
butions, whereas for T-Social, it is the dispersion of intra-
class neighborhood distrubutions. These findings further val-
idate that the proposed modules are specifically designed to
address these distinct challenges.

4.4 Analysis of Training Ratio

In real-world scenarios, we may not obtain enough labeled
data. Therefore, we explore the impact of the training ra-
tio on model performance. Table 4 shows the performance
of NAAST-GNN on YelpChi and T-Social with training data
ranging from 1% to 40%. According to [Tang et al., 2022],
the validation and test set split ratio remains 1:2.

From the results in Table 4, it can be seen that as the train-
ing ratio increases, the model performance improves signifi-
cantly for YelpChi. However, the improvement for T-Social is

Dataset YelpChi T-Social
Metric Fl1-Macro AUC | F1-Macro AUC
NAAST-GNN | 81.36 92.95 | 9543 98.65
w/o NAA 75.88 85.76 93.28 98.73
w/ GAT 78.14 90.73 93.91 98.73
w/o ST 77.28 89.92 79.41 96.41
w/ HP 79.21 90.95 93.95 99.05
w/ LP 80.37 91.64 93.15 98.72

Table 3: The ablation study of NAAST-GNN.

limited. We believe the possible reason is that in YelpChi, the
neighborhood distrubutions of anomalous and normal nodes
overlap too much, as shown in Figure 1(a), and the model
requires more supervisory signals for training. The neighbor-
hood distrubutions between classes in T-Social are quite dif-
ferent, as shown in Figure 1(d), making it relatively simpler.
The main issue is the large intra-class neighborhood distru-
bution disparity, which our spectral tuning module can effec-
tively address. Therefore, even with extremely limited train-
ing data (1%), NAAST-GNN still outperforms other graph
anomaly detectors (using 40% training data in Table 2).

4.5 Visualization and Discussion

To intuitively illustrate the effectiveness of NAAST-GNN, we
present a visualization of a portion of the convolution process
of our model in Figure 3. As shown in the figure, the weights
assigned to heterophilous connections are notably smaller
compared to those of homophilous connections during the
neighborhood adaptive aggregation. This mechanism enables
the model to efficiently aggregate information from similar
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Dataset YelpChi T-Social
Metric | F1-Macro AUC | F1-Macro AUC
1% 69.12 80.82 94.01 97.90
5% 73.21 85.34 94.35 98.16
10% 75.17 86.94 94.54 98.19
20% 77.66 89.54 94.61 98.24
30% 78.40 90.83 95.16 98.47
40% 81.36 92.95 95.43 98.65

Table 4: The analysis of training ratio.

nodes, effectively mitigating the issue of excessive overlap in
inter-class neighborhood distributions. Furthermore, our ap-
proach accurately captures the neighborhood distributions of
nodes, facilitating the integration of low- and high-frequency
information based on the node’s specific neighborhood char-
acteristics. This design addresses the challenge of substan-
tial intra-class neighborhood distribution discrepancies. In
summary, our method strategically leverages node prediction
probabilities, ensuring that the graph convolution process and
prediction objectives complement each other. This synergis-
tic design results in significant performance improvements.

5 Related Work

This section introduces related work on GAD, as well as re-
cent research on heterophily and neighborhood distribution.

5.1 Graph Anomaly Detection

Early works [Wang et al., 2019a; Liu et al., 2020] focus on
leveraging multiple relationships to aggregate information.
However, indiscriminate aggregation of all information can-
not lead to the differentiation of anomalous nodes. Further-
more, CARE-GNN [Dou et al., 2020], PC-GNN [Liu et al.,
2021], H2-FDetector [Shi et al., 2022], and GAGA [Wang et
al., 2023] selectively aggregate neighbor information by de-
signing unique GNN propagation mechanisms.

Additionally, some works address this task from the spec-
tral domain, with the mainstream solution being the de-
sign of various spectral filters for denoising [Guo er al.,
2024]. BWGNN [Tang et al., 2022] discovers that as the
degree of anomaly increases, the spectral energy distribu-
tion shifts to the right. Building on BWGNN, GHRN [Gao
et al., 2023a] trims heterophilous edges based on spectral
energy components. SEC-GFD [Xu er al., 2024] extends
BWGNN by incorporating missing high-frequency informa-
tion. BioGNN [Gao et al., 2024] analyzes the relationship be-
tween heterophily and neighborhood distribution, suggesting
that nodes with similar neighborhood distrubutions but differ-
ent classes should retain different frequency components.

5.2 Heterophily and Neighborhood Distrubution

Recent studies on heterophilous graphs reveal that the poor
performance of GNNs is not inherently due to heterophily
but rather the indistinguishability of neighborhood distribu-
tions. Early studies [Ma er al., 2022; Luan et al., 2022;
Chen et al., 2023a] found that heterophily is not always detri-
mental and that the distinguishability of nodes by GNNs is
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Figure 3: Graph convolution visualization: Blue and red represent
normal and anomalous nodes, respectively. The labels on the nodes
are ¢, and the numbers on the edges indicate the edge weights cvy.,
calculated by Equation (5). ND" indicates the neighborhood distru-
bution determined by &.

related to neighborhood distrubutions. [Mao ef al., 2023]
shows that GNNs often rely on majority-class structural dis-
tributions (homophily or heterophily), leading to poor per-
formance for minority-class nodes in GAD. Moreover, [Luan
et al., 2023] demonstrates that the superior performance
of GNNs is related to whether the intra-class node distin-
guishability is less than the inter-class node distinguishabil-
ity. Some studies [Gao et al., 2024; Wang ef al., 2024] fur-
ther proves that the distinguishability of nodes after the graph
convolution operation is positively correlated with the Eu-
clidean distance of neighborhood distrubutions. Additionally,
[Huang et al., 2024] shows from a spectral perspective that
high-frequency signals are more favorable on heterogeneous
graphs, and the ideal graph signal bases are obligated to in-
corporate the heterophily of the graph.

6 Conclusion and Future Work

In this paper, we highlight the critical role of neighborhood
distribution in graph anomaly detection. To address the key
challenges of inter-class neighborhood distribution overlap
and intra-class neighborhood distribution dispersion, we pro-
pose NAAST-GNN. It integrates two modules: neighbor-
hood ndaptive aggregation and spectral tuning, which dynam-
ically adjust graph convolutions to align with node-specific
neighborhood characteristics. Extensive experiments con-
duct on four public datasets validate the effectiveness of
our approach, demonstrating superior performance compared
to state-of-the-art methods. Future work will explore the
broader interplay between heterophily and neighborhood dis-
tributions and extend the model to dynamic graph scenarios.
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