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Abstract
Diffusion processes pervade numerous areas of AI,
abstractly modeling the dynamics of exchanging,
oftentimes volatile, information in networks. A cen-
tral question is how long the information remains in
the network, known as survival time. For the com-
monly studied SIS process, the expected survival
time is at least super-polynomial in the network size
already on star graphs, for a wide range of param-
eters. In contrast, the expected survival time of the
SIRS process, which introduces temporary immu-
nity, is always at most polynomial on stars and only
known to be super-polynomial for far denser net-
works, such as expanders. However, this result relies
on featuring full temporary immunity, which is not
always present in actual processes. We introduce
the cSIRS process, which incorporates gradually de-
clining immunity such that the expected immunity
at each point in time is identical to that of the SIRS
process. We study the survival time of the cSIRS
process rigorously on star graphs and expanders and
show that its expected survival time is very simi-
lar to that of the SIS process, which features no
immunity. This suggests that featuring gradually
declining immunity is almost as having none at all.

1 Introduction
Diffusion processes on graphs are prevalent in various domains
of AI research, modeling a broad range of applications, such
as information diffusion [Sun et al., 2023; Jiang et al., 2023;
Liu et al., 2023; Sun et al., 2022; Razaque et al., 2022;
Sharma et al., 2021], rumor spreading [Kempe et al., 2003],
infections [Pastor-Satorras et al., 2015; Leskovec et al., 2007],
and computer viruses [Berger et al., 2005; Borgs et al., 2010].
These processes usually share the same core mechanics, which
are naturally expressed as extensions or variations of the well-
known SI process from epidemiology (see [Pastor-Satorras et
al., 2015] for an extensive survey). The SI process is defined as
a Markov chain on an underlying graph with vertices that are
either infected or susceptible to an infection, and the infection
spreads randomly over edges with an infection rate λ.

A very important variant of the SI process studied exten-
sively both empirically and theoretically, e.g., [Ferreira et al.,

2012; Ferreira et al., 2016; Nam et al., 2022; Borgs et al., 2010;
Ganesh et al., 2005] is the SIS process (also commonly called
contact process), which allows infected vertices to become
susceptible again. In turn, susceptible vertices can become
infected again, and one fundamental question is how long an
infection survives on a graph. This (random) time period is
called the survival time of the process, and it is closely tied
to the expansion properties of the graph [Ganesh et al., 2005].
Most importantly, the SIS process exhibits a super-polynomial
expected survival time (also called endemic) already on star
graphs with n leaves once the infection rate λ is at least in
the order of only n−1/2+ε, with ε > 0 being an arbitrary con-
stant. If the infection manages to infect at least a logarithmic
number of leaves, it is likely to quickly infect order of λn
leaves. This number of infected leaves remains for a super-
polynomial time with overwhelming probability, leading to
the super-polynomial survival time. This result translates to
any graph that contains a star as a subgraph, implying that the
SIS process goes endemic on many natural networks, such as
scale-free networks, as they contain large stars as subgraphs
[Berger et al., 2005].

One potential way to counteract endemic behavior is to in-
troduce immunity against the infection into the system. This is
classically modeled with the SIRS process, which introduces a
recovered state, in which vertices are immune to the infection.
Different from the SIS process, infected vertices transition
now randomly into the recovered state, from which they tran-
sition into the susceptible state, based on a random rate ϱ
called the deimmunization rate. While there is a plethora of
empirical results on the SIRS process, e.g., [Wang et al., 2017;
Kuperman and Abramson, 2001; Ferreira et al., 2016], most
of the theoretical results use some simplifying assump-
tions such as mean-field approaches [Prakash et al., 2012;
Bancal and Pastor-Satorras, 2010]. To the best of our knowl-
edge, the recent paper by [Friedrich et al., 2024b] is the first
fully rigorous paper on this process. In their work, the au-
thors prove that the SIRS process has an at most polynomial
expected survival time on stars for any infection rate λ if the
deimmunization rate ϱ is constant. This result has recently
been complemented by [Lam et al., 2024] with a matching
lower bound. This strongly contrasts the SIS process and
shows that immunity can be beneficial in fighting back the
infection. [Friedrich et al., 2024b] furthermore show that
the SIRS process becomes endemic on expander graphs, that
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is, dense graphs. This suggests that the benefit of immunity
degrades with the density of the graph.

The polynomial expected survival time of the SIRS pro-
cess on stars by [Friedrich et al., 2024b] is a consequence
from the fact that vertices that recover from the infection are
fully immune to re-infection until they spontaneously become
susceptible. A main reason for this assumption in the SIRS
process is that the resulting process is a time-homogeneous
Markov chain, which simplifies the analysis. However, for
a lot of real-life processes, this is a strong simplification.
In infectious diseases, like SARS-CoV-2 for example, the
number of antibodies drops continuously, which suggests
that the resistance drops over time instead of just vanish-
ing at some point [Sanderson, 2021; Wheatley et al., 2021;
Gaebler et al., 2021; Israel et al., 2022]. Similar phenomena
occur in several social phenomena [Zhang et al., 2016], for ex-
ample, innovation adoption, where people adopt an innovative
product, such as a phone, and do not require a new one until
a certain time passes, after which the people get more recep-
tive to buying a new product. In this example, the declining
immunity models that a person can buy a new phone before
the old one breaks if the new features are sufficiently better,
which becomes more and more likely the more time passes.

In a newly proposed model, [Watve et al., 2024] aim to
capture the complexity of continuously declining immunity.
The authors show via simulations that this model explains
real-world phenomena well, such as multiple small outbreaks
of an infection. However, this model features a multitude of
parameters and is too complex to rigorously analyze its effects.

A more promising approach for a rigorous analysis is a
line of research that models the declining immunity while
keeping the process time-homogeneous [Águas et al., 2006;
Fouchet et al., 2008]. To this end, a new semi-recovered state
is added, in which the immunity has partially worn off. In
this state, vertices get infected at a smaller rate and go upon
infection into a state of mild infection. Thus, this setting only
provides a coarse, discretized version of declining immunity.
The analysis is done via simulations and mean-field theory.

While there have been studies of variants of declining im-
munity incorporated into infection models, to our knowledge,
none of them include rigorous mathematical analyses.

1.1 Main Contribution
We study the impact of gradually degrading immunity when
compared to the temporarily full immunity of the SIRS pro-
cess. To this end, we introduce and mathematically rigorously
analyze the cSIRS process, which incorporates the gradual de-
cline of immunity into the SIRS process such that the expected
degree of immunity is the same as in the original SIRS process.
We study the expected survival time of the cSIRS process on
star and expander graphs, allowing us to compare our results to
the SIS and the SIRS process. Moreover, our lower bounds on
the expected survival time hold for any graph that contains a
star or expander as subgraph (Observation 9 and Corollary 19,
respectively). Table 1 summarizes our results on stars.

We observe that while the definition of the SIRS and the
cSIRS process may seem similar, they behave fundamentally
differently. Although both processes have an at most logarith-
mic expected survival time for sufficiently small infection rates

infection rate SIS SIRS cSIRS

λ ∈ O
(
n−1/2

)
O(log(n)) O(log(n)) O(log(n))

λ ∈ Θ
(
n−1/2+ε

)
and λ ≤ 1

Ω
(
en

ε)
Θ̂
(
n2εϱ

)
Thm. 7

Ω
(
en

2ε/3)
Thm. 8

λ > 1 Ω
(
en

1/2)
Θ̂(nϱ) Ω

(
en

1/3)
Table 1: Expected survival time E[T ] of different processes on stars
with n leaves, starting with an infected center and no recovered
leaves. The parameter λ is the infection rate of the process, ϱ the
deimmunization rate of the SIRS process, assumed to be constant,
and ε any constant in (0, 1/2]. The results from this paper have their
theorem numbers below them. The logarithmic upper bounds and
SIS results follow from [Ganesh et al., 2005]. The hat in the big-O
notation means we omit sub-polynomial factors. The results in the
last row follow from Observation 9 and [Friedrich et al., 2024b].

λ ∈ O
(
n−1/2

)
, the expected survival time of the cSIRS pro-

cess jumps immediately to a super-polynomial expected sur-
vival time for only slightly larger values of λ ∈ Θ

(
n−1/2+ε

)
,

with ε ∈ R>0 being an arbitrary constant, whereas the ex-
pected survival time of the SIRS process remains polynomial,
regardless of λ. Thus, the cSIRS process behaves far more
closely to the SIS than to the SIRS process. This shows that
although the probability to become re-infected is the same in
the SIRS and cSIRS process for the first re-infection attempt,
the gradual decline of immunity in the cSIRS process has
a dramatic impact on its survival time. This impact is more
comparable to a process that does not feature any immunity, al-
though our lower bounds for the cSIRS process are lower than
for the SIS process, hinting at a still existing, albeit far less im-
pactful benefit of immunity. The fundamental reason for this
different behavior is that many infection attempts in the cSIRS
process challenge the immunity repeatedly whereas this is not
the case in the SIRS process. Overall, our results suggest that
incorporating immunity only has a substantial benefit if it can
be guaranteed fully for a sufficient amount of time. Since our
results carry over to supergraphs and since stars are present
in many graphs, our results cover a wide range of different
graph classes, such as scale-free graphs [Berger et al., 2005;
Friedrich et al., 2024b].

Our results for the SIRS process on stars are an improve-
ment over those by [Friedrich et al., 2024b], who only proved
an upper bound of Ô(nϱ) for all values of λ. Our bounds
are tight up to sub-polynomial factors and showcase differ-
ent regimes for larger values of λ. We note that [Lam et al.,
2024] investigated the same question and independently found
similar results that do not need the sub-polynomial factors.

In addition to our results on stars, we prove that the at least
exponential survival time of the SIRS process with sufficiently
large infection rate on expanders carries over to the cSIRS
process (Corollary 19). Hence, once the graph is sufficiently
dense, the SIRS and the cSIRS process start acting similarly.

From a mathematical perspective, the analysis of the cSIRS
process proves challenging, as it is not Markovian. We ap-
proach this problem by introducing an intermediate process,
where we relabel some of the vertices in the cSIRS process
such that the resulting process resembles a SIRS process with

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

extra transitions that allow recovered vertices to become di-
rectly infected (Figure 1, bottom right). Due to its closer
relation to the SIRS process, this intermediate process allows
an easier analysis based on more traditional methods.

2 Preliminaries
We define the general notation for infection processes as well
as the SIRS process, following the notation by [Friedrich et
al., 2024a]. The cSIRS process is defined in Section 3.

Infection processes are random processes on labeled graphs
where the dynamics are solely driven by Poisson processes
and the labels of the vertices. Poisson processes are one-
dimensional Poisson point processes that output a random
subset of the non-negative real numbers. We consider infection
processes on finite, undirected graphs with n vertices. All big-
O notation concerns asymptotics in this value of n. Especially,
a constant is a value independent of n.

The SIRS process is defined over a graph G = (V,E)
and two values λ, ϱ ∈ R>0, which are the infection rate and
deimmunization rate, respectively. To each edge e ∈ E, we
assign a Poisson process Me of rate λ, and to each vertex v ∈
V , we assign two Poisson processes: Nv with rate 1 and Ov

with rate ϱ. We call these processes clocks, and when a time
point t ∈ R≥0 is part of a clock’s output, we say that the clock
triggers at t. We assume that all clocks evolve simultaneously
and independently. Since all clocks are Poisson processes,
there is almost surely no point at which two clocks trigger at
once, and each clock outputs almost surely a countably infinite
number of triggers such that for each point, there exists a
trigger that is at least as large. Let {γi}i∈N≥0

with γ0 = 0
denote the (random) sequence of all these triggers.

A SIRS process is a random process (Ct)t∈R≥0
that parti-

tions V for all time points t ∈ R≥0 into the set S′
t of suscepti-

ble vertices, the set I ′t of infected vertices, and the set R′
t of

recovered vertices, that is, Ct = (S′
t, I

′
t, R

′
t). The value of C0

is given, and all other values are defined inductively based on
{γi}i∈N≥0

such that the process is for all i ∈ N≥0 constant on
[γi, γi+1). That is, states only change when a clock triggers,
especially, for all t ∈ [0, γ1), it holds that S′

t = S′
0, I ′t = I ′0,

and R′
t = R′

0. Depending on which clock triggers and the
state of the involved vertices, we have the following transitions
for all i ∈ N≥0 and any s ∈ [γi, γi+1):

• Susceptible to infected. Let e = {u, v} ∈ E with
γi+1 ∈ Me and u ∈ I ′s as well as v ∈ S′

s. Then for
all t ∈ [γi+1, γi+2) holds that u, v ∈ I ′t. We say that u
infects v (at time γi+1).

• Infected to recovered. Let v ∈ V with γi+1 ∈ Nv and
v ∈ I ′s. Then for all t ∈ [γi+1, γi+2) holds that v ∈ R′

t.
We say that v recovers (at time γi+1).

• Recovered to susceptible. Let v ∈ V with γi+1 ∈ Ov

and v ∈ R′
s. Then for all t ∈ [γi+1, γi+2) holds that

v ∈ S′
t. We say that v becomes susceptible (at time γi+1).

In addition, we may call vertices that are not infected healthy,
and we may call the transition of an infected vertex to a non-
infected state1 healing.

1In the SIRS process, this is the transition to the recovered state.
In the SIS process, this is the transition to the susceptible state.

During each of the transitions above, all vertices not men-
tioned remain in their respective set. Moreover, note that not
all triggers lead necessarily to a state change. For example, if
the clock of an edge triggers whose two incident vertices are
already infected, nothing changes.

As states remain unchanged for most of the time, we con-
sider in our analyses only those time points where a state
change occurs. Formally, we consider {γ0} ∪ {γi | i ∈
N>0 ∧ Cγi ̸= Cγi−1}, which we index by the increasing
sequence {τi}i∈N≥0

. For all i ∈ N, we call τi the i-th step of
the SIRS process.

We are interested in the first point in time where no vertex
is infected, as such a state leads quickly to the (only) stable
state where all vertices are susceptible. We call T := inf{t ∈
R≥0 | I ′t = ∅} the survival time of the SIRS process, and we
say that the infection dies out or goes extinct at T .

Useful definitions and mathematical tools. For the graphs
we consider, it is sufficient to only consider the number of
vertices in each of the sets of the partition of V . To this end,
we define for all t ∈ R≥0 the random variables St = |S′

t|,
It = |I ′t|, and Rt = |R′

t|. These random variables change
based on events triggered by the clocks. We say an event
happens at a rate of r ∈ R>0 if and only if the set of clocks
causing this event by triggering has a sum of rates equal to r.

We use stochastic domination to bound the values of ran-
dom processes with other random processes. We say that a
random process (Xt)t∈R≥0

dominates another random process
(Yt)t∈R≥0

if and only if there exists a coupling (X ′
t, Y

′
t )t∈R≥0

such that for all t ∈ R≥0 holds X ′
t ≥ Y ′

t .
One way we use domination is to connect our processes to

well analyzed processes like the gambler’s ruin process. For
this process, we require the following known results.

Theorem 1 (Gambler’s ruin [Feller, 1968, page 345]). Let
(Pt)t∈N be the amount of money that a player has in a gam-
bler’s ruin game that has a probability of p ̸= 1/2 for them
to win in each step. Let q = 1− p. The game ends at time T
when the player either reaches the lower bound ℓ or the upper
bound u of money. Then

1. Pr[PT = ℓ] = 1−(p/q)u−P0

1−(p/q)u−ℓ ;

2. Pr[PT = u] = 1−(q/p)P0−l

1−(q/p)u−ℓ .

In the analyses, terms like
∏n

i=1
i

i+c show up. We bound
their asymptotic behavior with the following theorem, which
follows from result (1) of [Tricomi and Erdélyi, 1951].

Theorem 2 (Ratio of Gamma Functions [Tricomi and Erdélyi,
1951, page 133]). Let n ∈ N, and let α, β ∈ R>0 be con-
stants. Then Γ(n+α)

Γ(n+β) ∈ Θ
(
nα−β

)
.

This yields the following corollary.

Corollary 3. Let n,m ∈ N, and let c ∈ R>0 be a constant.
Then

∏n
i=m

i
i+c ∈ Θ

(
mc

nc

)
.

Proof. The result follows from Theorem 2 and the fact that∏n
i=m

i
i+c = (

∏n
i=1

i
i+c )/(

∏m−1
i=1

i
i+c ) and

∏n
i=1

i
i+c =

Γ(c+1)·Γ(n+1)
Γ(n+c+1) .
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Figure 1: State transitions of a vertex in the shown processes. Vertices
are susceptible (S), infected (I), or recovered (R). Edges represent the
existence of a Poisson clock that triggers a transition attempt with a
rate dependent on the arrow type. Note that edges to infected vertices
represent one clock for each infected neighbor. The numbers on the
arrows represent the probability of a successful attempt. We use th to
denote the time passing since the vertex last healed, and ti to denote
the time passing since the last infection attempt after the vertex healed
(or the last time the vertex healed, whichever is smaller).

3 The cSIRS Process
We introduce the cSIRS (continuous SIRS) process, which
aims to model the continuous decay of immunity. It behaves
mostly like the SIRS process, but instead of a recovered vertex
being fully immune and losing this immunity after an exponen-
tially distributed time, the immunity decreases exponentially
in a deterministic way. More precisely, the process behaves
like an SIS process where every vertex v additionally has a
resistance rv ∈ [0, 1], which is initialized with 0. Whenever
a vertex changes its state from infected to susceptible, its re-
sistance is set to 1. The resistance then exponentially declines
with some resistance decay rate α ∈ R>0. That is, after a
time th ∈ R≥0 after healing, the resistance is e−αth . When
a vertex v would get infected by an infection clock on an
edge in the SIS process, it now gets infected with probability
1−rv and otherwise remains susceptible. A depiction of these
transitions is shown in Figure 1, bottom left.

We note that the SIRS process is expressible in a similar
manner by dropping the resistance from 1 to 0 after an expo-
nentially distributed random time instantly instead of letting
it decline gradually. By choosing the same α in the cSIRS
process as ϱ in the SIRS process, the expected resistance in
the SIRS process matches the actual resistance in the cSIRS
process at all times. Note that the cSIRS process is not Marko-
vian anymore, which removes some useful properties that are
normally used to analyze processes. Below, we explain how
we still manage to extend existing results to the new process.

3.1 Useful Properties
As a first observation, we note that the number of infected
vertices in the cSIRS process is dominated by the number of

infected vertices in the SIS process with the same parameters.
This means that all upper bounds on survival times in the SIS
process carry over to the cSIRS process.
Theorem 4. Let G be a graph and let λ ∈ R>0. Let C be
a cSIRS process on G with infection rate λ and a resistance
decay rate α ∈ R>0, and let C ′ be a SIS process on G with
infection rate λ that starts with the same infected vertices as C.
Then there exists a coupling of C and C ′ such that the set of
infected vertices of C is for all points in time a subset of the
set of infected vertices of C ′.

To obtain lower bounds on the survival time, we modify the
cSIRS process to be closer to the SIRS process. This makes it
easier to apply previous results to this new process and to talk
about the SIRS and the new process using the same notation.
To this end, we define the labeled cSIRS process. It is almost
equivalent to the cSIRS process with the only difference that
we extend the SIRS process instead of the SIS process. As it
is just a SIRS process with an extra rate to infect recovered
vertices, results from the SIRS process are much easier to
adapt to this definition. The success probability for infection
attempts is chosen in a way such that relabeling all recovered
vertices in the labeled cSIRS process to susceptible yields the
cSIRS process. The definition is visualized in Figure 1.
Definition 5 (labeled cSIRS). A labeled cSIRS process on a
graph G with infection rate λ ∈ R>0 and resistance decay
rate α ∈ R>0 is defined like a SIRS process with ϱ = α,
with the difference that recovered vertices have a possibility
to become infected. For all t ∈ R≥0 and each vertex v that is
recovered at time t, let th be the time that passed from the last
time that v recovered, that is, for t∗ := sup{s ∈ R≥0 | s ≤
t∧v recovers at s}, let th = t−t∗, where we define sup ∅ = 0.
Moreover, let ti be the time that passed since the last infection
attempt involving v, or let ti = th if no such attempt occurred
since t∗. That is, let ti = t − max

{
t∗, sup{s ∈ R≥0 |

s < t ∧ ∃{u, v} ∈ E : (s ∈ M{u,v} ∧ u is infected at s)}
}

.
Then each infection attempt at v is successful with probability
1− e−α(th−ti).

We note that we believe that adding an extra rate to infect
recovered vertices directly should increase the survival time
of the infection. We show in Corollary 19 that this belief
is correct for expander graphs. However, to the best of our
knowledge, there is no general result for the SIRS process that
proves this belief. There are some scenarios where infecting a
recovered vertex leads to it being recovered instead of suscep-
tible later which could potentially block a relevant infection
later. Thus, we argue differently in the following by showing
that the cSIRS process is equivalent to the labeled cSIRS in
which all recovered vertices are relabeled to be susceptible.
Observation 6. A cSIRS process and a labeled cSIRS process
with the same parameters (including the same initialization)
can be coupled in a way such that at each time they have
exactly the same set of infected vertices. Especially, they have
the same distribution of survival times.

4 cSIRS and SIRS on Stars
It is known that the SIRS process never survives super-
polynomially long on stars when the deimmunization rate
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is constant [Friedrich et al., 2024a]. This is in big contrast to
the SIS process, in which there is a relatively tight threshold
at which the survival time goes from logarithmic to super-
polynomial (see also Table 1). We aim to see how the cSIRS
process compares to these results. To this end, we analyze the
expected survival time of both the cSIRS process (Theorem 8)
and the SIRS process (Theorem 7) at this threshold—the latter,
since the only existing result so far [Friedrich et al., 2024a] is
only an upper bound. We note that the lower bounds of our two
main theorems above hold for any graph that contains a star as
a subgraph, as long as this subgraph satisfies the starting con-
ditions mentioned in the theorems (Observation 9). As various
graph classes contain large stars, such as scale-free graphs,
this typically translates into bounds based on the overall graph
size, not just the star size [Berger et al., 2005].

For the SIRS process, we show in Theorems 15 and 16 al-
most tight polynomial upper and lower bounds for the survival
time above the threshold, showing that the upper bound by
[Friedrich et al., 2024a] is almost tight. Our two theorems
directly imply the following theorem.

Theorem 7. Let G be a star with n leaves. Let C be a SIRS
process on G with infection rate λ ≤ 1 with λ ∈ Ω(n−1/2)
and with constant deimmunization rate ϱ that starts with in-
fected center and no recovered leaves. Let T be the survival
time of C. Then E[T ] ∈ Θ̂

(
(λ2n)ϱ

)
.

For the cSIRS process, we show a behavior very similar to
the SIS process. That is, from the same value of the infection
rate onward as in the SIS process, the cSIRS process exhibits
a super-polynomial expected survival time.

Theorem 8. Let G be a star with n leaves. Let ε ∈ (0, 1/2]
be a constant and let C be a labeled cSIRS process or cSIRS
process on G with infection rate λ ≤ 1 with λ ∈ Ω

(
n−1/2+ε

)
and with constant resistance decay rate α that starts with
infected center and no recovered leaves. Let T be the survival
time of C. Then E[T ] ∈ Ω

(
en

2ε/3)
.

Theorems 7 and 8 show that the immunity in each process
has drastically different effects, although the expected degree
of immunity is the same in either process. In the SIRS process,
the full immunity guarantees that the expected survival time
does not become super-polynomial. However, in the cSIRS
process, the expected survival time is very similar to that of
the SIS process (see also Table 1), the latter of which does not
exhibit any immunity at all. Hence, immunity does not seem
to be very useful if it cannot be guaranteed at full levels for a
certain amount of time.

Our mathematical analysis for the SIRS and the cSIRS
process is very similar, as the processes are defined rather
similarly. Thus, we first prove useful statements that hold
for both processes. We note that instead of analyzing the
cSIRS process directly, we analyze the labeled cSIRS process
in order to use its shared notation with the SIRS process.

Our general proof strategy is to first show that it is very
unlikely that there are ever too many recovered leaves. In
turn, while there are not many infected vertices, there are
almost always enough susceptible vertices to infect. Since
infections cannot spread once the center of the star is not
infected, we split the processes into center-healthy phases and

center-infected phases. We show that center-infected phases
have a constant probability to end with at least λdn infected
vertices for some constant d ∈ R>0. We then show that the
process needs a lot of center-healthy phases in order to heal
these λdn leaves. As each center-infected phase in between
has a high enough probability to get back up to these many
infected leaves, the process survives relatively long until then.
However, the actual details and results differ a lot between the
two processes in this last step.
Generalization. Below, we provide the formal statement
that our lower bounds for the survival time also hold when the
star is only a subgraph of the underlying graph, and higher
infection rates lead to stronger lower bounds. This normally
does not have to be the case in the SIRS or cSIRS process as
additional infections can lead to more recovered vertices that
block the infection. However, our analysis is not affected by
such events, as our proof method operates on average cases
of a potential function that has sufficient slack such that such
events do not change our result.
Observation 9. Let G be a star with n leaves. Let C be a SIRS
process or a labeled cSIRS process on G with infection rate λ.
All our lower bounds for the expected survival time of C also
hold when the process runs on a supergraph of G (with same
parameters and starting configuration on vertices of G, noting
that n still refers to the number of leaves in G, not the number
of vertices not in the supergraph). The lower bounds also hold
for processes on the same graph with infection rate λ′ ∈ R>λ.
In particular, our lower bounds for λ = 1 also hold for all
infection rates λ′ > 1.

4.1 Center-Infected Phase
We show that with constant probability, a center-infected phase
on the star ends with at least dλn infected vertices, for some
constant d ∈ R>0. This holds for both the SIRS and the
labeled cSIRS process. To get this bound, we first show that
both processes likely never reach a state with too many recov-
ered vertices.
Lemma 10. Let G be a star with n leaves. Let C be a SIRS
process or a labeled cSIRS process on G with infection rate λ
and with constant deimmunization rate ϱ (or constant resis-
tance decay rate α respectively, but we refer to it as ϱ until
the end of the statement). Let t ∈ N, and let Rτt ≤ 2

2+ϱn+ 1.

Then the probability p that Rτt reaches 2+ϱ/2
2+ϱ n before reach-

ing 2
2+ϱn is at most (2

ϱ
2(2+ϱ)

n − 1)−1.

Although Lemma 10 only shows an exponentially low prob-
ability of reaching too many recovered vertices during a single
phase, in the following, we often assume that the process
never does so before it dies out. This assumption makes
sense, as we only make it for statements for which we show
a sub-exponential expected survival time. Thus, due to the
exponentially small probability in Lemma 10, the probability
of ever having too many recovered vertices before the process
dies out is overall still sub-constant. Hence, conditioning on
this never occurring does not change our arguments in the
following asymptotically. Moreover, once the process dies
out under the previous event, it can never reach too many
recovered vertices anymore.
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Let c = ϱ
4(2+ϱ) . Lemma 10 shows that the process is expo-

nentially unlikely to reach a state without at least 2cn vertices
that are not recovered. Hence, as long as there are at most cn
infected vertices, there are very likely at least cn susceptible
vertices. We use this fact to first show that, with constant
probability, we reach a state with sufficiently many infected
vertices after a center-infected phase.
Lemma 11. Let G be a star with n leaves. Let C be a
SIRS process or a labeled cSIRS process on G with infection
rate λ ≤ 1 with λ ∈ ω(n−1) and with constant deimmuniza-
tion rate ϱ (or constant resistance decay rate α respectively,
but we refer to it as ϱ until the end of the statement). Let
ε ∈ R>0 be a constant and let t ∈ N such that the center is
infected at time τt. Furthermore, let c = ϱ

4(2+ϱ) . Assume that
there are always at least 2cn vertices that are not recovered
during the considered time interval. Let d ∈ R>0 be a con-
stant with d ≤ c/7 and e−2d/c ≥ 1− ε/2. Then starting from
τt, the probability of the event E that we reach a state with at
least λdn infected vertices before the center heals is at least
1− ε for sufficiently large n.

For the rest of the analysis of the survival time, the two
processes differ. Hence, we analyze them separately.

4.2 The SIRS Process
For the SIRS process, the idea of the proof is as follows. We
consider the number of infected leaves while the center is
recovered. When the center becomes susceptible and loses
its immunity, we condense the following center-susceptible
and center-infected phase into one step. We analyze the num-
ber of infected leaves of the resulting process between some
lower bound ℓ and some upper bound u. We upper-bound the
probability of dropping down to ℓ from u − 1 before reach-
ing u again. This gives us a lower bound on how many of
these phases happen in expectation. As each of these phases
includes the center losing immunity, they have an expected
constant length.

The process we consider is quite simple, as it just decreases
the number of infected vertices by 1 at rate Iτt and starts a
center-susceptible and center-infected phase at rate ϱ. For
the latter, we showed in Lemma 11 that it reaches a state
with at least u infected vertices with constant probability and
show here that it is very unlikely to ever reduce the number
of infected vertices by more than ℓ. Essentially, we use ℓ
vertices as a buffer that is used for phases where the center is
not recovered. Thus, we consider vertices that heal in these
phases to not decrease Iτt . However, as long as these phases
do not heal ℓ vertices and the process does not fall below ℓ,
we know that the original process cannot have died out yet.

Lemma 11 shows that each center-infected phase has a con-
stant probability of infecting more than λdn vertices, for some
constant d ∈ R>0. We now show that the center-infected
phases that do not achieve this together with their preced-
ing center-susceptible phases have a very low probability of
healing too many vertices.
Lemma 12. Let G be a star with n leaves. Let C be a SIRS
process on G with infection rate λ ≤ 1 and with constant
deimmunization rate ϱ. Let ε ∈ R>0 be a constant and let
t ∈ N such that the center is susceptible at time τt. For

c = ϱ
4(2+ϱ) , assume that there are always at least 2cn vertices

that are not recovered during the considered time interval. Let
d ∈ R>0 be a constant with d ≤ c/7. Then starting from τt,
the probability of the event E that we reach a state with at
most Iτt − 2λ−1nε infected vertices before either the center
recovers or we reach at least λdn infected vertices is at most
2e−nε/2 for sufficiently large n.

Lemma 11 shows that each center-infected phase has a
constant probability of infecting more than λdn vertices, and
Lemma 12 shows that each center-infected phase and center-
susceptible phase does not heal too many vertices. We now
combine these two results to show that all center-infected
phases and center-susceptible phases together do not heal too
many vertices before they infect more than λdn vertices.

Corollary 13. Let G be a star with n leaves. Let C be a SIRS
process on G with infection rate λ ≤ 1 with λ ∈ ω(n−1) and
with constant deimmunization rate ϱ. Let ε0, ε1 ∈ R>0 be
constants with ε0 ≤ e−1 and let t ∈ N such that the center
is susceptible at time τt. For c = ϱ

4(2+ϱ) , assume that there
are always at least 2cn vertices that are not recovered during
the considered time interval. Let d ∈ R>0 be a constant
with d ≤ c/7 and e−2d/c ≥ 1− ε0/2. We define the random
process (Xt′)t′∈N≥t

to be 0 at step t, to increase by 1 in
every step in which a leaf is healed in a center-susceptible or
center-infected phase and to decrease by one in every step it
is positive and a leaf gets infected. Then starting from step t,
the probability of the event E that we reach a time step t′ with
Xt′ ≥ 2λ−1nε1 before we reach a time step with at least λdn
infected vertices is at most e−nε1/4

.

Corollary 13 shows that center-susceptible phases and
center-infected phases do not heal that many leaves in to-
tal. Thus, in order to bound the probability of the infection
dying out, we mainly consider the center-recovered phases.
We capture this in the following lemma.

Lemma 14. Let G be a star with n leaves. Let C be a SIRS
process on G with infection rate λ ≤ 1 with λ ∈ ω(n−1) and
with constant deimmunization rate ϱ. Let ε0, ε1 ∈ R>0 be
constants with ε0 ≤ e−1. For c = ϱ

4(2+ϱ) , assume that there
are always at least 2cn vertices that are not recovered during
the considered time interval. Let d ∈ R>0 be a constant with
d ≤ c/7 and e−2d/c ≥ 1 − ε0/2 and let t ∈ N such that
there are λdn− 1 infected vertices at time τt. Then starting
from τt, the probability of the event E that the infection dies
out before it reaches at least λdn infected vertices is at most
Θ
(
λ−2(1−ε0)ϱn−(1−ε0)(1−ε1)ϱ

)
.

We now combine these results into a lower bound for the
expected survival time.

Theorem 15. Let G be a star with n leaves. Let C be a SIRS
process on G with infection rate λ ≤ 1 with λ ∈ ω(n−1)
and with constant deimmunization rate ϱ that starts with an
infected center and no recovered leaves. Let ε ∈ R>0 be a
constant, and let T be the survival time of C. Then E[T ] ∈
Ω
(
(λ2n)(1−ε)ϱ

)
.

We now show that this lower bound is actually tight when
disregarding sub-polynomial factors.
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Theorem 16. Let G be a star with n leaves. Let C be a SIRS
process on G with infection rate λ ≤ 1 with λ ∈ Ω(n−1/2)
and with constant deimmunization rate ϱ that starts with in-
fected center and no recovered leaves. Let T be the survival
time of C. Then E[T ] ∈ O

(
(λ2n)ϱ + log n

)
.

4.3 The cSIRS Process
The idea of the proof for the cSIRS process is to show that
the process stays at a number of infected leaves for a long
time, in which it likely needs a super-polynomial number of
center-healthy phases for the infection to die out. In order
to show this, we bound the number of leaves that heal in a
center-healthy phase. To this end, we split the center-healthy
phase into two intervals, in which the first one is just there to
pass some time such that the resistance in the second interval
is small enough such that the center very likely gets infected
during this interval. Recall that we consider the labeled cSIRS
process instead of the cSIRS process, as this lets us use some
results from the SIRS process.

We start with upper-bounding the number of leaves that
heal in a time interval of length t.

Lemma 17. Let G be a star with n leaves. Let C be a
labeled cSIRS process on G with infection rate λ ∈ ω(n−1)
and with constant resistance decay rate α. Let d ∈ R>0 be
a constant and let t′ ∈ R≥0 such that there are at most dλn
infected leaves at time t′. Furthermore, let t ∈ [0, 1]. Then the
probability that more than 2tdλn of the infected leaves heal
until time t′ + t is at most e−

tdλn
6 .

Next, we lower-bound the probability of infecting the center
in a time interval of length t when there are more than dλn/2
infected leaves.

Lemma 18. Let G be a star with n leaves. Let C be a
labeled cSIRS process on G with infection rate λ ≤ 1 with
λ ∈ ω(n−1) and with constant resistance decay rate ϱ. Let
d ∈ R>0 be a constant and let t′ ∈ R≥0 and t ∈ [0, 1] such
that the center healed at time t′ and there are at least dλn/2
infected leaves at all times in [t′, t′+ t]. Then the probability p
that the center does not get infected until time t′ + t is at most
e−dλ2nt2/32.

We combine Lemmas 17 and 18 to show in Theorem 8 a
long expected survival time of the labeled cSIRS process and
therefore also for the cSIRS process, due to Observation 6.

5 The cSIRS Process on Expanders
[Friedrich et al., 2024a] show that the SIRS process survives
exponentially long on graphs with expanding subgraphs once
the infection rate is above a certain threshold, which is identi-
cal to the threshold in the SIS process. With minor modifica-
tions, this proof translates to a proof of exponential survival
time for the cSIRS process, giving us the following result.

Corollary 19. Let G be a graph, and let G′ be a subgraph of
G that is an (n, (1± εd)d, δ)-expander (see [Friedrich et al.,
2024a]). Let d → ∞ and δ, εd → 0 as n → ∞. Let C be the
cSIRS process on G with infection rate λ and with constant
resistance decay rate ϱ. Furthermore, let C start with at least
one infected vertex in G′. Last, let C ′ be the projection of C

onto G′, and let T be the survival time of C ′. If λ ≥ c
d for a

constant c ∈ R>1, then for sufficiently large n, it holds that
E[T ] = 2Ω(n).

6 Conclusion and Future Work
We study the impact of gradually declining immunity on the
SIRS process. To this end, we define the cSIRS process, whose
expected degree of immunity at all points in time is the same
as in the original SIRS process. We mathematically rigorously
analyze the expected survival time of the cSIRS process on
stars and expander graphs, as well as the expected survival
time of the SIRS process on stars. This allows us to compare
these two processes more precisely to each other and also to
the well known SIS process, which features no immunity. We
prove that the survival time of the cSIRS process becomes
super-polynomial at the same thresholds as the SIS process
on both of these graph classes. This stands in contrast to the
SIRS process, for which we prove an almost tight polynomial
expected survival time on stars for any choice of the infection
rate of the process. Since our lower bounds carry over to
graphs that contain stars as subgraphs, such as scale-free net-
works, they show on a huge variety of networks that gradually
declining immunity is far more similar to no immunity at all
than to temporary full immunity.

While we show that the cSIRS process exhibits a super-
polynomial expected survival time for the same infection rates
as the SIS process, our lower bounds for the cSIRS process
are strictly smaller than the known lower bounds for the SIS
process. This can hint at a potential advantage of gradually de-
clining immunity, albeit just for the super-polynomial regime
of the expected survival time. In order to make this point
formal, it would be required to prove upper bounds on the
expected survival time of the cSIRS process in this regime.
Moreover, it would be interesting to investigate whether there
are graph classes on which the potential impact of declining
immunity is more noticeable than on stars. While we looked
at the behavior of the process on stars and cliques, it is still
open what happens on graphs that contain both.

Another interesting direction for future work is to consider
other functions for the declining resistance than the current
choice, which declines exponentially with a rate constant in
the number of vertices. Studying such functions could pro-
vide important insights into when immunity starts to have a
meaningful impact in decreasing the expected survival time.

Last, our bounds for the SIRS process assume a deimmu-
nization rate ϱ that is independent of the network size. As this
rate approaches zero, the SIRS process should approach the
SIS process. Hence, the effect of full immunity also vanishes.
However, it is not known yet for which exact values of ϱ this
is the case.
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