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Abstract
The differences in imaging devices cause multi-
modal images to have modal differences and geo-
metric distortions, complicating the matching task.
Deep learning-based matching methods struggle
with multimodal images due to the lack of large an-
notated multimodal datasets. To address these chal-
lenges, we propose XCP-Match based on cross-
modality completion pre-training. XCP-Match has
two phases. (1) Self-supervised cross-modality
completion pre-training based on real multimodal
image dataset. We develop a novel pre-training
model to learn cross-modal semantic features. The
pre-training uses masked image modeling method
for cross-modality completion, and introduces an
attention-weighted contrastive loss to emphasize
matching in overlapping areas. (2) Supervised
fine-tuning for multimodal image matching based
on the augmented MegaDepth dataset. XCP-
Match constructs a complete matching framework
to overcome geometric distortions and achieve pre-
cise matching. Two-phase training encourages the
model to learn deep cross-modal semantic infor-
mation, improving adaptation to modal differences
without needing large annotated datasets. Exper-
iments demonstrate that XCP-Match outperforms
existing algorithms on public datasets.

1 Introduction
Multimodal images, from different sensors like visible and
infrared images, provide a more comprehensive understand-
ing of the scene than single-modal images. They are valu-
able for advanced vision tasks, such as image fusion [Tang
et al., 2022a; Ma et al., 2022], object detection and tracking
[Zhao et al., 2023], and 3D reconstruction [Jiang et al., 2021].
However, multimodal images suffer from geometric distor-
tions such as scale variations, rotations, and perspective dis-
tortions due to differences in imaging devices, which makes it
hard for computers to analyze. Therefore, multimodal image
matching is needed to establish the correspondence of feature
points or regions between different modal images.

∗Corresponding author.

Multimodal images have significant modal differences in
radiometric properties. For example, visible images capture
the reflected light of object, while infrared images capture the
thermal radiation [Tang et al., 2022b; Li et al., 2013]. This
leads to inconsistencies in texture, contrast, and intensity of
the images. The modal differences reduce the accuracy of
feature extraction, and increase the matching difficulty. Cur-
rent deep learning-based matching methods train their mod-
els on rich single-modal datasets and struggle to generalize to
multimodal image scenarios, mainly due to the lack of large-
scale annotated datasets. These problems limit the practical
application of multimodal image matching methods.

To overcome these problems, we propose XCP-Match,
a multimodal image matching algorithm based on cross-
modality completion pre-training. The training of XCP-
Match has two phases. The first is the self-supervised pre-
training phase. We develop a novel pre-training model using
vision transformer (ViT) [Dosovitskiy et al., 2021], VGG [Si-
monyan and Zisserman, 2015], cross-attention fusion mod-
ule and image reconstruction module. The pre-trained model
has two branches to adaptively extract features from each
input image. The task of this model is to perform cross-
modality completion using a new masked image modeling
method (MIM), which is reconstructing the masked parts of
one modal image using the visible information in another
modal image (the reference image). Pre-training forces the
model to learn richer and in-depth semantic features across
different modalities by cross-modality completion, which en-
hances the model’s understanding of image content, leading
to more accurate matching. Pre-training is performed on a
real multimodal image dataset, where the image pairs are not
fully aligned. To encourage the ViT encoder to focus on ex-
tracting features from the overlapping regions, we propose
the attention-weighted contrast loss. The second is the super-
vised fine-tuning phase, which fine-tune the overall matching
network using the MegaDepth dataset [Li and Snavely, 2018],
based on the pre-training weights. The MegaDepth dataset
is augmented to enhance the model’s adaptability to modal
differences. We construct a complete matching framework
for XCP-Match, including multimodal and multiscale fea-
ture extraction module, coarse-level matching module, fine-
level matching module, and subpixel refinement module, to
achieve precise matching. The two-phase training encour-
ages the model to learn deep cross-modal semantic features to
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Figure 1: Overview of multimodal and multiscale feature extraction module and pre-training model. (a) Schematic of the visible image branch
which extracts 1/8, 1/4 and 1/2 scale features of the visible image by ViT encoder, VGG, ViT decoder and cross-attention fusion module. (b)
The pre-training model with two branches. In pre-training, the image reconstruction module includes FMM and linear layers.

improve adaptation to modal differences and does not require
large annotated datasets. We evaluate XCP-Match on the pub-
lic datasets, comparing it to state-of-the-art algorithms, and
achieve the best performance.

In summary, this paper has the following contributions:
• We design a novel dual-branch pre-training model, and

introduce unsupervised pre-training using a new MIM
method to enhance the model’s ability to extract multi-
modal image features.

• We design a novel attention-weighted contrast loss in
pre-training to make the feature extraction focus on over-
lapping regions and overcome the problem of unaligned
images in the dataset.

• We design a complete matching network suited for mul-
timodal images and perform supervised fine-tuning with
the augmented MegaDepth dataset for accurate opti-
mization of matching.

2 Related Works
2.1 Feature Detector-based Matching Method
Feature detector-based matching methods involve three
stages: features detecting, describing, and matching [Lowe,
2004; Bay et al., 2006; Li et al., 2024]. To overcome
the nonlinear radiance differences (NRD) [Ye et al., 2022;
Li et al., 2023a] of multimodal images, researchers have fo-
cused on improving the performance of feature detectors and
descriptors, developing algorithms such as RIFT [Li et al.,
2019] and RA-MMIR [Qiu et al., 2024]. Deep learning meth-
ods have also made some progress such as ReDFeat [Deng
and Ma, 2023], which decouples detection from matching,
and XPoint [Yagmur et al., 2024], using a pre-trained en-
coder for feature extraction while applying geometric con-
straints. SemLA [Xie et al., 2023] focuses on aligning key
scene regions. However, these methods struggle to detect re-
liable keypoints in the scenario of lacking prominent features,
which reduces the accuracy of subsequent matching.

2.2 Detector-Free Matching Method
Detector-free methods aim for pixel-level correspondences
directly in input images, without using feature detector.

These methods uses transformers’ capability [Vaswani, 2017]
to handle long-distance dependencies and global context, and
perform more robustly in images with large geometric dis-
tortions. LoFTR [Sun et al., 2021] achieves dense match-
ing through a coarse-to-fine approach, while Efficient-LoFTR
[Wang et al., 2024] improves efficiency and accuracy with
attention mechanisms. DualRC [Li et al., 2023b] employs
dual-resolution learning and neighborhood consensus. GRiD
[Liu et al., 2024] addresses NRD and geometric distortions by
finding pixel-level matches using reference points. However,
these methods require large-scale annotated datasets, which
are lacking in multimodal images.

2.3 Transformation Estimation-based Method
Transformation estimation methods include flow and homog-
raphy estimation. Flow estimation methods estimate each
pixel’s spatial displacement for registration. Zhou et al.
transfers knowledge from optical flow model to cross-modal
flow estimation [Zhou et al., 2022]. Homography estimation
methods predict image transformations. CrossHomo [Deng
et al., 2024] uses multimodal homography estimation mod-
ule to predict homography matrices accurately. Real-world
transformations’ complexity challenges these methods.

2.4 MIM in Image Matching
Inspired by BERT [Kenton and Toutanova, 2019] and ViT,
self-supervised MIM methods have arisen in computer vision,
training models to recover complete signals from unmasked
data parts. MIM methods like MAE [He et al., 2022], Mul-
tiMAE [Bachmann et al., 2022], and MST [Li et al., 2021]
excel in classification and also make breakthroughs in geo-
metric tasks. CroCo [Weinzaepfel et al., 2022] reconstructs
the masked image using another view of the same scene, suit-
able for geometric tasks. CroCo v2 [Weinzaepfel et al., 2023]
builds on CroCo with enhancements. PMatch [Zhu and Liu,
2023] extends MIM to pairwise reconstruction, optimizing
both encoder and decoder. Tuzcuoğlu improves LoFTR based
on PMatch to match infrared and visible images [Tuzcuoğlu
et al., 2024]. These developments highlight MIM’s role in
enhancing feature representation and narrowing the domain
gap between pre-training and downstream tasks.
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Fvis/ir Features processed by ViT encoder
FV iT Features of Fvis and Fir fused by ViT decoder
FV GG Feature of Ivis processed by VGG
M Normalized attention score matrix
FCAF Enhanced feature map by CAF
F 1/2,1/4,1/8

∗ Feature map at 1/2, 1/4 and 1/8 resolution
S The similarity matrix between {F 1/8

vis , F
1/8
ir }

Pk∈(0,1), P
f The coarse-level and fine-level matching probability matrix

Mc,Mf The final coarse-level and fine-level matching set
Sf The similarity matrix between {f̂5×5

vis , f̂5×5
ir }

θc, θf The threshold for coarse-level and fine-level matching
{δvis, δir} The local subpixel offsets for each match
C∗, Ĉ∗ (̂i, ĵ) coordinates before and after subpixel refinement

Table 1: List of Symbols.

3 Methodology
Our method has four modules: multimodal and multiscale
feature extraction module, coarse-level and fine-level match-
ing module, and sub-pixel refinement module. We introduce
a two-phase training strategy including self-supervised pre-
training and supervised fine-tuning for matching. The mean-
ing of the symbols is shown in Table 1.

3.1 Multimodal and Multiscale Feature Extraction
Module

To address the challenges of modality and viewpoint differ-
ences in multimodal images, we propose the multimodal and
multiscale feature extraction module (MM-FEM) based on
VGG networks and ViT. To enhance the performance of MM-
FEM in extracting multimodal image features, we introduce
a novel MIM method to pre-train MM-FEM.

Feature extraction: Given two multimodal images from
the same scene, e.g., infrared image Iir and visible image
Ivis, they are gridded into N = n2 non-overlapping patches
and labeled as tokens for input to the MM-FEM. The MM-
FEM has two different asymmetric branches as shown in Fig-
ure 1. The inputs to the first branch are tokens from Ivis
and Iir, respectively. The tokens of Ivis are fed to the VGG
and the ViT encoder, respectively, while the tokens of Iir
are fed only to the ViT encoder with shared weights. The
ViT decoder fuses the features Fvis = Encoder(Ivis) and
Fir = Encoder(Iir) from the encoders to enable the deep
interaction of multimodal image information, resulting in a
cross-modal feature map of size [B,N,C]:

FV iT = Decoder(Fvis, Fir). (1)
A multibranch VGG with residual connections processes

tokens from Ivis and generates the base feature map of size
[B,C,H/2,W/2]: FV GG = V GG(Ivis), where H and W
are the height and width of the original image, respectively.

Cross-attention fusion: To enhance the fusion of informa-
tion from another modal image, we introduce a multi-headed
cross-attention fusion (CAF) module to adaptively update the
base feature map FV GG, which enables the model to learn the
richer and more robust feature representations.

In CAF, we use FV iT as key and value, and use FV GG

as query. First, reshape FV GG to size [B, (H ∗ W )/4, C].
The normalized attention score matrix M is computing by
the following:

M = Softmax(FV GG · FT
V iT ). (2)

The enhanced feature for each location is computed by
weighting and summing FV iT using the attention score ma-
trix M . Since M varies with different modal inputs, it ex-
hibits adaptability to new multimodal images. Finally, the up-
dated result is linearly transformed by a fully connected layer
to yield the enhanced feature FCAF with the same shape of
FV GG:

FCAF = FC(M · FV iT ), (3)

where FCAF is the enhanced feature map. For brevity, we
omit some reshaping operations in equation.

Down-sampling: Input FCAF into the VGG with different
down-sampling scales to further extract the features of 1/4
and 1/8 original image resolution for the later coarse-to-fine
matching.

As shown in Figure 1 (b), the structure of the second branch
is same as the first branch. However, in the second branch, the
tokens of Iir are fed to both the VGG and ViT. Additionally,
we use rotational position embedding (RoPE) on the image
tokes before the encoder in two branches, which injects the
relative position information of features.

3.2 Coarse-level Matching Module
The coarse-level matching module (CMM) uses the coarse-
level feature map F

1/8
vis and F

1/8
ir of 1/8 resolution from MM-

FEM to predict the matches at 1/8 scale.
Coarse-level feature interaction: We use the linear self-

attention and cross-attention in LoFTR to interact F 1/8
vis and

F
1/8
ir , outputting F̂

1/8
vis and F̂

1/8
ir , which captures the global

dependencies between multimodal images.
Similarity matrix computation: Given F̂

1/8
vis and F̂

1/8
ir ,

the similarity matrix S is computed by the following:

S(i, j) =
1

γ
·
〈
Linear(F̂

1/8
vis ), Linear(F̂

1/8
ir )

〉
, (4)

where i and j are the indexes in F̂
1/8
vis and F̂

1/8
ir , respectively.

Linear(·) denotes the linear layer, and ⟨·, ·⟩ denotes the inner
product. γ is the temperature parameter.

Matching probability matrix computation: Apply soft-
max operation to S(i, j) to obtain the matching probabil-
ity matrix Pk∈(0,1)(i, j) = softmax (S(i, ·))j . P0 and P1

are the matching probability matrices derived from softmax
along the first and zeroth dimensions, respectively.

Coarse-level match acquisition: We use the threshold θc
to filter out high-confidence elements and select the largest as
the matching pair (̃i, j̃):

Mk ={(̃i, j̃)|Pk (̃i, j̃) > θc,

Pk (̃i, j̃) = maxPk (̃i, x)
x

ormaxPk(x, j̃)
x

}k∈(0,1).

(5)

The final coarse-level matching set is Mc = M0 ∪M1.

3.3 Fine-level Matching Module
Based on Mc, the fine-level matching module (FMM) uses
F 1/2 and F 1/4 to seek fine-level matches at 1/2 resolution to
improve the matching accuracy. Given the significant texture
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Figure 2: Overview of the XCP-Match framework. (a) is the multimodal and multiscale feature extraction module. (b) is the coarse-level
matching module, which predicts coarse-level matches at the 1/8 scale. (c) is the fine-level matching module, which uses 1/2 and 1/4 scale
features based on the coarse-level matches to predict fine-level matches. (d) is the subpixel refinement module, which refines fine matches at
the subpixel level through the regression mechanism.

differences between images of different modalities, FMM re-
evaluates coarse-level matches on a finer scale, capturing de-
tailed texture information more accurately. In addition, FMM
is also part of the image reconstruction module in pre-training
because it can capture texture and structural information at
different scales.

Feature preprocessing: To improve the interaction of
F 1/2 and F 1/8, we efficiently preprocess them. First, we cas-
cade F̂

1/8
vis and F

1/8
vis along the channel dimension, and apply

point-by-point convolution and deep convolution with 3 × 3

kernel to obtain F̃
1/8
vis = Conv3(Conv1(F̂

1/8
vis |F

1/8
vis )) with

the same channel size as F 1/4
vis . Similarly, the same operation

is used for F̂ 1/8
ir and F

1/8
ir to obtain F̃

1/8
ir .

Local window extraction: The local window pair
{f1×1

vis , f1×1
ir }, {f3×3

vis , f3×3
ir }, and {f5×5

vis , f5×5
ir } of each

(̃i, j̃) are extracted from
{
F̃

1/8
vis , F̃

1/8
ir

}
,
{
F

1/4
vis , F

1/4
ir

}
, and{

F
1/2
vis , F

1/2
ir

}
using window sizes of 1× 1, 3× 3, and 5× 5,

respectively. We add the absolute position bias to each win-
dow before sending it to the next layer.

Multiscale and multimodal feature passing: To pass
information between {f1×1

vis , f1×1
ir }, {f3×3

vis , f3×3
ir } and

{f5×5
vis , f5×5

ir }, we perform a series of concatenation, linear
layer, self-attention, cross-attention and splitting operations
to obtain {f̂5×5

vis , f̂5×5
ir }.

Fine-level matching: For each (̃i, j̃), compute the simi-
larity matrix Sf between {f̂5×5

vis , f̂5×5
ir }, and apply a double

softmax to obtain the fine-level match probability matrix P f :

P f (i, j) = softmax (Sf (i, ·))j · softmax (Sf (·, j))i. (6)

Finally, the matching pair (̂i, ĵ) with P f (i, j) greater than
the threshold θf and all other elements in each (̃i, j̃) is se-
lected as the fine-level match Mf .

3.4 Subpixel Refinement Module

The goal of this module is to refine the fine-level matches
to subpixel accuracy. We concate {f̂5×5

vis , f̂5×5
ir } at the fine-

level match (̂i, ĵ), and use the MLP layer and the Tanh func-
tion to jointly predict the local subpixel offsets for each
match: {δvis, δir} = Tanh(MLP (f̂5×5

vis |f̂5×5
ir )). Finally,

these offsets are added on the coordinates of (̂i, ĵ) to obtain
the subpixel-level matches:

{Ĉvis, Ĉir} = {Cvis + δvis, Cir + δir}, (7)

where {Cvis, Cir} is the coordinate of (̂i, ĵ) before subpixel
refinement and {Ĉvis, Ĉir} is the coordinate after refinement.

3.5 Self-Supervised Pre-training

MIM method: XCP-Match is pre-trained with the pre-
training model and MIM method. The goal of pre-training
is to train the model to complete the masked parts of the im-
age using another modal image as reference. The pre-training
model is shown in Figure 1 (b). The inputs to first branch are
the tokens of masked Ivis and Iir. The tokens of masked Ivis
are fed to the VGG and the ViT encoder, while the tokens
of Iir are fed only to the ViT encoder. The inputs to second
branch are the tokens of masked Iir and Ivis. The feature map
after MM-FEM processing is directly output to FFM. Since
FFM uses feature map at different scales, we mask the feature
map at each scale. To mask the input images, we randomly
generate 64×64 masks using the binary method to cover 50%
of the image. The remaining scales of feature map use the
same masking method and rate, with only the masked patch
size adjusted according to the scale ratio. To make the masked
areas learnable, we replace them with CNN-processed learn-
able masked tokens at the corresponding positions.
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ReDFeat GRiD XoFTR XCP-Match

(a) (b)

Figure 3: Qualitative results of matching line diagrams. (a) Comparison experimental results for ReDFeat, GRiD, XoFTR, and XCP-Match
algorithms (left to right), using images from the METU-VisTIR, RoadScene, and TriModalHuman datasets (top to bottom). (b) Line 1:
matches using multi-scale feature extraction module (MFEM) without the dual-branch architecture (DBA). Line 2: matches using DBA
without MFEM (using a single-scale extractor). Line 3: matches using DBA with MFEM.

Image reconstruction module: The masked feature map
is processed by FMM to obtain {f̂5×5

vis , f̂5×5
ir }. To re-

construct the image, we designed linear layers to up-
sample {f̂5×5

vis , f̂5×5
ir } to the original image resolution:

{Î10×10
vis , Î10×10

ir } = Linear(f̂5×5
vis , f̂5×5

ir ). The 10 × 10 im-
age window of output is used to reconstruct the masked to-
kens of input at the same locations.
MIM loss function: To ensure that the output image is sim-
ilar to the target image, the mean square error (MSE) between
the target image window I10×10

i and Î10×10
i is used as the

similarity loss:

Ls =
1

n

N∑
i=1

(Î10×10
i − I10×10

i )
2
. (8)

Attention-weighted contrast loss: The image pairs in the
pre-training dataset are not perfectly aligned. To encourage
the ViT encoder to focus on overlapping regions, we propose
the attention-weighted contrast loss based on the contrastive
learning. It pulls together the feature representations of dif-
ferent modalities in overlapping regions, while pushing away
them in non-overlapping regions. This loss facilitates MM-
FEM to establish the common semantic space across different
modalities.

The similarity matrix between the ViT encoder output fea-
tures Fvis and Fir in the first branch is first calculated us-
ing matrix multiplication. Attention weights are derived by
normalizing the similarity matrix with the softmax function,
which are applied as the weighted average on Fvis to obtain
the attention feature F̄vis. The attentional weighted contrast
loss is given by the following:

Lvis
ac = − 1

BN

BN∑
b=1

log(
exp(sim(Fir, F̄vis)/T )

2N∑
k=1

exp(simk/T )

), (9)

where B is the batch size, N is the number of image tokens.
T is the temperature coefficient. sim(Fir, F̄vis) is the posi-
tive sample similarity and simk is the similarity of all posi-
tive and negative sample pairs. Similarly, Lir

ac can be obtained
from the second branch.

Total pre-training loss is: Lpretrain = λsLs + λvis
ac L

vis
ac +

λir
acL

ir
ac.

3.6 Supervised Fine-tuning
Based on the self-supervised pre-training weights, we per-
form supervised fine-tuning of the overall network using the
dataset with ground-truth (GT). There are three loss functions
for the fine-tuning.

Coarse-level matching loss: we use focus loss (FL) to su-
pervise the matching probability matrix Pk∈(0,1) in CMM:

Lc = α · FL(P0, P̂0) + β · FL(P1, P̂1), (10)

where P̂0 and P̂1 are the GT matching matrices for coarse
matching. α and β are the weights that balance the two loss
terms.

Fine-level matching loss: We design the fine-level match-
ing loss to supervise P f in FMM:

Lf =
1

Mc

∑
(̂i,ĵ)∈Mc

FL(P f

î,ĵ
, P̂ f

î,ĵ
), (11)

where P̂ f

î,ĵ
is the GT fine-level matching matrix for (̂i, ĵ).

Subpixel refinement loss: Given that the predicted
matched point pairs have homogeneous coordinates
(x̂vi, x̂ir) in the normalized coordinate system, the subpixel
refinement loss can be computed using the symmetric polar
distance function:

Lsub =
1

|Mc|
∑

(x̂vi,x̂ir)

∥∥∥x̂T
viEx̂ir

∥∥∥2

(
1

∥ET x̂vi∥20:2
+

1

∥Ex̂ir∥20:2
),

(12)
where E is the GT essential matrix obtained using the camera
pose. ∥v∥0:2 denotes the first two elements of the vector v.

Total fine-tuning loss is: Lfine = λcLc + λfLf +
λsubLsub.

4 Experiments
4.1 Implementation Details
Self-supervised pre-training: In pre-training, we use the
KAIST Multispectral Pedestrian dataset [Hwang et al., 2015]
for training. Pre-training is conducted using the AdamW op-
timizer with a learning rate of 2.5 × 10−4, a batch size of 2,
a total of 15 epochs, and 30 hours of training on 2 NVIDIA
GeForce RTX 4090 GPUs.
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Figure 4: Visualization of the relative pose estimation results for XCP-Match and all comparison algorithms. In the x-axis, c-c and c-s denote
the cloudy-cloudy and cloudy-sunny scenarios, respectively.

Method
AUC of cloud-cloud and cloud-sunny

@5◦ @10◦ @20◦

DualRC 0.713/0.145 2.133/0.591 4.925/2.257
Efficient-LoFTR 0.955/0.458 2.658/1.655 6.230/4.348

ReDFeat 1.341/0.666 4.101/2.340 10.57/7.542
Xpoint 2.585/1.465 5.979/4.474 10.86/9.189
SemLA 0/0 0/0 0.212/0.156
GRiD 1.562/1.791 5.100/4.558 12.46/10.54

XoFTR 18.39/9.523 33.18/22.09 48.43/36.83
XCP-Match 19.28/12.24 36.90/27.70 53.82/45.59

Table 2: Quantitative results of relative pose estimation in METU-
VisTIR dataset, and the values to the left and right of the ’/’ are the
results for cloud-cloud and cloud-sunny scenarios respectively (bold
fonts indicate the maximum values).

Supervised fine-tuning: In fine-tuning, we use the
MegaDepth dataset [Li and Snavely, 2018]. To enhance the
robustness to modal differences, we adopt the operation of
XoFTR to augment data. Fine-tuning is conducted using the
AdamW optimizer with a learning rate of 2.5×10−4, a batch
size of 2, a total of 25 epochs, and 125 hours of training on 2
NVIDIA GeForce RTX 4090 GPUs.

Hyperparameter settings: The thresholds in the matching
network are set to: θc = 0.3, θf = 0.1. The settings in the
loss function are set to: λc = 0.5, λf = 0.3, λsub = 104,
λs = 1, λvis

ac = λir
ac = 0.25.

4.2 Relative Pose Estimation
Dataset: To evaluate the performance of XCP-Match for rel-
ative pose estimation in visible-infrared image pairs, we test
it on the METU-VisTIR dataset [Tuzcuoğlu et al., 2024]. The
dataset has thermal infrared and visible image pairs from six
scenarios with GT camera poses. Four of these scenarios have
both cloudy and sunny conditions, while the other two scenar-
ios have only cloudy conditions.

Comparison scheme: XCP-Match processes the input im-
ages and generates matched point pairs. We use RANSAC
[Fischler and Bolles, 1981] with a threshold of 3 to filter cor-
rect matching point pairs. During testing, the longer image
side is set to 640 pixels to standardize sizes. We evaluate
the methods independently on the six scenarios of the dataset

Method AUC of RoadScene

@5◦ @10◦ @20◦

DualRC 14.36 20.14 29.63
Efficient-LoFTR 13.27 19.73 31.53

ReDFeat 10.03 16.20 31.38
Xpoint 1.883 4.082 12.64
SemLA 4.910 9.837 19.56
GRiD 12.61 24.99 36.66

XoFTR 11.65 21.34 32.19
XCP-Match 18.69 29.77 41.20

Table 3: Quantitative results of homography estimation in the Road-
Scene dataset (bold fonts indicate the maximum values).

to examine performance differences under different weather
conditions. We use the area under curve (AUC) at 5◦, 10◦
and 20◦ thresholds as evaluation metrics, measuring the max-
imum angular deviation from the GT in rotation and transla-
tion. We compared XCP-Match with the following publicly
available methods: ReDFeat [Deng and Ma, 2023], GRiD
[Liu et al., 2024], Xpoint [Yagmur et al., 2024], SemLA [Xie
et al., 2023], XoFTR [Tuzcuoğlu et al., 2024], DualRC [Li et
al., 2023b] and Efficient-LoFTR [Wang et al., 2024].

Results: As shown in Table 2 and Figure 4, XCP-Match
achieves significantly higher AUC than other algorithms at all
thresholds for the cloudy-cloudy and cloudy-sunny datasets.
XCP-Match also achieves a significant performance advan-
tage in most scenarios. The performance on the cloudy-sunny
dataset is lower than on the cloudy-cloudy dataset, due to in-
creased image feature variation from light and temperature
differences, which makes matching and pose estimation more
challenging. Figure 3 (a) illustrates the qualitative results.

4.3 Homography Transformation Estimation
Dataset: To test XCP-Match for homography estimation,
we use the RoadScene dataset [Xu et al., 2020b; Xu et al.,
2020a]. We randomly generate a unique homography matrix
and apply it to the original images as GT. The homography
matrices include random translations of [−10, 10], random
rotations of [−10,−10], random scaling of [0.8, 1.2], random
shear angles of [−0.1, 0.1], and random perspective transfor-
mations of [−0.001, 0.001].

Comparison scheme: The evaluation metrics still use
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Figure 5: Qualitative results of image registration. The second row,
from left to right, shows the infrared, RGB, and the registered in-
frared image. Images in the first row represent the segmentation
annotations corresponding to each image in the second row.

RGB-FIR Metrics Scene1 Scene2 Scene3

DualRC LTA 0.8231 0.7078 0.6369
IoU 0.6263 0.4566 0.4473

Efficient-LoFTR LTA 0.8296 0.6391 0.5393
IoU 0.6378 0.5331 0.3362

ReDFeat LTA 0.7343 0.6648 0.6295
IoU 0.6209 0.3364 0.3900

Xpoint LTA 0.7171 0.5302 0.5668
IoU 0.6308 0.4516 0.4658

SemLA LTA 0.7769 0.6936 0.6108
IoU 0.7124 0.6430 0.5135

GRiD LTA 0.8549 0.8006 0.6284
IoU 0.7500 0.7172 0.4967

Cross-RAFT LTA 0.8102 0.7967 0.7102
IoU 0.7469 0.7388 0.5812

XoFTR LTA 0.8358 0.8273 0.6883
IoU 0.7923 0.7943 0.6062

XCP-Match LTA 0.8487 0.8389 0.7268
IoU 0.8157 0.7994 0.6192

Table 4: Quantitative results of image registration experiments in
the three indoor scenes of the TriModalHuman dataset (bold fonts
indicate the maximum values).

AUC. Since the homography matrix describes geometric
transformations in planar scenes, we approximate the scene
as planar to estimate the camera pose.

Results: As shown in Table 3 and Figure 3 (a), the AUC of
XCP-Match are significantly higher than those of other meth-
ods at all thresholds, with the performance gap increasing as
the threshold increases. Figure 3 (a) shows that XCP-Match
accurately aligns the feature points between the source and
target image, which ensures the transformed image maintains
good geometric consistency and structural integrity, even
with scale variations, perspective distortions and rotations.

4.4 Image Registration Test with Segmentation
Annotations

Dataset: To test XCP-Match’s performance for image reg-
istration, we evaluate it on the TriModalHuman dataset
[Palmero et al., 2016]. It contains 5724 RGB-Depth-FIR
triples across three indoor scenes, with human body segmen-
tation annotations. We use RGB-FIR images and select only
those with distinct human segmentations for testing. To avoid
causing damage to the segmentation annotations, we only ap-
ply a small degree of random homography transformation.

Comparison scheme: We estimate the homography trans-
formation based on image matching results and apply it to
the segmentation annotations. The algorithm’s performance

Method AUC of ablation study

@5◦ @10◦ @20◦

w/o pre-training 10.63 25.99 43.10
w/o pre-training model 10.61 25.24 40.58

w/o attention-weighted contrast loss 11.80 26.75 43.50
w/o RoPE 11.98 26.93 43.71

XCP-Match 12.24 27.70 45.59

Table 5: Ablation study of XCP-Match. All experiments are per-
formed in the cloud-sunny scenarios of the METU-VisTIR dataset
(bold fonts indicate the maximum values).

is tested by evaluating the alignment between the transformed
and target segmentation annotations. The evaluation met-
rics are LTA (Label Transfer Accuracy) and IoU (Intersection
over Union), respectively. We add Cross-RAFT [Zhou et al.,
2022] as the comparison algorithm.

Results: As shown in Table 4 and Figure 4, XCP-Match
achieves the best performance in all three RGB-FIR indoor
scenes. XCP-Match focuses on salient regions and generate
denser and more homogeneous matches. Due to this charac-
teristic, XCP-Match can better focus and align human seg-
mentation annotations to achieve best results in LTA and IoU
as shown in Figure 5.

4.5 Ablation Study
To verify the effectiveness of the modules and training strat-
egy in XCP-Match, we perform the ablation experiments in
the METU-VisTIR dataset. The results are shown in Table 5
and Figure 3 (b). (1) w/o pre-training: Training directly on
MegaDepth without pre-training. The results show significant
performance degradation, indicating the importance of pre-
training for effective feature learning. (2) w/o pre-training
model: Using only VGG in MM-FEM and removing other
components. The results show a significant decrease in AUC,
indicating its critical role in multimodal feature extraction and
interaction. (3) w/o attention-weighted contrast loss: Remov-
ing this loss during pre-training leads to decrease in AUC,
as this loss helps the ViT encoder focus on overlapping re-
gions. (4) w/o RoPE: Removing the RoPE in ViT encoder.
The results show that lacking position information negatively
affects the algorithm’s matching performance. (5) The results
of Figure 3 (b) show that the absence of either component de-
grades matching performance, underscoring their importance
for cross-modal feature learning.

5 Conclusion
In this study, our XCP-Match introduces a two-phase train-
ing strategy. In pre-training phase, we design a novel dual-
branch pre-training model and MIM method to achieve cross-
modality completion. The attention-weighted contrastive loss
is designed to ensure the model focuses on overlapping re-
gions. The fine-tuning phase is based on the augmented
MegaDepth dataset to enhance its robustness against modal
differences. XCP-Match constructs a complete matching
framework. Our evaluations on public datasets demonstrate
that XCP-Match outperforms state-of-the-art algorithms.
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