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Abstract

Electrocardiogram (ECG) is widely used to diag-
nose cardiac conditions via deep learning methods.
Although existing self-supervised learning (SSL)
methods have achieved great performance in learn-
ing representation for ECG-based cardiac condi-
tions classification, the clinical semantics can not
be effectively captured. To overcome this limita-
tion, we proposed to learn cross-modal ECG rep-
resentations that contain more clinical semantics
via a novel framework with Deep ECG-Report
Interaction (DERI). Specifically, we design a novel
framework combining multiple alignments and mu-
tual feature reconstructions to learn effective repre-
sentation of the ECG with the clinical report, which
fuses the clinical semantics of the report. An RME-
Module inspired by masked modeling is proposed
to improve the ECG representation learning. Fur-
thermore, we extend ECG representation learning
to report generation with a language model, which
is significant for evaluating clinical semantics in
the learned representations and even clinical appli-
cations. Comprehensive experiments with various
settings are conducted on various datasets to show
the superior performance of our DERI. Our code is
released on https://github.com/cccccj-03/DERI.

1 Introduction
Electrocardiogram (ECG) is a widely used data for reflect-
ing heart electrical activity [Attia et al., 2019], which is of
great importance for cardiac conditions classification. Super-
vised learning methods have obtained effective performance
in ECG signal classification with high-quality annotations
[Huang et al., 2022; Chen et al., 2024a]. However, there are
a large number of unlabeled ECG signals in the real world,
and supervised learning methods have difficulty utilizing this
resource effectively. To reduce the dependence on labeled
data, ECG representation learning methods based on self-
supervised learning (SSL) have demonstrated their powerful

∗ Corresponding authors.

performance [Oh et al., 2022]. Compared to supervised learn-
ing methods, SSL methods aim to learn effective representa-
tions from ECG signal data without labels and thus tend to
be more generalizable and adaptable to different downstream
tasks, showing great potential.

ECG self-supervised learning (SSL) methods are mainly
generative or contrastive. Generative models reconstruct in-
puts via masked modeling, while contrastive methods dis-
tinguish between similar and dissimilar samples. However,
their single-modal nature limits the capture of rich clini-
cal semantics. Generative methods focus on reconstruct-
ing low-level signal patterns, often missing clinical seman-
tics [Zhang et al., 2023], while contrastive methods rely on
input-level augmentations, which risk distorting ECG seman-
tics [Na et al., 2024]. Multi-modal learning has emerged as a
promising solution for these limitations due to its great learn-
ing ability with multiple data sources [Chen et al., 2024b;
Chen et al., 2024c]. Compared to ECG signals, clinical re-
ports offer direct high-level semantic insights. Inspired by
advances in medical imaging and radiology reports [Liu et
al., 2023a], Liu et al. proposed a multi-modal representa-
tion learning approach called MERL by aligning ECG sig-
nals with clinical reports [Liu et al., 2024b]. However, their
method aligns ECG features with report features in the feature
space, drawing inspiration from CLIP [Radford et al., 2021],
but the interaction between modalities is relatively shallow.
Furthermore, although the ECG representations learned by
MERL perform well in classification tasks, they fail to effec-
tively convey the underlying semantics of ECG recordings,
which are crucial for understanding cardiac conditions.

To overcome these limitations, we proposed a novel Deep
ECG Report Interaction (DERI) framework for cross-modal
representation learning. To better capture the clinical seman-
tics of ECG signals, we design an encoder-decoder structure
to conduct multiple cross-modal alignments and mutual fea-
ture reconstruction. Specifically, ECG signals and the corre-
sponding clinical reports are first encoded and projected into a
shared alignment space to achieve an initial alignment. To en-
hance interaction, two specialized decoders are employed to
reconstruct features by decoding the aligned representations
into the other modality. This reconstruction process captures
the latent semantics in both modalities, enabling the learning
of richer cross-modal representations. Subsequently, the de-
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coded features are fused with the modality-specific aligned
features to create mixed representations incorporating both
ECG signals and clinical reports semantics. These mixed rep-
resentations are further utilized for a second alignment. Addi-
tionally, we introduce a Random Masked Enhancement Mod-
ule (RME-Module) to improve ECG representation learning.
Furthermore, the proposed DERI framework is integrated
with language models to generate reports, providing a way to
assess the learned clinical semantics. Extensive experiments
across various settings and datasets are conducted to demon-
strate the effectiveness of DERI. The main contributions are
summarized as follows:

• To learn effective ECG representation from reports, we
propose a novel cross-modal framework of ECG-Report
via multiple feature alignment and mutual feature recon-
struction. An RME-Module is also designed for ECG
representation learning enhancement.

• To better illustrate the clinical semantics learned by
DERI, we combine it with a language model for re-
port generation. The pre-trained model provides effec-
tive ECG representation and a language model is used to
generate clinical reports for clinical semantics.

• Comprehensive experiments on downstream datasets are
conducted to evaluate the proposed DERI method, in-
cluding zero-shot classification, linear probing, and even
report generation. Experimental results illustrate that
our DERI method surpasses all SOTA methods.

2 Related Work
Single-modal ECG Representation Learning. There are
various SSL methods for ECG representation learning. Most
of these methods are single-modal, which conduct genera-
tive learning or contrastive learning on unannotated ECG sig-
nals. CLOCS [Kiyasseh et al., 2021] and ASTCL [Wang
et al., 2023] are the SOTA single-modal contrastive learning
methods that explore the spatial-temporal correlation of ECG
signals. Similarly, ST-MEM [Na et al., 2024] proposes to
learn ECG representation by spatial-temporal masking mod-
eling and reconstruction of 12-lead ECG signals. Although
all these unimodal methods have achieved good performance,
they still fall short in learning the clinical semantics of ECG
signals [Liu et al., 2024b]. Single-modal contrastive and gen-
erative methods extract representations only from ECG sig-
nals without diagnostic reports.
Multi-modal ECG Representation Learning. Several
works conduct ECG multi-modal learning for better classifi-
cation. Ref. [Raghu et al., 2022] proposes to learn represen-
tations from ECG signals and structured data from labs and
vitals by contrastive learning. Ref. [Lalam et al., 2023] com-
bines ECG signals with structured Electronic Health Records
(EHRs) to conduct contrastive learning. BPNet fuses ECG
signals with PPG signals to better conduct blood pressure es-
timation [Long and Wang, 2023]. However, these methods do
not use diagnostic report data, making it difficult to learn the
clinical semantics effectively. To learn the clinical seman-
tics of ECG signals, Liu et al. proposed to align ECG fea-
tures with clinical reports inspired by multi-modal learning

in medical images and radiology reports [Liu et al., 2024a;
Liu et al., 2024b]. Introducing corresponding diagnostic re-
ports for ECG representation learning greatly improves their
performance on the downstream cardiac condition classifi-
cation tasks, but these multimodal approaches only achieve
shallow modal interaction. The learned representations can
not efficiently incorporate the semantics in the reports. There-
fore, we design our DERI framework to conduct deep cross-
modal interaction and then expand the model to report gener-
ation with great meaning for clinical diagnosis.
Clinical Report Generation. Clinical report generation in
radiology has obtained great performance inspired by imag-
ing captioning [You et al., 2021]. R2Gen [Chen et al., 2020b]
uses a memory-driven Transformer to generate a radiology
report directly with the representation of the medical image.
CvT2DistilGPT2 [Liu et al., 2023b] demonstrates that pre-
trained NLP models can provide benefits for radiology report
generation as well. X-REM is proposed to fuse the image-
text multi-modal representation and then used retrieval-based
methods to generate the predicted reports from the retrieval
corpus [Jeong et al., 2024]. Inspired by these image-based
clinical report generation methods, we extend our ECG repre-
sentation learning method to ECG-based clinical report gen-
eration, which can help understand the clinical semantics of
the cardiac conditions from the ECG signals.

3 Methodology
3.1 Overview
Our DERI is a dual-encoder framework for learning effec-
tive multimodal representations from ECG signals and clini-
cal reports. As shown in Fig. 1, it leverages feature alignment
and reconstruction for cross-modal interaction, with an RME
module further enhancing representation quality.

3.2 Multiple ECG-Report Alignment
The Multiple ECG-Report Alignment in DERI contains two
strategies: modal-specify and mix-modal feature alignment.
Given an ECG signal recording ei with corresponding clini-
cal report ri, we construct an ECG-Report pair as (ei,ri), with
i = 1, 2, 3, ..., N where N is the number of recordings. Two
distinct encoders Fe and Ft are used to learn the latent encod-
ing of ECG signals and report texts respectively, represented
as ze,i and zt,i. Specifically, the latent encoding is obtained
by ze,i = Fe(ei) and zt,i = Ft(ri). To align the ECG en-
coding and text encoding, we use two linear projectors Pe

and Pt to map them into an alignment space of the same di-
mension, which can be represented as Âe,i = Pe(ze,i) and
Ât,i = Pt(zt,i). The align loss Lalign, which is inspired by
the CLIP loss, is used to close the distance between the repre-
sentations of ECG signals and reports in the alignment space.
Specifically, each ECG signal and the corresponding report
are regarded as a positive pair and others as negative pairs.
The loss function Lalign is shown as Eq. 1 to Eq. 3.

Lalign =
1

2B

N∑
i=1

N∑
j=1

(Le,t
i,j + Lt,e

i,j ), (1)
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Figure 1: Framework of proposed DERI for ECG-Report multi-modal representation learning.

Lx,y
i,j = −log

exp(sx,yi,j /τ)∑B
k=1 I[k ̸=i]exp(s

x,y
i,j /τ)

, x, y ∈ [e, t], (2)

sx,yi,j =
Â⊤

x,iÂy,j

∥ Âx,i ∥∥ Ây,j ∥
, (3)

where B is the batch size, x ∈ [e, t], y ∈ [e, t] represents
the ECG modal or the text modal, τ is the temperature co-
efficient which is set as 0.7, and I is the indicator function.
Through calculating the mutual align loss of ECG-report Le,t

i,j

and report-ECG Lt,e
i,j respectively, the model can perform bet-

ter feature alignment.
Furthermore, to conduct deep ECG-report interaction, we

adopt Cross-modal Mutual Reconstruction (depicted in Sec-
tion 3.3) to decode the representation of another mode (De

and Dt represent decoded ECG feature and decoded text fea-
ture) from the aligned modal representation. Then the de-
coded features are added to the aligned modal representa-
tion to obtain the mix-modal encoding. By combining align-
ment and reconstruction, mixed-modal can better achieve
deep ECG-Report interaction. Specifically, we will use the
Âe,i and Ât,i as the core to obtain the mix-modal encoding
M̂e

i = Âe,i ⊕ Dt and M̂ t
i = Ât,i ⊕ De, and then conduct

the second encoding alignment in mixed space, thus obtain-
ing the final multimodal representation. The mixed alignment
loss can be calculated as Eq. 4.

Lmixed =
1

2B

N∑
i=1

N∑
j=1

(L′e,t
i,j + L′t,e

i,j ), (4)

where L′e,t
i,j and L′t,e

i,j is calculated by using M̂e
i and M̂ t

i to
replace Âe,i and Ât,i as Eq. 2 and Eq. 3. Therefore, our
proposed method can effectively extract mixed modal repre-
sentations with report characteristics by using only ECG sig-
nals after completing the pre-training stage. This can help the
model better complete the task of zero-shot classification and
report generation.

In conclusion, the whole loss for multiple ECG-report
alignment can be written as Eq. 5:

LERA = Lalign + Lmixed. (5)

3.3 Cross-modal Mutual Reconstruction
To better guide the model in achieving deeper modal interac-
tions between ECG signals and diagnostic reports, we intro-
duce cross-modal mutual reconstruction. Specifically, after
we obtained the aligned ECG feature Âe,i and the aligned
text features Ât,i, we aim to facilitate modal interactions by
reconstructing the target modality while bringing them closer
to each other in space. We introduce transformers as decoders
to decode the representations of one modal in the alignment
space to another modal. Considering that reports offer intu-
itive semantic information valuable for heart state classifica-
tion but are often unavailable without cardiologists, we in-
troduce a shared embedding derived from the textual modal-
ity decoder for better learning textual semantics during pre-
training. This shared embedding is combined with the ECG
features, enriching them with additional textual features to
enhance cardiac condition classification. After completing
the pre-training in this manner, the final representation ob-
tained from inputting only the ECG data effectively encap-
sulates the semantic information of the corresponding report
text. This process is represented as Eq. 6:

D̂e,i = De(Ât,i), D̂t,i = Dt(Concat[Âe,i, SEt]), (6)
where De and Dt are the decoder transformers to obtain ECG
encoding D̂e,i and report encoding D̂t,i respectively, and SEt

is the shared embedding. Then we use standard contrastive
loss on the original feature embeddings and the decoded em-
beddings for cross-modal mutual reconstruction as Eq. 7:

LCMR = Le
D + Lt

D =
1

2B

N∑
i=1

N∑
j=1

(Lze,de
i,j + Lzt,dt

i,j ), (7)

where Le
D and Lt

D represents the loss of ECG and report fea-
ture reconstruction respectively, Lze,de

i,j and Lzt,dt
i,j represent

to use De and Dt with the original features ze,i and zt,i to
calculate the similarity as the same of Eq. 3.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Si
m

ila
ri

ty

ECG Signal
ℱe

Pr
oj

ec
to

r Aligned ECG

𝒟𝒟𝑒𝑒
Decoded Text

Mix Encoding

ECG Encoding

Clinical 
Database

LLM

Original 
Prompt：

“Atrial 
Fibrillation”

Enhanced Prompt：
“Atrial Flutter, Atrial 
Fibrillation, Paroxysmal 
Atrial Flutter, Persistent 
Atrial Flutter, Long-standing 
Persistent Atrial Flutter.”

CKEPE

DERI ECG Encoder

ℱ𝑡𝑡
Mix Encoding

Linear

GPT2

Report

Zero-shot Classification Report Generation

Pr
oj

ec
to

r

Figure 2: Pipeline of zero-shot classification and report generation of our proposed DERI.

3.4 Latent Random Masking Enhancement
We further conduct an RME-Module on latent ECG encod-
ing to facilitate representation learning. Considering that aug-
mentation directly at the data level entails the loss of semantic
information about the signal, we propose an RME-Module
conducting on the ECG encoding. Specifically, as the en-
coder extracts encodings, it tends to focus on the local fea-
tures of the signal to form an encoding sequence. Rather
than applying global average pooling to the ECG encoding
sequence and using two separate dropout operations to create
augmented views, we instead randomly mask the sequence
twice, independently. Then, a multi-head attention mecha-
nism is employed to aggregate the sequence, producing two
augmented views of the encoding as a positive pair. This ran-
dom masking approach helps preserve sequence-level seman-
tic features while enabling the model to learn global features
more effectively. We then use standard contrastive loss on
these two augmented encoding views. The whole process can
be illustrated in Eq. 8:

LRME = − 1

L

N∑
i=1

N∑
j=1

log
exp(si,jτ)∑L

k=1 I[k ̸=i]exp(s
x,y
i,j /τ)

,

z1e,i = MHA(Mask(ze,i)) = MHA(M1 × ze,i),

z2e,i = MHA(Mask(ze,i)) = MHA(M2 × ze,i),

(8)

where si,i = z1 ⊤
e,i z2e,i, MHA is multi-head attention, Mask is

the random mask strategy, which generates random mask sets
M1 and M2. M1 and M2 with each entry independently
sampled with masking ratio p = 0.1 are in Rb×n where b
is the batch size and n is the length of the embedding se-
quence. Each item in M is either 0 or 1, indicating whether
the corresponding patch should be masked. We add a global
average on the MHA to obtain the global representation of
the masked embedding. Importantly, the random masks are
generated by two independent random noises.

In summary, our proposed DERI learns representative ECG
features with the help of clinical reports by jointly minimizing
LERA, LCMR and LRME . The overall training loss of pre-
training can shown as Eq. 9:

Ltotal = LERA + LCMR + LRME . (9)

3.5 Downstream Tasks on DERI Framework
After training the proposed DERI model, we can obtain an ef-
fective representation of ECG signals that contains clinical re-
port information. Then we can use the representation to con-
duct zero-shot classification and report generation. Consider-
ing the quality of the category prompts for zero-shot classi-
fication will have a great impact on the performance [Mani-
parambil et al., 2023], we adopt the CKEPE prompts which
are constructed by combining large language model (LLM)
and clinical knowledge [Liu et al., 2024b]. The whole pro-
cess of these two tasks is illustrated in Fig. 2.

Zero-shot Classification. We adopt CKEPE as the cate-
gory prompts and use the trained report encoder Ft and the
projector to obtain the prompt embeddings of all categories.
We then use the trained DERI model to obtain the Mix Encod-
ing with ECG signals alone, which contains both ECG signal
features and the corresponding clinical report features. Fi-
nally, we calculate the similarity between the Mix Encoding
and the prompt encoding and then conduct an optimal classi-
fication threshold search, all categories above this threshold
are considered to be predicted. Importantly, all the parame-
ters of the proposed DERI are frozen in this process.

Report Generation. After we obtain the final representa-
tion of ECG, we adopt GPT-2 as the text decoder to construct
an encoder-decoder structure since DistilGPT2 [Sanh, 2019]
has shown its great performance on report generation [Wang
et al., 2024]. We adopt a trainable linear layer to transform
the input encoding dimension to meet the dimension of the
GPT-2 and perform fine-tuning on the GPT-2 to minimize
a cross-entropy loss LCE between the generated report and
ground truth reports. After fine-tuning, we can generate cor-
responding diagnostic reports with ECG signals alone.

4 Experiment
4.1 Datasets
MIMIC-ECG. The pre-training process of our proposed
DERI model is conducted on the MIMIC-ECG dataset [Gow
et al., 2023] with 800,035 paired ECG-report from 161,352
subjects. We removed all the samples without reports con-
taining more than 3 words and replaced ’NaN’ or ’Inf’ in the
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PTBXL-Super PTBXL-Sub PTBXL-Form PTBXL-Rhythm CPSC2018 CSN

Method 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

SimCLR 63.41 69.77 73.53 60.84 68.27 73.39 54.98 56.97 62.52 51.41 69.44 77.73 59.78 68.52 76.54 59.02 67.26 73.20
BYOL 71.70 73.83 76.45 57.16 67.44 71.64 48.73 61.63 70.82 41.99 74.40 77.17 60.88 74.42 78.75 54.20 71.92 74.69
BarlowTwins 72.87 75.96 78.41 62.57 70.84 74.34 52.12 60.39 66.14 50.12 73.54 77.62 55.12 72.75 78.39 60.72 71.64 77.43
MoCo-v3 73.19 76.65 78.26 55.88 69.21 76.69 50.32 63.71 71.31 51.38 71.66 74.33 62.13 76.74 75.29 54.61 74.26 77.68
SimSiam 73.15 72.70 75.63 62.52 69.31 76.38 55.16 62.91 71.31 49.30 69.47 75.92 58.35 72.89 75.31 58.25 68.61 77.41
TS-TCC 70.73 75.88 78.91 53.54 66.98 77.87 48.04 61.79 71.18 43.34 69.48 78.23 57.07 73.62 78.72 55.26 68.48 76.79
CLOCS 68.94 73.36 76.31 57.94 72.55 76.24 51.97 57.96 72.65 47.19 71.88 76.31 59.59 77.78 77.49 54.38 71.93 76.13
ASTCL 72.51 77.31 81.02 61.86 68.77 76.51 44.14 60.93 66.99 52.38 71.98 76.05 57.90 77.01 79.51 56.40 70.87 75.79
CRT 69.68 78.24 77.24 61.98 70.82 78.67 46.41 59.49 68.73 47.44 73.52 74.41 58.01 76.43 82.03 56.21 73.70 78.80
STMEM 61.12 66.87 71.36 54.12 57.86 63.59 55.71 59.99 66.07 51.12 65.44 74.85 56.69 63.32 70.39 59.77 66.87 71.36
MERL 82.39 86.27 88.67 64.90 80.56 84.72 58.26 72.43 79.65 53.33 82.88 88.34 70.33 85.32 90.57 66.60 82.74 87.95

Random Init 78.10 84.33 89.47 69.96 78.70 84.01 60.82 67.14 70.08 60.12 79.34 83.98 64.67 75.57 91.45 67.42 74.54 79.97
DERI (Ours) 85.46 89.84 90.52 73.50 80.60 85.52 62.53 72.51 84.37 65.44 83.66 92.34 79.45 89.40 93.45 77.93 87.86 91.93

Table 1: Linear probing results (AUC). We bold the best results and grey represents the second highest.

ECG signal with mean interpolation. Finally, the dataset used
for pre-training has 771,693 samples.

PTBXL [Wagner et al., 2020] contains 21,837 12-lead
ECG signals from 18,885 patients at a sampling rate of 500
Hz with a duration of 10s. It contains four multi-label classi-
fication tasks: Superclass, Subclass, Form, and Rhythm.

CPSC2018 [Liu et al., 2018] contains 6,877 12-lead ECG
recordings with a sampling rate of 500 Hz. The duration of
these signals ranges from 6 to 60 seconds with one corre-
sponding label within nine categories.

Chapman-Shaoxing-Ningbo (CSN) [Zheng et al., 2022]
contains 45,152 12-lead ECG recordings with a sampling rate
of 500 Hz. Each recording has a duration of 10 seconds,
and signals with ”unknown” annotation are removed. 23,026
ECG records with 38 categories are used for classification.

4.2 Experimental Setup
Pre-training. For the encoders used for ECG signals and
reports, we adopt a randomly initialized 1D-ResNet18 and
the Med-CPT [Jin et al., 2023], respectively. For decoders,
we adopt two transformers with 8 attention heads, a depth
of 2, and a hidden size of 256, respectively, for ECG encod-
ing reconstruction and report encoding reconstruction. We
use the AdamW optimizer with a learning rate of 1e-3 and
a weight decay of 1e-8. The epoch for pre-training is set
as 50 with a cosine annealing scheduler to adjust the learn-
ing rate. We conduct all the pre-trained experiments on 4
NVIDIA GeForce RTX 4090 GPUs with a batch size of 512.

Classification. We freeze the whole DERI and conduct
zero-shot classification as illustrated in Section 3.5. For lin-
ear probing, we add a new linear classifier and freeze all other
parameters in our DERI. We adopt three different settings,
which utilize 1%, 10%, and 100% of the training data. Since
these tasks are all classifications that contain many categories,
we adopt the macro AUC as the evaluated metric. We conduct
these experiments on one NVIDIA GeForce RTX 4090 GPU.
The baselines we compared include SimCLR [Chen et al.,
2020a], BYOL [Grill et al., 2020], BarlowTwins [Zbontar
et al., 2021], MoCo-v3 [Chen et al., 2021], SimSiam [Chen
and He, 2021], TS-TCC [Eldele et al., 2021], CLOCS
[Kiyasseh et al., 2021], ASTCL [Wang et al., 2023], CRT
[Zhang et al., 2023], STMEM [Na et al., 2024], and MERL
[Liu et al., 2024b]. More details about implementation set-
tings and baselines can be found in the Supplementary.

Report generation. We conduct report generation on

PTBXL-Sub PTBXL-Super PTBXL-Form PTBXL-Rhythm CPSC2018 Chapman
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Figure 3: Zero-shot Classification Comparison (AUC).

the MIMIC-ECG dataset first. We adopt the Natural Lan-
guage Generation (NLG) metrics which include BLEU-n and
ROUGE-L as metrics. We further integrated Clinical Effi-
ciency (CE) metrics inspired by zero-shot classification, as
seen in our Supplementary. We conduct the experiments on 2
NVIDIA GeForce RTX 4090 GPUs.

4.3 Experimental Results
Classification. Since most of the existing ECG representa-
tion learning methods are proposed without a text encoder
for zero-shot learning, we compared our proposed DERI with
MERL to verify the cross-modal ECG representations learned
from clinical reports. The comparison results are illustrated in
Fig. 3. It is evident that our proposed method, DERI, signifi-
cantly outperforms MERL across all tasks. The dotted line
in the figure indicates the average performance of the two
zero-sample methods on the six classification tasks. DERI
achieves an average macro AUC of 78.73, while MERL at-
tains only 75.25. This underscores DERI’s capability to learn
clinically relevant representations through deep cross-modal
interactions. Compared to MERL which just aligns the ECG
and report encoding, our proposed DERI achieves deep cross-
modal interaction by multiple alignment and feature recon-
struction, which enables the model to learn more effective
representation for zero-shot clinical classification.

We evaluate our DERI framework using linear probing, a
widely adopted protocol in SSL [Wang et al., 2023], and com-
pare it with existing ECG SSL methods. As shown in Table 1,
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Source Domain
Zero-shot Training Data Ratio

PTBXL-Super CPSC2018 CSN
Target Domain CPSC2018 CSN PTBXL-Super CSN PTBXL-Super CPSC2018

SimCLR ×

100%

69.62 73.05 56.65 66.36 59.67 62.11
BYOL × 70.27 74.01 57.32 67.54 60.39 63.24
BarlowTwins × 68.98 72.85 55.97 65.89 58.76 61.35
MoCo-v3 × 69.41 73.29 56.54 66.12 59.82 62.07
SimSiam × 70.06 73.92 57.21 67.48 60.23 63.09
TS-TCC × 71.32 75.16 58.47 68.34 61.55 64.48
CLOCS × 68.79 72.64 55.86 65.73 58.69 61.27
ASTCL × 69.23 73.18 56.61 66.27 59.74 62.12
CRT × 70.15 74.08 57.39 67.62 60.48 63.33
STMEM × 76.12 84.50 62.27 75.19 73.05 64.66

MERL
√

0% 88.21 78.01 76.77 76.56 74.15 82.86
DERI (Ours)

√
0% 88.78 78.83 79.50 81.02 76.70 85.84

Table 2: Distribution shift results (AUC). We bold the best results and grey represents the second highest.

DERI outperforms all baselines, including the multi-modal
method MERL and state-of-the-art single-modal methods,
across all datasets and training data ratios. ”Random Init”
denotes using DERI in a purely supervised setting without
pre-training. Notably, DERI achieves the largest performance
gain when trained with only 1% of labeled data, indicat-
ing strong generalization with minimal supervision. On the
PTBXL-Super task, DERI, with just 1% data even surpasses
all single-modal methods trained with 100% data. Moreover,
both MERL and DERI exhibit strong performance across set-
tings, confirming the benefit of integrating clinical reports.
DERI’s consistent advantage over MERL highlights its su-
perior capability in cross-modal ECG representation learning
for cardiac condition classification.

To assess the robustness of learned representations un-
der distribution shift, we conduct linear probing with 100%
training data on three classification tasks: PTBXL-Super,
CPSC2018, and CSN. For zero-shot capable models like
MERL and DERI, we reclassify their fixed representations
using trained classifiers. Specifically, models are trained on
one dataset (source domain) and evaluated on another (tar-
get domain). As shown in Table 2, DERI consistently out-
performs MERL across all six transfer settings. Compared
to single-modal SSL baselines, only STMEM achieves better
performance than DERI in the PTBXL-to-CSN setting, while
DERI outperforms all others in the remaining cases. MERL
generally ranks second, demonstrating the benefit of incorpo-
rating clinical reports. The consistent improvements of DERI
over MERL further validate the effectiveness of its enhanced
cross-modal interaction in improving generalization and ro-
bustness across domains.

Report Generation. Beyond cardiac condition classifica-
tion, DERI enables deep cross-modal interactions that allow
the extracted ECG representations to support diagnostic re-
port generation. To evaluate this capability, we conduct report
generation experiments on the MIMIC-ECG dataset. We use
pre-trained DERI and MERL as encoders and integrate them
with DistilGPT2 in an encoder-decoder framework. To iso-
late the contribution of our cross-modal reconstruction strat-
egy, we introduce a variant of DERI-align, which uses only
the aligned ECG representations. As shown in Table 3, DERI
outperforms MERL in both NLG and clinical efficacy (CE)
metrics, indicating that it captures richer clinical semantics.
Moreover, DERI also surpasses DERI-align, demonstrating
the effectiveness of our cross-modal feature reconstruction
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Figure 4: Report Generation CE Metrics with LLMs on MIMIC.

in incorporating diagnostic report information and enhancing
semantic fidelity in generated reports.

To better verify the CE metrics calculation method, we also
adopt large language models LLaMA2-7b [Touvron et al.,
2023] and vicuna-7b [Zheng et al., 2023] to conduct report
classification. Specifically, we feed the original reports and
generated reports to the LLMs respectively and then ask the
LLMs to choose the best class from six given categories: Nor-
mal ECG, Myocardial Infarction, ST/T Change, Conduction
Disturbance, Hypertrophy, and Others. The answers of the
original reports are regarded as ground truth and the answers
of the generated reports are predicted labels. We then calcu-
late the CE metrics as Fig. 4.

We can observe that the results of report classification us-
ing LLMs are basically the same as the results of our zero-
shot categorization method: DERI is the best and DERI-
align is the second best, while both methods outperform
MERL on F1. Meanwhile, the calculation of CE using vi-
cuna performs better results than LLaMA2. We also pro-
vide example-generated reports and report-generation tasks
on PTB-XL compared with MEIT [Wan et al., 2024] and
ECG-Chat [Zhao et al., 2024] in Supplementary.

4.4 Ablation Study
To better verify the performance of the key compo-
nents/design choices of our DERI, we conduct comprehen-
sive ablation studies on zero-shot classification and linear
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Encoder
NLG CE

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L F1 PRE REC

MERL 59.68 54.09 49.58 46.52 69.52 23.03 25.01 23.05
DERI 62.48 57.23 52.90 49.85 71.45 24.90 26.74 24.88

DERI-Align 61.33 55.98 51.75 48.50 70.59 23.33 24.96 23.60

Table 3: Report generation results on MIMIC-ECG dataset. We bold the best results and grey represents the second highest.

probing with 1% training data across different classification
datasets. All results are proposed with average AUC on six
downstream datasets for ECG classification.

Lalign Lmixed Le
D Lt

D Le
RME Zero-shot Linear Probing (1%)

√ √ √ √
76.34 72.36√ √ √ √
77.41 69.20√ √ √ √
78.06 69.61√ √ √ √
78.22 68.31√ √ √ √ √
78.73 74.05

Table 4: Ablating Multiple Alignment and Feature Reconstruction.

Multiple Alignment and Feature Reconstruction. We
realize the validation of the effect of these compositions by
ablating the corresponding loss functions separately, and the
experimental results are reported in Table 4. Table 4 shows
that for zero-shot classification, Lmixed brings the best im-
provement while Le

RME for linear probing. This suggests
that the second alignment of mixed encoding can better fuse
the clinical information from reports because zero-shot clas-
sification learning is conducted to calculate the similarity
between the learned representations and prompt representa-
tions. The effect of Le

RME on linear probing exemplifies the
effectiveness of the RME-Module we designed to improve
the learning ability of ECG representations. The completed
DERI obtains the best performance, which illustrates the ef-
fectiveness of our DERI method.

Latent Dropout RME-Linear RME-Module

Zero-shot 76.88 78.05 78.73
Linear Probing (1%) 71.86 72.40 74.05

Table 5: Ablating RME-Module.

RME-Module. We compare the effect of the RME-
Module and its variant that uses linear projectors instead of
the attention mechanism (which is set as RME-Linear) and
the Latent Dropout strategy used by MERL. The experimen-
tal results are reported in Table 5. We can observe that
the random masking strategy obtains better performance than
dropout while using the multi-head attention mechanism in-
stead of global meaning can achieve the best performance,
enhancing the model’s ability to learn ECG representation
for classification. Masking encourages the model to learn
context-aware representations, focusing on understanding re-
lationships within the input. Random dropout removes (i.e.,
zeroes out) a fraction of the neurons (units) or edges in a net-
work layer during training, but it does not apply this to the
input itself. In dropout, neurons are randomly dropped inde-
pendently at each forward pass. The designed RME-Module
is used to enhance the global feature of the ECG signals, so
we adopt random masking rather than a random dropout.

We then further explore the impact of the masking ratio p

Mask-ratio 0.1 0.2 0.3 0.4 0.5

Zero-shot 78.73 77.67 78.05 77.62 76.35
Linear Probing (1%) 74.05 68.69 71.26 73.55 72.21

Table 6: Ablating Masking Ratio.

on the performance by changing it from 0.1 to 0.5 with a step
of 0.1. The experimental results are shown in Table 6. We
observe that the masking ratio of 0.1 obtains the best perfor-
mance among other masking ratios in both zero-shot classifi-
cation and linear probing. Therefore, we adopt the masking
ratio of 0.1 in our RME-Module.

Shared Embedding and Mix Encoding. We also con-
duct experiments to verify the effect of the shared embedding
used in cross-modal reconstruction. We remove the shared
embedding from Dt to De as a variant of DERI. In addition,
we use the pre-trained aligned ECG features to conduct zero-
shot classification and linear probing to verify whether the
mix encoding performs better than the aligned encoding for
classification. This means that we adopt the same pre-training
model but use the aligned ECG encoding instead of the mixed
encoding for downstream tasks.

Without SE DERL-Align DERL

Zero-shot 77.25 78.03 78.73
Linear Probing (1%) 70.22 73.59 74.05

Table 7: Ablating Shared Embedding and Mix Encoding.

The experimental results are shown in Table 7. It can be
observed that removing the shared embedding from Dt to
De during text encoding reconstruction leads to a decline
in model performance for both zero-shot and linear probing
tasks. Furthermore, using the mixed encoding, which in-
cludes the decoded report features, outperforms using only
the aligned ECG features. These findings underscore the
strong representation learning capability of DERI.

5 Conclusion
In this study, we proposed DERI, an innovative deep ECG-
Report interaction framework for cross-modal representation
learning. To obtain deep ECG-Report interaction for bet-
ter representation learning, we design multiple alignments
and cross-modal mutual reconstruction. Besides, an RME-
Module is conducted on the ECG latent encoding for rep-
resentation learning enhancement. Moreover, we extended
ECG representation learning to clinical diagnostic report gen-
eration, aiming to deliver more intuitive ECG clinical in-
sights. Our extensive experiments demonstrate the DERI’s
capability to learn the clinical semantics of ECG signals with
the help of reports, which achieves the best performance on
ECG classification and report generation.
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rent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-
han Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap
your own latent-a new approach to self-supervised learn-
ing. Advances in neural information processing systems,
33:21271–21284, 2020.

[Huang et al., 2022] Yu Huang, Gary G Yen, and Vin-
cent S Tseng. Snippet policy network for multi-class
varied-length ecg early classification. IEEE Transactions
on Knowledge and Data Engineering, 35(6):6349–6361,
2022.

[Jeong et al., 2024] Jaehwan Jeong, Katherine Tian, Andrew
Li, Sina Hartung, Subathra Adithan, Fardad Behzadi,
Juan Calle, David Osayande, Michael Pohlen, and Pranav
Rajpurkar. Multimodal image-text matching improves
retrieval-based chest x-ray report generation. In Medi-
cal Imaging with Deep Learning, pages 978–990. PMLR,
2024.

[Jin et al., 2023] Qiao Jin, Won Kim, Qingyu Chen, Don-
ald C Comeau, Lana Yeganova, W John Wilbur, and Zhiy-
ong Lu. Medcpt: Contrastive pre-trained transformers
with large-scale pubmed search logs for zero-shot biomed-
ical information retrieval. Bioinformatics, 39(11):btad651,
2023.

[Kiyasseh et al., 2021] Dani Kiyasseh, Tingting Zhu, and
David A Clifton. Clocs: Contrastive learning of car-
diac signals across space, time, and patients. In Inter-
national Conference on Machine Learning, pages 5606–
5615. PMLR, 2021.

[Lalam et al., 2023] Sravan Kumar Lalam, Hari Krishna
Kunderu, Shayan Ghosh, Harish Kumar, Samir Awasthi,
Ashim Prasad, Francisco Lopez-Jimenez, Zachi I Attia,
Samuel Asirvatham, Paul Friedman, et al. Ecg representa-
tion learning with multi-modal ehr data. Transactions on
Machine Learning Research, 2023.

[Liu et al., 2018] Feifei Liu, Chengyu Liu, Lina Zhao, Xi-
angyu Zhang, Xiaoling Wu, Xiaoyan Xu, Yulin Liu,
Caiyun Ma, Shoushui Wei, Zhiqiang He, et al. An open
access database for evaluating the algorithms of electro-
cardiogram rhythm and morphology abnormality detec-
tion. Journal of Medical Imaging and Health Informatics,
8(7):1368–1373, 2018.

[Liu et al., 2023a] Che Liu, Sibo Cheng, Chen Chen,
Mengyun Qiao, Weitong Zhang, Anand Shah, Wenjia Bai,
and Rossella Arcucci. M-flag: Medical vision-language
pre-training with frozen language models and latent space
geometry optimization. In International Conference on

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Medical Image Computing and Computer-Assisted Inter-
vention, pages 637–647. Springer, 2023.

[Liu et al., 2023b] Yuan Liu, Songyang Zhang, Jiacheng
Chen, Zhaohui Yu, Kai Chen, and Dahua Lin. Improving
pixel-based mim by reducing wasted modeling capability.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5361–5372, 2023.

[Liu et al., 2024a] Che Liu, Zhongwei Wan, Sibo Cheng,
Mi Zhang, and Rossella Arcucci. Etp: Learning trans-
ferable ecg representations via ecg-text pre-training. In
ICASSP 2024-2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages
8230–8234. IEEE, 2024.

[Liu et al., 2024b] Che Liu, Zhongwei Wan, Cheng Ouyang,
Anand Shah, Wenjia Bai, and Rossella Arcucci. Zero-
shot ecg classification with multimodal learning and test-
time clinical knowledge enhancement. arXiv preprint
arXiv:2403.06659, 2024.

[Long and Wang, 2023] Weicai Long and Xingjun Wang.
Bpnet: A multi-modal fusion neural network for blood
pressure estimation using ecg and ppg. Biomedical Sig-
nal Processing and Control, 86:105287, 2023.

[Maniparambil et al., 2023] Mayug Maniparambil, Chris
Vorster, Derek Molloy, Noel Murphy, Kevin McGuinness,
and Noel E O’Connor. Enhancing clip with gpt-4: Har-
nessing visual descriptions as prompts. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 262–271, 2023.

[Na et al., 2024] Yeongyeon Na, Minje Park, Yunwon Tae,
and Sunghoon Joo. Guiding masked representation learn-
ing to capture spatio-temporal relationship of electrocar-
diogram. arXiv preprint arXiv:2402.09450, 2024.

[Oh et al., 2022] Jungwoo Oh, Hyunseung Chung, Joon-
myoung Kwon, Dong-gyun Hong, and Edward Choi.
Lead-agnostic self-supervised learning for local and global
representations of electrocardiogram. In Conference on
Health, Inference, and Learning, pages 338–353. PMLR,
2022.

[Radford et al., 2021] Alec Radford, Jong Wook Kim, Chris
Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, et al. Learning transferable visual models from nat-
ural language supervision. In International conference on
machine learning, pages 8748–8763. PMLR, 2021.

[Raghu et al., 2022] Aniruddh Raghu, Payal Chandak, Rid-
wan Alam, John Guttag, and Collin Stultz. Contrastive
pre-training for multimodal medical time series. In
NeurIPS 2022 Workshop on Learning from Time Series for
Health, 2022.

[Sanh, 2019] V Sanh. Distilbert, a distilled version of
bert: Smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

[Touvron et al., 2023] Hugo Touvron, Louis Martin, Kevin
Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava,

Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

[Wagner et al., 2020] Patrick Wagner, Nils Strodthoff, Ralf-
Dieter Bousseljot, Dieter Kreiseler, Fatima I Lunze, Woj-
ciech Samek, and Tobias Schaeffter. Ptb-xl, a large pub-
licly available electrocardiography dataset. Scientific data,
7(1):1–15, 2020.

[Wan et al., 2024] Zhongwei Wan, Che Liu, Xin Wang,
Chaofan Tao, Hui Shen, Zhenwu Peng, Jie Fu, Rossella
Arcucci, Huaxiu Yao, and Mi Zhang. Electrocardiogram
instruction tuning for report generation. arXiv preprint
arXiv:2403.04945, 2024.

[Wang et al., 2023] Ning Wang, Panpan Feng, Zhaoyang Ge,
Yanjie Zhou, Bing Zhou, and Zongmin Wang. Adversar-
ial spatiotemporal contrastive learning for electrocardio-
gram signals. IEEE Transactions on Neural Networks and
Learning Systems, 2023.

[Wang et al., 2024] Fuying Wang, Shenghui Du, and Lequan
Yu. Hergen: Elevating radiology report generation with
longitudinal data. arXiv preprint arXiv:2407.15158, 2024.

[You et al., 2021] Di You, Fenglin Liu, Shen Ge, Xiaoxia
Xie, Jing Zhang, and Xian Wu. Aligntransformer: Hi-
erarchical alignment of visual regions and disease tags for
medical report generation. In Medical Image Computing
and Computer Assisted Intervention–MICCAI 2021: 24th
International Conference, Strasbourg, France, September
27–October 1, 2021, Proceedings, Part III 24, pages 72–
82. Springer, 2021.

[Zbontar et al., 2021] Jure Zbontar, Li Jing, Ishan Misra,
Yann LeCun, and Stéphane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In Inter-
national conference on machine learning, pages 12310–
12320. PMLR, 2021.

[Zhang et al., 2023] Wenrui Zhang, Ling Yang, Shijia Geng,
and Shenda Hong. Self-supervised time series represen-
tation learning via cross reconstruction transformer. IEEE
Transactions on Neural Networks and Learning Systems,
2023.

[Zhao et al., 2024] Yubao Zhao, Tian Zhang, Xu Wang,
Puyu Han, Tong Chen, Linlin Huang, Youzhu Jin, and Ji-
aju Kang. Ecg-chat: A large ecg-language model for car-
diac disease diagnosis. arXiv preprint arXiv:2408.08849,
2024.

[Zheng et al., 2022] J Zheng, H Guo, and H Chu. A large
scale 12-lead electrocardiogram database for arrhythmia
study (version 1.0. 0). PhysioNet 2022Available online
httpphysionet orgcontentecg arrhythmia10 0accessed on,
23, 2022.

[Zheng et al., 2023] Lianmin Zheng, Wei-Lin Chiang, Ying
Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging
llm-as-a-judge with mt-bench and chatbot arena. Advances
in Neural Information Processing Systems, 36:46595–
46623, 2023.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


