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Abstract

Text-to-image diffusion models have emerged as
powerful tools for high-quality image generation
and editing. Many existing approaches rely on
text prompts as editing guidance. However, these
methods are constrained by the need for manual
prompt crafting, which can be time-consuming, in-
troduce irrelevant details, and significantly limit
editing performance. In this work, we propose op-
timizing semantic embeddings guided by attribute
classifiers to steer text-to-image models toward de-
sired edits, without relying on text prompts or re-
quiring any training or fine-tuning of the diffusion
model. We utilize classifiers to learn precise se-
mantic embeddings at the dataset level. The learned
embeddings are theoretically justified as the opti-
mal representation of attribute semantics, enabling
disentangled and accurate edits. Experiments fur-
ther demonstrate that our method achieves high lev-
els of disentanglement and strong generalization
across different domains of data. Code is available
at https://github.com/Chang-yuanyuan/CASO.

1 Introduction

Faithful image reconstruction is a fundamental prerequisite
for image editing tasks. Recently, diffusion-based [Ho et al.,
2020; Song et al., 2020; Rombach et al., 2022; Song et al.,
2021] generative models have demonstrated significant ad-
vantages over GANs [Goodfellow er al., 2014] in the field
of image generation [Dhariwal and Nichol, 2021]. These ap-
proaches have emerged as powerful tools for image editing
due to their generative modeling capabilities. However, ex-
ploring the decoupled semantic subspace of diffusion models
remains a critical yet challenging area of research.

Most of the initial works on diffusion-based image edit-
ing require training or fine-tuning the model and focus on
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Figure 1: ClAssifier-guide Semantic Optimization (CASO). The
trainable continuous semantic embedding for the target attribute a,
guides Stable Diffusion for desired edits.

a single domain of data [Preechakul et al., 2022; Lu et al.,
2024]. The rapid rise in popularity of text-to-image diffu-
sion models, such as Stable Diffusion (SD) [Rombach et al.,
2022], DeepFloyd IF [Saharia et al., 2022], and Latent Con-
sistency Models [Luo et al., 2023], has further inspired re-
searchers to achieve decoupled image editing based on text
or other conditions (e.g., semantic segmentation) without re-
quiring additional training or fine-tuning [Brack er al., 2023;
Lee er al., 2024]. Unlike small, single-domain diffusion
models, these advanced models enable cross-domain gen-
eration, broadening their applicability across diverse image
editing scenarios, have become a hot spot of current re-
search. However, existing solutions are mainly based on
text prompts [Brack er al., 2023; Wu and De la Torre, 2023;
Lee et al., 2024], which present several challenges. Creat-
ing appropriate text prompts can be inherently difficult, and
prompts with identical semantics often yield significantly di-
vergent outcomes. Furthermore, achieving disentangled edit-
ing through text prompts alone is highly challenging, as they
frequently affect unrelated regions of the image. Recent
works that eschew text prompts proposed unsupervised ways
to discover editing directions in the latent space of diffusion
models [Chen et al., 2024; Dalva and Yanardag, 2024] also
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Figure 2: CASO Edit Result. Our method generalizes well to data with different styles.

exhibit limitations, particularly in terms of generalization.
For instance, while these methods explore editable directions
using real face data, their applicability often diminishes when
extended to other types of images, such as artistic or anime-
style faces. Moreover, they can only obtain a limited number
of subtle editing directions, often lack the ability to specify
attributes, and rely on the clear structure or inherent variance
within the dataset itself.

In this paper, we propose optimizing continuous seman-
tic embeddings through attribute classifier gradients to guide
text-to-image models for targeted editing. Our framework is
shown in Fig. 1. It can identify disentangled and generaliz-
able editing directions. Our contributions are as follows.

* We propose ClAssifier-Guided Semantic Optimization
(CASO), a lightweight and efficient framework for im-
age editing, which simply tunes trainable semantic em-
beddings and does not require training or fine-tuning of
diffusion models.

* We theoretically and experimentally demonstrate that
CASO learns semantic embeddings containing attribute
class mean information, thereby enabling precise at-
tribute editing.

» Experimental results show that our editing directions are
highly disentangled and exhibit strong generalization,
outperforming various existing approaches.

2 Related Work

Deep generative models have achieved great success in image
editing. Various types of generative models, such as VAEs
[Kingma, 2013], GANs [Goodfellow et al., 2014], flow-based
models [Dinh et al., 2014], and diffusion models [Ho et al.,
2020; Song et al., 2020], have been adopted as editing frame-
works. Among these, the recent state-of-the-art editing mod-
els are based on diffusion models. In the following, we will
focus on reviewing work on diffusion based image editing.
Diffusion models perform iterative denoising based on a
sequence of latent variables, which lack explicit semantic rep-
resentations like those in GANS. So identifying the disentan-
gled semantic space in diffusion models remains a significant
challenge. Some image editing methods based on diffusion
models require retraining or fine-tuning a diffusion model

[Kim et al., 2022; Wang et al., 2023; Preechakul et al., 2022,
Valevski er al., 2022]. For example, DiffAE [Preechakul er
al., 2022] and HDAE [Lu et al., 2024] use diffusion model
as the representation encoders and enable image editing by
modifying representations. These methods are generally only
suitable for single-domain (such as human face) diffusion
models. DiffusionCLIP [Kim et al., 2022] fine-tunes the dif-
fusion model with the help of the CLIP [Radford et al., 2021].
UniTune [Valevski et al., 2022] fine-tunes the diffusion model
on a single base image, encouraging the model to generate
images similar to the base image. However, training or fine-
tuning the diffusion model can be somewhat expensive.

Recent advances [Yang et al., 2023; Brack et al., 2023;
Tumanyan et al., 2023; Wu and De la Torre, 2023; Hertz et
al., 2022a; Mokady er al., 2022] avoid training or fine-tuning
diffusion models. Some methods (SEGA [Brack et al., 2023]
and OIG [Lee et al., 2024]) use text prompts to guide edit-
ing. OIG uses CLIP text encoder [Radford er al., 2021] to
ensure semantic correlation and extracts the feature map of
UNet to ensure structural similarity. SEGA generates editing
noise from text prompts and then extracts a small portion of
this noise (by default, the top 5%, based on empirical obser-
vations) for editing. Unfortunately, the 5% threshold can only
be set empirically, which is an unstable way to edit and can
cause image quality loss. Additionally, some work optimize
text-based embeddings to faithfully reconstruct the input im-
age, so as to achieve disentangled edits (the editing does not
change the irrelevant features) with classifier-free guidance.
Null-Text Inverse [Mokady et al., 2022] fine-tunes the null-
text embedding to align the sampling and inversion trajec-
tories, enabling accurate image reconstruction, but it relies
on a user-provided source prompt. Prompt Tuning Inversion
[Dong et al., 2023] introduces a faster approach by encoding
image information into a learnable text embedding and per-
forming editing through linear interpolation with the target
embedding. However, these methods prioritize reconstruc-
tion quality, whereas our goal is to obtain an optimal semantic
embedding for effective image editing.

NoiseCLR [Dalva and Yanardag, 2024] and LOCO [Chen
et al., 2024] propose unsupervised methods to discover inter-
pretable directions in pre-trained diffusion models, but they
suffer from several shortcomings. The unsupervised learned
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Figure 3: Comparison of different methods for attribute “Mustache”. Our method shows the best generalization because it captures the

exact semantics at the dataset level.

direction is uncontrollable and may not converge to user-
desired direction. And no more than 10% of the directions
learned by NoiseCLR are semantic meaningful. LOCO is
only suitable for local editing, and some major structural
changes such as cat—dog are not feasible.

3 Method

In this section, we describe our proposed method. First, we
briefly discuss the background of latent diffusion models, and
then introduce our method.

3.1 Latent Diffusion and Classifier-free Guidance

Diffusion models are generative models that produce data
samples by fitting the data distribution through an itera-
tive denoising process [Ho et al., 2020]. Stable Diffusion
(SD) [Rombach et al., 2022] is a type of Latent Diffusion
Model (LDM) that operates in the latent space of image data,
where the conversion between latent code z and raw image
data x is performed by the VAE encoder £ and decoder D.
The training loss is defined as:

Liom =E. conon) |l —eo(ze: 1)l (1)

where ¢ is uniformly sampled from {1,...,7} and z; is a
noisy version of zo = £(z).

Classifier-free guidance [Ho and Salimans, 2022] trains
a conditional diffusion model. Since the condition is left
blank with a certain probability during training, it also sup-
ports unconditional generation. The final predicted noise with
classifier-free guidance in SD is defined as:

ga(zhc) = Eg(Zt, ¢) + )\(Eg(Zt, C) - Gg(Zt, ¢))7 (2)

where c is the condition, ¢ is null text and A is guidance scale.
For simplicity, we use €g(z;) instead of eg(z:,t) to represent
the predicted noise for timestep ¢, as t is implicitly denoted
with variable z;.

3.2 C(lassifier-guided Semantic Optimization

We can set c as a suitable text to guide the editing. However,
as shown in Appendix.B, even when sampling with the same
random seed, images generated from different text prompts
with the same semantic meaning exhibit significant differ-
ences (the first four images). Furthermore, adding additional
descriptions to the text also leads to substantial changes in
the overall appearance of the generated images (the first and
last images). Text guidance struggles to achieve disentan-
gled edits, namely, preserving the attribute excluding details.
To achieve precise image editing, we propose a lightweight
approach to obtain semantic embeddings as conditional guid-
ance based on a ready-to-use attribute classifier.

Suppose the target editing attribute has K classes, i.e.,
a € {1,...,K}. Define the ready-to-use attribute classifier
as F and the images generated by the Stable Diffusion editing
process as & = G(x, e,), where x is the input image and e, is
the embedding for each class a of the attribute. We define an
editing loss to optimize {e, }X_; as follows:

{emi}g Ledit = Ez,a [Ec (-F(g(mv ea))a (l)] 3)
afa=1

where /. is the classification loss that enforces generated im-
ages conditioned on e, to be classified as the corresponding
attribute class a.

The attribute embedding {e, } X, obtained above contains
the attribute class information at the dataset level, enabling
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Method Old Mustache Gender Lipstick
Comp-Diff 0.19 0.40 0.42 0.38
DiffAE 0.20 0.19 0.24 0.23
Cycle-Diff  0.10 0.21 0.23 0.41
SEGA 0.11 0.23 0.27 0.42
NoiseCLR  0.17 0.17 0.20 0.19
T-LOCO 0.26 0.24 0.28 0.24
Ours 0.16 0.13 0.20 0.18

Table 1: Comparison of various methods with LPIPS({) for human
face edit.

image editing with precise semantics. We provide a theoreti-
cal justification in the following.

Denoting all layers of the classifier except the last as F_,,
and the last layer with weight w, and bias b, for each at-
tribute class a, the classifier for predicting a class label can
be expressed as arg maxqs ({(wqr, F_1(x)) + bgr).

Definition 1 (Globally-centered attribute class mean i, ). We
define the globally-centered attribute class mean L, as:

Ha = Ez [hi,a] - Ei,a[hi,a}»

wherea =1,2,..., K and h; o, = F_,(x; o) is the last-layer
feature of the i-th sample in attribute class a for training the
classifier.

Theorem 1. [Han et al., 2021] For a sufficiently large clas-
sifier network, the last layer of the classifier w, will converge
to the globally-centered class mean (14, namely,

Wa _Ha
lwally  llpally
wherea =1,2,..., K. [ ]
Theorem 1 describes the neural collapse phenomenon of
training a deep classifier network [Han et al., 2021; Papyan
et al., 2020; Yang et al., 2022]. We apply it to demonstrate

that our classifier-guided semantic embedding encodes the at-
tribute class mean.

“

Proposition 2. Give a sufficiently large classifier network F
which is well-trained on the training data. When optimizing
{eo YE | using Eq. (3) until converge while fixing F, the neu-
ral collapse phenomenon still happens, namely,
Wq to(€a)
Twall, ~ T (ealll

where a = 1,2, ..., K. In particular,
ta(ea) = Ei [F_1(G(wi,€q))] = Bia [F-1(G(xi, €0))]

which denotes the globally-centered attribute class mean of
generated images. ]

— 0, 5)

The proof is similar to Theorem 1 given the same classifier.
We give a detailed proof in the Appendix.
With Eq. (4) and Eq. (5), we can easily obtain M —
a\-a/ll2
—Ha—  This means the optimal attribute embedding e, in

l1ally”
Eq. (23) is determined by the attribute class mean u,. We also

verify this in our empirical study.

Algorithm 1 Training algorithm

Input: Training data X = {z°}¥ |, batch size B, denoising
UNet ¢y, VAE encoder &£, VAE decoder D, classifier F.
Output: Semantic embedding e,
1: repeat
2:  Sample a batch of images {z*}2 ;.
3:  Get latent codes {z} = £(z")}2,.
4:  Following Eq. (8), generate noise latent codes
{1}l _
5. Following Eq. (10), generate edited images {#'}2 ;.
6: Train the condition embedding e, according to
Eq. (13).
7: until converged

Image Editing by Diffusion Models

The typical image editing pipeline using LDMs incorporates
conditioning during the denoising process, following these
steps [Mokady e al., 2022]:

(i) The input image x is encoded into its latent code
20 = &(x) using the VAE encoder £.

(ii) The clean latent code zp is converted to its noisy coun-
terpart zy, through DDIM inversion (Eq. (6)), a deterministic
mapping process.

1 1

Zt+1:\/at+1zt+<\/ —1—\/—1>'€0(2t,¢)7
Qi Q41 Qi

(6)

where o is the time dependent scale.
(iii) Classifier-free guidance (Eq. (2)) is applied during the
denoising process using the condition e,:

s STt (6 e
z_l\/oﬂ(’zt : atee(zt’”)

VOt
+ 1 _at—lge(’ét;ea); (7)
wheret = L, L—1,...,1and ég(z¢, e,) is calculated accord-

ing to Eq. (2). We initialize Z;, = 2.
(iv) The edited image is obtained by decoding the denoised
latent code D(%).

For training, the edited image D(Zy) is used as G(z, e, ) in
Eq. (3) to update the embedding. However, steps (ii) and (iii)
require multiple iterations, which impose significant time and
memory overhead for the training phase. To improve training
efficiency, we introduce the following approximations:

(D For step (ii), we just add random noise to it directly via
diffusion forward process by Eq. (8).

zr, = A(z0, L) = /arzo+V1 —are, e~ N(0,1I), (8)
where L is a hyperparameter in this paper with 0 < L < T
and A is the operator that transfers zg to its noisy version.
(@ For steps (iii) and (iv) to obtain a clean edited image
for calculating the classification loss (Eq. (3)), we propose
computing the loss on the decoded image from Zj rather
than Z5. To prevent the classifier from handling noisy data
p(a | D(2L)), we make the following approximation:

p(a | D(2r)) = Ezonpzolz,) [P(a | D(20))]
~p(a|D (Ezmupizolzr) [20]), (9
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Figure 4: CASO Interpolation Results. Our method allow users to
implement fine-grained editing and bidirectional editing by simply
changing the classifier free guidance scale.

2L7m€8(2Lvea)
var '
Now the decoded image  in Eq. (3) can be:
Zr — V1 —aré(Zr,eq)
. (10
Vor
Notably, Eq. (10) still allows us to incorporate the conditional
guidance e,.

where ]EioNp(io\iL) [20} =

# =) =

Remark 1. The approximation error of Eq. (9) can be quan-
tified with the Jensen gap [Chung et al., 2022]. Its upper
bound is:

d
V2ro?

where d is environmental dimension (dimension of z), o>
is the ambient noise when the classifier predicts the label.

And when 0 — 0, —=2—e=1/2" 5 (. ||[V,F(D(2))|| :=

V2no?

max, |V, F(D(2))| and Q := [ ||z0 — Zo|p(20|21) dzo.
IV.F(D(2))| is generally finite [Chung et al., 2022] and
when we choose the value of L carefully, the upper bound on
J can be sufficiently small. When L is too large, ||z0 — Zo||
in Q becomes excessively large, reducing classifier accuracy.
Conversely, when L is too small, zy, is close to clean data,
making it difficult to edit the image at this time.

J V2 VLEDGR)Q, A1)

IN

Reconstruction loss To preserve the attribute excluding de-
tails, we add a latent reconstruction loss:

Lrec = Ez,a wr (207 ZO)] . (12)

where /; is the reconstruction loss. The final training objec-
tive is as follows:

ml}(l Ledic + ’Yﬁrec- (13)

{e@ a=1

We show the impact of this part of the loss function on the
results in Appendix. Our training algorithm is Algorithm.1.

Method cat—dog dog—cat cat—tiger tiger—cat
Comp-Diff 0.48 0.59 0.59 0.44
SEGA 0.57 0.50 0.56 0.55
Cycle-Diff 0.40 0.48 0.47 0.40
Ours 0.43 0.42 0.45 0.34

Table 2: Comparison of various methods with LPIPS({) for animal
type transfer.

4 Experiment

To demonstrate the advancement and generalization of our
method, we perform the following experiments.

4.1 Experimental Setup

We use Stable Diffusion-v1.5'" for all experiments follow-
ing [Dalva and Yanardag, 2024]. The datasets used include:
FFHQ [Karras et al., 2019], AFHQ [Choi et al., 20201, Cele-
bAHQ [Karras, 2017] and Stanford Cars datasets [Krause et
al., 2013]. For more details, please refer to Appendix.

Timesteps are also critical for editing quality and disentan-
glement [Wu et al., 2023; Hertz et al., 2022b]. During train-
ing process, L is set to 0.37 for human face and 0.47" for
others. During editing, for subtle features like eyebrows, we
start to apply our direction from ¢ € [0.17,0.3T, while for
some coarse-grained changes like species, editing at earlier
timesteps is required (¢ € [0.87,0.977). The results we show
in the main text are all done with timesteps 7' = 50. Our clas-
sifiers are all obtained by simply fine-tuning a VGG 16 model
[Simonyan and Zisserman, 2014]. With a well-trained classi-
fier, only 100-200 images are needed to train the embedding.

We compare our method with: DiffAE [Preechakul et al.,
2022], Cycle-Diff [Wu and De la Torre, 2023], SEGA [Brack
et al., 2023], Comp-Diff [Liu et al., 2022], NoiseCLR [Dalva
and Yanardag, 2024] and T-LOCO? [Chen et al., 2024].

4.2 Qualitative and Quantitative Results

Our qualitative results are shown in Fig. 2. Although our ap-
proach is trained on real world images, it exhibits remarkable
generalization on images of other styles, demonstrates that
our method generalizes beyond previous works. Notably, our
edits are not confined to the data seen by the classifier. For
example, if we use a well-trained dog and cat classifier learn
semantic embedding for “cat”, it enables edits not only for cat
and dog, but also all of others. The results demonstrate that
our embeddings can capture precise semantics for the target
attribute.

We compare the generalization performance with other
methods for attribute “Mustache”. This is shown in Fig. 3.
Regardless of the type of image, our model consistently
achieves superior performance.

"https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-
v1-5

2LOCO is purely unsupervised editing method. We found it is
hard to obtain specified attribute editing directions for comparison.
So we adopt its text extension version (T-LOCO) for the experi-
ments.
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(a) Muti-attribute edit result. We compare the effect of the po-
sition order of the embedding stitching (the second row) and
whether single-step editing is used (the last two images in each
row are single-step edited) ) on the editing effect. When target
area “‘eyebrow” is occluded by hair, and our method can still
complete the editing well.
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(b) Multi-attribute edits in a cross-domain context. The last in-
put image for "woman and cat” in the first column is generated
by SD.

Figure 5: CASO Muti-attribute Edit. In complex and challenging
scenarios, our method can still achieve perfect editing.

Table 1 and Table 2 shows quantitative results. We cal-
culate the LPIPS metric (lower is better) [Zhang et al., 2018]
for editing different attributes on human face data and species
conversion between animal data®. Our method achieve lower
LPIPS than the other methods, indicating greater coherence
while performing the edits.

Interpolating Edit Our approach can achieve fine-grained
attribute editing and reverse editing by simply changing the
classifier free guidance scale A. For instance, using the
“Bushy Eyebrows” embedding, users can create the effect
of “Sparse Eyebrows” by setting the A to a negative value.

3For pecies conversion between animal data, we do not compare
our method with NoiseCLR, DiffAE and T-LOCO. This is because
NoiseCLR and DiffAE do not support such editing. And T-LOCO
performs poorly on this structure changes greatly task and the statis-
tical results are not meaningful. We show examples in the Appendix.

(1)

Mustache

(1)

Eyebrows

—~
N
~

(a) Generation with (1):ours, (2):NoiseCLR guidance.

kbl

Mustache Bushy Eyebrows  Lipstick

Methods
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text#1
text#2
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B ()] fee]
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(b) Image quality of generation under different guidance, measured
by IS (1). We do not count the IS score for some directions of
NoiseCLR since it is not a desirable editing direction or the authors
do not open source weights.

Figure 6: Generation Result. We use different direction: learned
from NoiseCLR, learned from ours, and two kinds of text prompt
(see Appendix) to guide the generation of images from Gaussian
noise with corresponding attributes and calculate their IS scores.

Some examples are shown in Fig. 4. A similar effect can be
achieved by changing the time at which the condition embed-
ding is added, but this does not allow for reverse editing. We
show it in the Appendix.

Multi-attribute Edit Our method allows for multi-attribute
editing by simply concatenating multiple embeddings. Em-
bedding available on different datasets can be combined (e.g.
human face and animal). Experiments in Fig. 5a show that
the position order of embedding stitching does not affect the
result of image editing, which also proves the semantic de-
coupling of the learned orientation. We show editing results
in difficult scenarios: In Fig. 5a, the target region to be edited
has occlusion. In Fig. 5b middle, an artwork image, the face
region to be edited is only a small part of the whole image.
These are complex scenarios where our model still performs
the editing task perfectly.

Single-Step Edit To further verify the effectiveness and con-
sistency of our method, we conduct a single-step editing ex-
periment, as shown in Fig. 5a. In this experiment, guidance
information is applied in only one step of the denoising pro-
cess, while all other steps before and after rely on uncondi-
tional embeddings. In contrast, most existing methods require
conditional guidance across multiple denoising steps. Exper-
imental results in Fig. 5a show that our outcomes are highly
consistent, regardless of whether single-step editing is used.
This demonstrates that our editing method is powerful enough
that images generated by a single-step editing already exhibit
the target properties.
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DDIM AFHQ Cat AFHQ Dog
Sters N—0  A=3 A=0 =3
T=10 8539 39.00;543% 88.52 52.03] 41.2%
T=20 7034 3241,539% 47.19 45.13] 4.37%
T=50 7235 43.20040.4% 50.55 50.8910.67%

Table 3: Reconstruction quality on AFHQ w/o or w/ guidance, mea-
sured by FID (]). A = 0 means reconstruction w/o guidance.

4.3 Accurate Semantics

e « cat
X * dog
edited
original
T3S

cat
dog

. edited 1 ;
% . orilginal ﬁ’“ﬁl

(b) SEGA

(a) Ours

Figure 7: T-SNE of cat—dog image edit. Red dot: real cat images;
blue dots: real dog images; black dots: real cat images randomly
sampled for editing; green dots: the generated images (to be edited
as dog from the sampled cat images).

To demonstrate that our model can learn the most precise
semantic direction, we directly sample from Gaussian noise
with different guidance (ours, NoiseCLR and text). The re-
sults are shown in Fig. 6a. The generated images demon-
strate that our learned embeddings more accurately capture
semantic features. For instance, comparing the generated im-
ages guided by “Bushy Eyebrows” learned using our method
and NoiseCLR separately, the faces generated by our method
consistently exhibit the “Bushy Eyebrows” property, while
the images generated by NoiseCLR do not have the desired
semantics. We attribute the ability of NoiseCLR to perform
attribute editing despite learning incorrect semantics to the
coincidence of feature subspaces in the data space, which is
also mentioned in SEGA [Brack et al., 2023]. Additionally,
we evaluate the IS (Inception Score) [Salimans et al., 2016]
of different guided sampling images (higher is better), which
is shown in Fig. 6b. Some IS scores are not reported, because
it is not an ideal edit direction (Fig. 6a) or the authors do not
open source its weight . Experiments show that our guidance
can effectively improve the quality of image generation.

We conduct another experiment in which we randomly
sample from the cat dataset, edit the images into dogs using
different methods, including our approach and SEGA [Brack
et al., 2023] (the leading text-based image editing work at
present). We visualize the features obtained by the classifier
(i.e., F—1(x)) using T-SNE, as shown in Fig. 7. Notably, the
features of images edited by our CASO locate at the dog class

*We tried to reproduce it. But because the direction of conver-
gence obtained by such unsupervised methods is not controllable,
we did not get the direction of interest based on their method.

Input reconstruction w/o guidance

edit color w/ guidance

Input reconstruction w/o guidance

T L YL

_ _ reconstruction w/ guidance -~ -
s LY
Figure 8: Improve image quality during editing and reconstruc-
tion. Our guidance can not only faithfully reconstruct the structure

of the original image, but also achieves the editing of the target at-
tribute.

mean, consistent with our theoretical result. This demon-
strate that our embedding indeed captures accurate attribute
semantics at the dataset level, enabling superior editing per-
formance.

4.4 Not Only Edit

Many editing works based on pre-trained diffusion models
struggle to achieve satisfactory results due to the model’s lim-
ited ability to accurately reconstruct certain images. In our
experiments, we demonstrate that our method not only en-
ables effective image editing but also enhances reconstruction
quality, as shown in Fig. 8. We argue that the embeddings
learned by our approach effectively capture both the overall
structural information of the edited object and its target at-
tributes.

When editing an image using attributes identical to those in
the original (e.g., guiding the denoising of a cat image with
the embedding of “cat”), the task effectively becomes recon-
struction. This leads to higher-quality results and faster con-
vergence. As shown in Fig. 8, our method enhances image
quality in tasks such as car color editing and cat image recon-
struction. This also explains the high quality of the generated
images in 4.3. However, we acknowledge that an excessively
large A may introduce distortions in the reconstructed image.
More examples can be found in the Appendix.

We calculated the FID metrics [Heusel et al., 2017] for
AFHQ Cat and Dog datasets under unconditional reconstruc-
tion and guided reconstruction with “cat” and “dog” embed-
dings, respectively. The results are presented in Table 3 and
Fig. 8. Experiments show that our embeddings significantly
enhance the quality of reconstruction for images within the
same class.

5 Conclusion

We propose an image editing framework that optimizes se-
mantic embeddings with a few image inputs, guided by a clas-
sifier, to deliver high-quality, disentangled edits and superior
generalization compared to existing methods. However, since
it builds upon the pre-trained Stable Diffusion model, its ef-
fectiveness is limited by Stable Diffusion. Additionally, the
potential for malicious misuse, such as deepfake creation, is
a concern [Korshunov and Marcel, 2018]. We suggest imple-
menting strict access controls, maintaining usage logs, and
promoting responsible use to ensure ethical deployment.
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