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Abstract
Spatio-temporal graph modeling is widely applied
to spatio-temporal data, analyzing the relation-
ships between data to achieve accurate predictions.
However, despite the excellent predictive perfor-
mance of increasingly complex models, their in-
tricate architectures result in significant memory
overhead and computational complexity when han-
dling spatio-temporal data, which limits their prac-
tical applications. To address these challenges, we
propose a plug-and-play SubGraph Learning (SGL)
method to reduce the memory overhead without
compromising performance. Specifically, we in-
troduce a SubGraph Partition Module (SGPM),
which leverages a set of learnable memory vec-
tors to select node groups with similar features
from the graph, effectively partitioning the graph
into smaller subgraphs. Noting that partitioning the
graph may lead to feature redundancy, as overlap-
ping information across subgraphs can occur. To
overcome this, we design a SubGraph Feature Ag-
gregation Module (SGFAM), which mitigates re-
dundancy by averaging node features from differ-
ent subgraphs. Experiments on four traffic net-
work datasets of various scales demonstrate that
SGL can significantly reduce memory overhead,
achieving up to a 56.4% reduction in average GPU
memory overhead, while maintaining robust pre-
diction performance. The source code is available
at https://github.com/wengwenchao123/SubGraph-
Learning.

1 Introduction
In recent years, advances in data collection and process-
ing capabilities have generated large volumes of high-quality
spatio-temporal data (e.g., weather conditions, traffic status)
[Wang et al., 2024b; Zeng et al., 2025; Shen et al., 2025;
He et al., 2025], which have been widely applied in related
research fields. Due to its spatio-temporal correlations can
be effectively captured by Spatio-Temporal Graph Neural

∗corresponding Author.

Networks (STGNNs) [Wu et al., 2019; Jiang et al., 2023b;
Deng et al., 2024], these learning algorithms have emerged
as the dominant approach for spatio-temporal data modeling
tasks.

Existing STGNNs typically take spatio-temporal se-
quences collected by nodes (e.g., traffic segments, weather
stations) as input and model them as spatio-temporal graphs
to extract features (e.g., through graph convolution or atten-
tion mechanisms) [Shao et al., 2022b; Jiang et al., 2023a;
Guo et al., 2023]. Early STGNNs utilized geographic in-
formation to construct graph structure [Li et al., 2018], but
these methods neglected the hidden spatio-temporal relation-
ships in the data, leading to suboptimal performance. As a re-
sult, recent studies generally focus on capturing relationships
through dynamic construction of spatio-temporal graphs, fol-
lowed by feature extraction from the data [Weng et al., 2023;
Li et al., 2023; Dong et al., 2024]. However, these approaches
have high computational complexity, resulting in substantial
GPU memory overhead for STGNNs [Liu et al., 2023]. In
addition, as the number of nodes increases, the memory over-
head of STGNNs grows significantly, which limits the real-
world applications [Wang et al., 2024a; Liu et al., 2024].

In this paper, we aim to address the challenge of spatio-
temporal graph modeling under limited GPU memory con-
straints. One intuitive solution is to partition the spatio-
temporal graph into smaller subgraphs, extract features from
these subgraphs, and then aggregate node features across the
subgraphs to learn the features of the entire spatio-temporal
graph. This approach effectively reduces the originally high
computational complexity to a manageable level, thereby sav-
ing GPU memory. However, the partitioning of the spatio-
temporal graph presents a challenge. Existing partitioning
methods typically rely on static partitioning, without consid-
ering the dynamic nature of the spatio-temporal graph. For
example, PatchSTG [Fang et al., 2024] uses the geographical
coordinates of nodes to partition subgraphs, while FCGCN
[Xia et al., 2022] employs the Louvain algorithm to parti-
tion subgraphs based on the topological relationships among
nodes. However, all of these methods fail to capture complex
spatio-temporal dependencies.

For the above challenges, we propose a plug-and-play Sub-
Graph Learning (SGL) method. Specifically, we design a
SubGraph Partition Module (SGPM), which can be directly
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integrated into existing spatio-temporal graph models to par-
tition the graph and significantly reduce the memory over-
head required by the model. SGPM employs a set of learn-
able memory vectors as anchors and selects the most sim-
ilar group of nodes in the spatiot-emporal graph as sub-
graphs by calculating the similarity between node features
and memory vector features. This approach partitions the
spatio-temporal graph into multiple smaller subgraphs and
uses these subgraphs to extract node features, thus drastically
reducing computational complexity and significantly lower-
ing the GPU memory overhead.

At the same time, the way processing each divided sub-
graph separately solves the memory overhead and complexity
problem. However, it brings a potential risk of feature redun-
dancy. Therefore, we subsequently design a SubGraph Fea-
ture Aggregation Module (SGFAM) to eliminate it. Specif-
ically, SGAM firstly extracts features of the node from dif-
ferent subgraphs it has appeared, and then averages these fea-
tures. According to these operations, the node feature is more
balanced and completeness. Overall, our contributions are as
follows:

• We propose a plug-and-play SubGraph Learning (SGL)
method to reduce the memory overhead required by ex-
isting models. SGL uses a SubGraph Partition Module
(SGPM), which partitions the spatio-temporal graph into
multiple subgraphs for feature extraction, effectively re-
ducing the model’s computational complexity and sig-
nificantly lowering the computational cost.

• We introduce a SubGraph Feature Aggregation Module
(SGFAM). This module efficiently integrates the fea-
ture of nodes across various subgraphs, avoiding redun-
dancy in node feature and improving the completeness
of spatio-temporal graph feature representation.

• We evaluate the effectiveness of SGL on traffic datasets
of different scales. Experimental results show that our
proposed method can effectively reduce the computa-
tional cost while maintaining model performance, with
a maximum average GPU memory overhead reduction
of 56.4%.

2 Related Work
Spatio-temporal graph construction. As the key com-
ponent of spatio-temporal graph models, spatio-temporal
graph construction has attracted significant attention from re-
searchers. DCRNN [Li et al., 2018] uses predefined matrix
based on road segment distances as spatio-temporal graphs.
AGCRN [Bai et al., 2020] generates adaptive graphs using
adaptive embeddings to learn the correlations between nodes.
STFGNN [Li and Zhu, 2021] constructs a Spatial-Temporal
Fusion Graph using the FastDTW algorithm to extract local
correlations. Attention mechanisms also play a crucial role
in spatio-temporal graph learning. For example, PDformer
[Jiang et al., 2023a] uses DTW and predefined matrix as
mask matrix to calculate the weights of the graph structure.
STWave [Fang et al., 2023] constructs a local graph attention
network using predefined matrix to efficiently model spatial
correlations. LarSTL [Wang et al., 2024a] uses the METIS

algorithm [Karypis and Kumar, 1998] and geographic co-
ordinates to partition the traffic road network into multiple
subgraphs for continuous learning. However, these methods
still model spatio-temporal graphs with static relationships,
without accounting for the dynamic nature of spatio-temporal
graphs.

Spatio-temporal graph neural networks. In recent years,
with the rise of deep learning, Spatio-Temporal Graph Neu-
ral Networks (STGNNs) have emerged as one of the most
representative methods for capturing spatio-temporal depen-
dencies , becoming a rising star in the field of spatio-temporal
graph modeling. For example, GMAN [Zheng et al., 2020]
uses a transformed attention mechanism to reduce biases be-
tween the past and the future. STAEformer [Liu et al.,
2023] introduces spatio-temporal adaptive embedding to en-
hance the performance of Transformers. DyHSL [Zhao et
al., 2023] designs a dynamic hypergraph learning method
to capture the dynamic and complex relationships in traf-
fic networks. PDG2Seq [Fan et al., 2024] leverages pe-
riodic information to generate dynamic graphs and utilizes
an RNN-based iterative prediction method to capture future
trend changes. Additionally, some studies have approached
model performance enhancement from other perspectives.
For instance, STEP [Shao et al., 2022a] and STD-MAE [Gao
et al., 2024] enhance performance by designing pre-training
models to generate rich contextual representations that can
seamlessly integrate with any architecture. EXPERT [Lee
and Ko, 2024] proposes a novel Mixture of Experts (MoE)
framework, which generates new graphs based on evolving
environmental conditions to address the issue of spatial dis-
tribution drift during testing. However, these methods come
with substantial computational overhead despite enhancing
accuracy.

3 Method
In this section, we first provide the mathematical definition of
the problem studied in this paper. Next, we introduce the fea-
ture extraction process of spatial feature extraction modules
commonly used in current spatio-temporal graph models. Fi-
nally, we explain in detail the working principles of SGPM
and SGFAM and how they integrate into existing models.

3.1 Spatio-Temporal Graph Modeling
A spatio-temporal graph is represented by G = (V, E), where
V is the set of nodes and E is the set of edges representing
the adjacency relationships between road segments. At time
point t, the historical feature data of graph G can be repre-
sented as Xt = {x1

t , x
2
t , ..., x

N
t } ∈ RN×d, where xi

t repre-
sents the traffic conditions of node i at time t, d represents
the number of features, N is the number of nodes.

We aim to learn a spatio-temporal prediction model g() that
can effectively predict the feature data for the next Q time
steps using the historical feature data from the past P time
steps, X = {X1, ..., XP } ∈ RP×N×d . The goal is to predict
the future data Y = {XP+1, ..., XP+Q} ∈ RQ×N×d:

Y = g(X,G). (1)
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Figure 1: Spatio-Temporal Graph Feature Extraction vs. SubGraph Feature Extraction.

3.2 Spatio-Temporal Graph Feature Extraction
In existing STGNNs, spatio-temporal graph features are typ-
ically extracted using graph convolution or attention mecha-
nisms [Guo et al., 2021]. As shown in Figure 1, the spatio-
temporal graph feature extraction process can be divided into
three steps.

First, feature extraction is applied to each node, mapping
its original features into the latent space and enhancing the
node representations. It can be represented as:

H = Fin(Xin), (2)

where Xin ∈ RN×C represents the input spatio-temporal
data, H ∈ RN×D represents the extracted hidden features,
and Fin is the feature extraction function used to extract the
hidden features from the spatio-temporal data. This function
can be implemented using methods like MLP, among others.

According to spatio-temporal characteristics of each node,
the correlation matrix construction module then represents
the relationships among nodes in the graph. This can be ex-
pressed as:

A = G(H), (3)
where A ∈ RN×N represents the correlation matrix between
nodes, and G() is the method for constructing the correlation
matrix. This can be achieved using techniques such as dy-
namic graph construction or attention score matrix construc-
tion.

Finally, the feature weighting module enhances the repre-
sentations of each node through the spatiotemporal correla-
tion matrix extracted by the previous step. This process can
be expressed as:

Hout = Fout(AH), (4)

where Hout ∈ RN×C represents the extracted spatio-
temporal graph features, Fout() transforms the extracted fea-
tures into a format suitable for input to the next layer.

From the above formulas, it can be seen that the complex-
ity of spatio-temporal graph feature extraction is highly de-
pendent on the number of nodes N .

Figure 2: SubGraph Partition Module.

3.3 SubGraph Partition
The limited GPU memory capacity imposes restrictions on
the scale of the input graph. To address this challenge, we
propose a SubGraph Partition Module (SGPM). As shown in
Figure 1, SGPM is placed after the feature extraction function
and partitions the spatio-temporal graph into multiple smaller
subgraphs based on similarity. By extracting features from
these subgraphs separately, this approach reduces the GPU
memory capacity required.

As shown in Figure 2, SGPM uses a set of randomly ini-
tialized memory vectors P = [P1, P2, ..., PM ] ∈ RM×D as
anchors to construct subgraphs.
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Specifically, we first compute the similarity between each
memory vector Pi and the node features H , which can be
represented as:

wi = softmax(HPT
i ), (5)

where wi ∈ RN×1 represents the similarity between the
memory vector Pi and the node features H .

Since highly correlated nodes tend to have similar features,
Pi can serve as an anchor point to select nodes with higher
similarity, forming a subgraph, which can be expressed as:

idxi = arg topK(wi), (6)

where idxi ∈ RK represents the indices of the top K nodes
with the highest similarity to Pi. Using idxi, we collect the
corresponding nodes and their features to form a subgraph,
which can be represented as:

Hsub
i = {H[j] | j ∈ idxi}, (7)

thus, a subgraph is obtained for each memory vector, and
the related subgraph indices and feature sets can be repre-
sented as: idx = {idx1, ..., idxM} ∈ RM×K , and Hsub =
{Hsub

1 , ...,Hsub
M } ∈ RM×K×D.

3.4 Subgraph Feature Extraction
Similar to the general spatio-temporal graph feature extrac-
tion methods, each subgraph extracts the features between its
nodes by constructing a correlation matrix, represented as:

Asub
i = G(Hsub

i ), (8)

where Asub
i ∈ RK×K represents the correlation matrix of

subgraph i, and all subgraphs share the same G(). The col-
lection of correlation matrices for all subgraphs is denoted as
Asub = {Asub

1 , ...,Asub
M } ∈ RM×K×K .

Finally, the spatial features of the subgraph nodes are ex-
tracted by multiplying the node features of the subgraph with
the correlation matrix:

Hsub
out = Fout(A

subHsub), (9)
where Hsub

out ∈ RM×K×C represents the spatio-temporal
graph features extracted from the subgraph.

3.5 SubGraph Feature Aggregation
As shown in Figure 1, we propose a SubGraph Feature Ag-
gregation Module (SGFAM), placed after the feature weight-
ing layer, to integrate node features from different subgraphs.
As shown in Figure 3, we use the subgraph indices idx to col-
lect the features of the same nodes across different subgraphs.
This process can be expressed as:

Hi = {Hsubi

outj | j ∈ idxi}, (10)

where Hi represents the set of features for node i extracted
from all subgraphs. To ensure a more comprehensive repre-
sentation of the extracted features, we average these features
to obtain the final output feature, expressed as:

Hi
out =

{
sum(Hi)/count(Hi) if count(Hi) ̸= 0

0 if count(Hi) = 0
, (11)

Figure 3: SubGraph Feature Aggregation Module.

where Hi
out ∈ RN×D is the final hidden feature for node

i, sum() represents the sum of features in Hi, and count()
denotes the number of features in Hi.

Finally, the aggregated hidden features for all nodes are
represented as:

Hout = {H1
out, H

2
out, ...,H

N
out}, (12)

where Hout ∈ RN×C represents the final output of SGFAM.

3.6 Complexity Analysis
In traditional spatio-temporal graph feature extraction, the
complexity is tightly coupled with the number of nodes N
due to the construction of the correlation matrix and the fea-
ture weighting process. For instance, both graph convolu-
tion and attention mechanisms have a complexity of O(N2).
In contrast, under the subgraph learning approach, spatio-
temporal feature extraction consists mainly of three com-
ponents: subgraph partitioning, correlation matrix construc-
tion, and node feature aggregation. The complexities of
these components are as follows: subgraph partitioning is
O(NM + MK), correlation matrix construction is O(K2)
(since subgraphs are computed in parallel), and node feature
aggregation is O(MK+N). Thus, the overall complexity of
spatio-temporal feature extraction using the subgraph learn-
ing approach is O(NM + MK + K2 + N). Since M is
significantly smaller than K and N , it can be considered a
constant, simplifying the complexity to O(N + K2). When
K is considerably smaller than N , the computational com-
plexity of the subgraph learning method is significantly lower
than that of the traditional spatio-temporal graph feature ex-
traction methods, leading to a substantial reduction in mem-
ory consumption.

4 Experiment
To evaluate the performance of our proposed SGL, we se-
lecte a series of representative spatio-temporal models that
utilize dynamic graph convolution or attention mechanisms
to extract spatial features. We integrate SGPM and SGFAM
into their spatial feature extraction modules for subgraph par-
titioning and feature aggregation to assess the effectiveness

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

of SGPM and SGFAM. In this work, we aim to address the
following questions:

Q1: How do SGL and dynamic graph convolution or at-
tention mechanisms in different backbone networks perform
in terms of spatio-temporal graph modeling tasks, efficiency,
and memory overhead?

Q2: Are SGPM and SGFAM effective?
Q3: How sensitive is SGPM to the number of subgraphs

and the number of nodes per subgraph?
Q4: What are the characteristics of the nodes in the sub-

graphs divided by SGPM?

Backbones To validate the effectiveness of SGL, we se-
lect a series of models based on graph convolution and at-
tention mechanisms to extract spatial features as backbones
for the experiments. These models can be categorized into
two types based on their computation methods: 1) Parallel
Computation Models: GMAN [Zheng et al., 2020], STWave-
full GAT [Fang et al., 2023], STWave-ESGAT [Fang et al.,
2023], STAEformer [Liu et al., 2023], DGCNet(P) [Weng et
al., 2024]; 2) Serial Computation Models: DGCRN [Li et al.,
2023], DDGCRN [Weng et al., 2023], DGCNet(R) [Weng et
al., 2024].

Dataset We select four widely-used real-world traffic
datasets (PEMS03, PEMS04, PEMS07, and PEMS08) [Guo
et al., 2019; Li and Zhu, 2021] for a series of experiments
to investigate the performance, efficiency, and memory over-
head differences of SGL across various backbone networks’
spatial feature extraction modules in traffic prediction tasks.
These experiments aim to evaluate SGL in scenarios with
different node scales: small-scale (PEMS08), medium-scale
(PEMS03, PEMS04), and large-scale (PEMS07). The de-
tailed information for each dataset is provided in Table 1.

Datasets Nodes Time steps Time range

PEMS03 358 26208 09/01/2018 - 11/30/2018
PEMS04 307 16992 01/01/2018 - 02/28/2018
PEMS07 883 28224 05/01/2017 - 08/31/2017
PEMS08 170 17856 07/01/2016 - 08/31/2016

Table 1: Statistics of datasets.

Experimental Setup Following the settings from previous
studies [Guo et al., 2019; Li and Zhu, 2021], we divide the
datasets into training, validation, and test sets in a 6:2:2 ratio
based on the time order. Our experiments are conducted on
a GPU server equipped with a GeForce GTX 4090 graphics
card, using the PyTorch framework. All models, including
their SGL variants, strictly follow the original training con-
figurations to ensure fair comparison, including optimizers,
maximum training epochs, and early stop strategies. For the
PEMS07 dataset, the batch size is set to 16, while the batch
size for the other three datasets is set to 64. The settings for
the number of subgraphs M and the number of nodes per sub-
graph K for each dataset are detailed in Table 2.

To comprehensively evaluate the performance of SGL , we
assess it from three aspects:

dataset PEMS03 PEMS04 PEMS07 PEMS08
M K M K M K M K

DGCNet(P)-SGL 4 100 4 80 10 100 4 50

DGCNet(R)-SGL 4 100 4 80 10 100 4 60

DDGCRN-SGL 4 100 4 80 10 100 4 50

STAEformer-SGL 4 100 4 80 10 100 4 50

DGCRN-SGL 4 100 4 80 10 100 4 60

GMAN-SGL 4 100 4 80 10 100 4 50

STWave-SGL 4 100 4 80 10 100 4 50

Table 2: The settings of K and M on each dataset.

1) Performance Evaluation: We use three evaluation met-
rics: Mean Absolute Error (MAE), Mean Absolute Percent-
age Error (MAPE), and Root Mean Squared Error (RMSE).

2) Memory Overhead: We use GPU cost as a metric.
3) Running Efficiency: We evaluate using train time and

inference time as metrics.

4.1 Performance and Effciency Analysis (Q1)
Table 3 shows the prediction performance, efficiency, and
memory overhead of each model and its SGL variant. From
the table, we observe that the models and their SGL vari-
ants achieve comparable prediction performance, but the SGL
variants significantly reduce memory overhead, demonstrat-
ing the effectiveness of the SGL method.

On datasets of varying scales, as the dataset size increases,
the memory savings of SGL become more pronounced.
For instance, under identical conditions on the small-scale
PEMS08 dataset, the memory overhead of DDGCRN-SGL is
reduced by 18.2% compared to DDGCRN. On the large-scale
PEMS07 dataset, DDGCRN-SGL reduces memory overhead
by 60.5% compared to DDGCRN, highlighting the practical-
ity of SGL’s divide-and-conquer subgraph partitioning strat-
egy. Although STWave-ESGAT can also reduce memory
overhead while maintaining performance, it requires prede-
fined matrix to determine the attention range, which may
not be applicable in certain situations. On the other hand,
STWave-SGL does not have this limitation, making it more
versatile.

Regarding operational efficiency, models like GMAN, rep-
resenting parallel computation frameworks, fully leverage
parallel processing in their SGL variants, significantly accel-
erating computation speeds. In contrast, serial computation
models like DGCRN, which rely on RNNs for iterative fea-
ture extraction, do not achieve parallel computation. Never-
theless, their SGL variants maintain comparable operational
efficiency to their prototypes while demonstrating superior
efficiency when the number of nodes is large.

4.2 Ablation Experiment (Q2)
SubGraph Partitioning Method To verify the rationality
of SGPM, we design two alternative subgraph partitioning
methods and one node clustering-based feature extraction
method and test them on DGCNet(R) to demonstrate the ef-
fectiveness of our proposed SGPM:
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dataset PEMS03 PEMS04

MAE RMSE MAPE GPU Cost
(GB)

train time
(s/epoch)

inference
time (s) MAE RMSE MAPE GPU Cost

(GB)
train time
(s/epoch)

inference
time (s)

DGCRN 14.67 26.08 14.65% 11.68 106.95 16.05 18.73 30.59 12.80% 9.46 56.45 7.62
DGCRN-SGL 14.69 25.19 15.01% 9.64 125.32 20.64 18.71 30.44 13.02% 7.75 80.77 11.47

DDGCRN 14.63 25.11 14.61% 8.86 30.2 3.30 18.41 30.69 12.27% 6.95 18.42 1.88
DDGCRN-SGL 14.54 25.03 14.89% 5.22 36.31 4.67 18.40 30.47 12.21% 4.04 20.3 2.66

DGCNet(R) 14.88 25.30 15.32% 8.92 36.47 4.05 18.35 30.48 12.23% 6.97 20.12 1.98
DGCNet(R)-SGL 14.85 25.43 14.61% 5.21 35.96 4.31 18.49 30.75 12.19% 3.94 22.51 2.71

GMAN 17.00 28.64 18.05% 12.32 51.09 9.30 18.77 31.09 12.37% 9.71 22.17 3.00
GMAN-SGL 16.20 28.16 16.48% 7.51 32.49 4.53 18.77 30.99 12.33% 6.05 17.04 2.46

STWave-full GAT 15.06 27.45 15.36% 13.98 60.12 8.58 18.17 29.98 12.35% 11.56 35.47 4.85
STWave-ESGAT 15.04 26.48 15.36% 11.28 70.94 10.15 18.28 30.14 12.24% 10.6 39.15 5.72

STWave-SGL 15.00 26.41 15.34% 12.12 61.84 8.97 18.23 30.14 12.16% 10.37 33.80 4.92
STAEformer 15.27 27.78 15.40% 19.46 79.03 8.63 18.25 29.94 12.09% 15.73 43.13 4.65

STAEformer-SGL 15.04 26.07 15.10% 14.94 68.80 7.67 18.29 30.27 12.08% 12.41 37.57 4.14
DGCNet(P) 14.79 25.49 14.95% 9.83 31.81 3.61 18.26 30.96 12.20% 7.64 16.43 1.98

DGCNet(P)-SGL 14.72 25.33 15.09% 5.54 23.38 3.32 18.32 30.68 12.12% 4.43 12.04 1.96
dataset PEMS07 PEMS08

MAE RMSE MAPE GPU Cost
(GB)

train time
(s/epoch)

inference
time (s) MAE RMSE MAPE GPU Cost

(GB)
train time
(s/epoch)

inference
time (s)

DGCRN 20.01 33.18 8.41% 11.43 418.3 47.8 14.27 23.42 9.36% 4.36 59.30 7.71
DGCRN-SGL 20.27 33.17 8.53% 6.06 472.45 67.83 14.38 23.49 9.53% 4.26 71.94 10.68

DDGCRN 19.79 33.23 8.35% 12.59 274.63 28.62 14.4 23.84 9.34% 2.85 16.18 1.82
DDGCRN-SGL 19.76 33.42 8.38% 4.97 148.81 16.49 14.35 23.66 9.41% 2.33 20.92 2.78

DGCNet(R) 19.47 33.67 8.15% 12.51 278.17 30.03 13.69 23.46 8.98% 2.85 19.91 2.27
DGCNet(R)-SGL 19.65 33.53 8.22% 4.79 145.53 18.16 13.66 23.38 9.01% 2.33 26.55 3.38

GMAN 19.80 33.57 8.32% 16.22 166.77 20.71 14.32 24.61 9.44% 4.15 11.08 1.75
GMAN-SGL 19.60 33.45 8.23% 4.71 80.48 11.31 14.22 24.33 9.47% 3.21 10.03 1.43

STWave-full GAT 19.22 32.80 8.07% 11.37 191.92 25.92 13.74 23.52 9.12% 6.04 24.72 3.41
STWave-ESGAT 19.78 34.10 8.20% 7.94 198.2 27.32 13.76 23.30 9.11% 5.84 25.87 3.71

STWave-SGL 19.42 33.36 8.09% 7.87 159.06 24.03 13.70 23.23 9.07% 5.99 22.14 3.32
STAEformer 19.22 32.72 8.04% 22.11 306.91 33.69 13.48 23.27 8.83% 7.59 22.31 2.53

STAEformer-SGL 19.16 32.53 8.04% 9.34 181.66 20.88 13.44 23.35 8.86% 6.54 22.14 2.77
DGCNet(P) 19.6 33.81 8.28% 12.81 253.56 27.59 13.95 23.99 9.29% 3.09 9.23 1.43

DGCNet(P)-SGL 19.61 33.26 8.28% 4.31 76.04 11.42 13.694 23.64 9.09% 2.34 10.88 1.68

Table 3: Performance, efficiency, and memory overhead of models and their SGL variants.

1) DGCNet(R)-RD: This method randomly partitions the
original traffic network into equally sized subgraphs for fea-
ture extraction.

2) DGCNet(R)-METIS: This method uses the DTW algo-
rithm to generate a similarity matrix for the nodes and then
applies the METIS algorithm to partition the subgraphs.

3) DGCNet(R)-DC: This method clusters node features
into subgraph representations using a mapping matrix [Qin
et al., 2023; Zhang et al., 2024] and then employs these sub-
graph cluster representations for spatio-temporal graph fea-
ture extraction.

Dataset PEMS04 PEMS08

Metric MAE RMSE MAPE MAE RMSE MAPE

DGCNet(R)-SGL 18.49 30.75 12.19% 13.66 23.38 9.01%
DGCNet(R)-RD 18.71 31.42 12.41% 14.07 23.62 9.30%
DGCNet(R)-METIS 18.68 31.23 12.24% 13.91 23.81 9.15%
DGCNet(R)-DC 18.90 31.35 12.92% 14.34 23.85 9.89%

Table 4: Performance of each variant on PEMS04 and PEMS08
dataset.

Table 4 presents the performance of the three variants on

PEMS08. We observe that the other two subgraph parti-
tioning methods perform worse than SGPM. DGCNet(R)-
RD generates subgraphs through random partitioning without
considering node correlations, resulting in the poorest per-
formance. DGCNet(R)-METIS constructs subgraphs where
nodes exhibit high correlation by calculating similarities via
dynamic programming, thus outperforming DGCNet(R)-RD.
However, as the subgraphs in DGCNet(R)-METIS remain
fixed and fail to account for the dynamic changes in node
correlations, its performance is still inferior to DGCNet(R)-
SGL. DGCNet(R)-DC utilizes a mapping matrix to trans-
form node features into subgraph representations. However,
this approach results in the loss of individual node features,
which significantly hampers its performance compared to
other methods.

Feature Aggregation Methods To validate the rationality
of the averaging operation for feature aggregation, we design
two alternative aggregation methods for comparison:

1) DGCNet(R)-sum: This method directly uses the sum of
node features instead of averaging them.

2) DGCNet(R)-max: This method selects the maximum
feature from the set of subgraph node features as the node’s
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final feature.

Dataset PEMS04 PEMS08

Metric MAE RMSE MAPE MAE RMSE MAPE

DGCNet(R)-SGL 18.49 30.75 12.19% 13.66 23.38 9.01%
DGCNet(R)-max 18.60 30.87 12.26% 13.81 23.60 9.07%
DGCNet(R)-sum 18.71 31.42 12.24% 13.83 23.45 9.00%

Table 5: Performance of different feature aggregation Methods on
PEMS04 and PEMS08 dataset.

Figure 5 shows the performance of the three aggregation
methods. It is evident that the averaging operation yields
the best results. DGCNet(R)-sum suffers from feature re-
dundancy, resulting in the poorest performance among the
three variants. DGCNet(R)-max captures the most represen-
tative feature by selecting the largest feature as the node’s
feature but neglects feature from other subgraphs, leading to
slightly worse performance than DGCNet(R)-SGL. These re-
sults demonstrate that the averaging operation avoids redun-
dancy and proves its effectiveness in aggregating feature.

4.3 Hyperparameter Experiment (Q3)
We conduct hyperparameter experiments on the PEMS07
dataset using DDGCRN-SGL to evaluate the impact of the
number of nodes per subgraph K and the number of sub-
graphs M on the model’s predictive performance. Figure 4
illustrates the effect of K and M on the model’s performance.

(a) Sensitivity of parameter K to
DDGCRN-SGL

(b) Sensitivity of parameter M to
DDGCRN-SGL

Figure 4: Sensitivity analysis of parameter K and M on PEMS07
dataset.

It is evident that setting K or M too low results in a sharp
decline in performance. This is because an insufficient num-
ber of subgraphs or nodes per subgraph leads to inadequate
extraction of spatio-temporal features, causing the model to
underfit and fail to achieve the same performance as the orig-
inal model. When the product of K and M approaches or ex-
ceeds N , the performance of DDGCRN-SGL matches that of
DDGCRN, while requiring significantly less memory. There-
fore, properly configuring K and M is crucial for balancing
memory efficiency and maintaining performance.

4.4 Subgraph Visualization (Q4)
In this section, we visualize the subgraphs generated by
DDGCRN-SGL during prediction on the test set to analyze
the feature similarity among subgraph nodes and the distribu-
tion of overlapping nodes across subgraphs. Figure 5 presents

the visualization results of subgraph features after dimension-
ality reduction using the T-SNE algorithm [Van der Maaten
and Hinton, 2008].

Figure 5: Subgraph node feature distribution.

The results show that the nodes in each subgraph exhibit
clustering behavior, indicating a high degree of similarity
among nodes selected based on their feature similarity. Addi-
tionally, the visualization reveals overlapping or closely lo-
cated nodes across different subgraphs, demonstrating that
some nodes are shared among multiple subgraphs. This over-
lap further validates the necessity of the SGFAM module to
address potential redundancies in aggregated node feature.

5 Conclusion
In this paper, we propose a plug-and-play SubGraph Learning
method to reduce the memory overhead of spatio-temporal
graph models. Specifically, we introduce a SubGraph Parti-
tion Module that dynamically partitions the original spatio-
temporal graph into smaller subgraphs for extracting spatial
features, significantly reducing memory overhead. To ad-
dress the issue of redundant node feature caused by nodes ap-
pearing in multiple subgraphs, we design an SubGraph Fea-
ture Aggregation Module that performs average aggregation
on the multiple features obtained by nodes. We conduct a
comprehensive evaluation of this method on traffic network
datasets of various scales, and the results demonstrate that it
can significantly reduce GPU consumption without compro-
mising model performance, providing a practical solution for
deploying spatio-temporal models in real-world scenarios.
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