
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Multi-view Clustering via Multi-granularity Ensemble
Jie Yang1 , Wei Chen2 , Feng Liu3 , Peng Zhou4 , Zhongli Wang5 , Xinyan Liang6∗ , Bingbing

Jiang5∗

1University of Technology Sydney, NSW, Australia
2The University of Sydney, NSW, Australia

3The University of Melbourne, VIC, Australia
4Anhui University, Hefei, China

5Hangzhou Normal University, Hangzhou, China
6Shanxi University, Taiyuan, China

jie.yang.uts@gmail.com, wei.chenbme@sydney.edu.au, fengliu.ml@gmail.com, zhoupeng@ahu.edu.cn,
wangzhongli1@stu.hznu.edu.cn, liangxinyan48@163.com, jiangbb@hznu.edu.cn

Abstract
Multi-view clustering aims to integrate comple-
mentary information from multiple views to im-
prove clustering performance. However, exist-
ing ensemble-based methods suffer from informa-
tion loss due to their reliance on single-granularity
labels, limiting the discriminative capability of
learned representations. Meanwhile, representa-
tion and graph fusion-based approaches face chal-
lenges such as explicit view alignment and man-
ual weight tuning, making them less effective for
heterogeneous views with varying data distribu-
tions. To address these limitations, we propose a
novel multi-view clustering framework via Multi-
granularity Ensemble (MGE), fully using the multi-
granularity information across diverse views for ac-
curate and consistent clustering. Specifically, MGE
first modifies the hierarchical clustering and then
leverages it on each view (including the fused view)
to achieve multi-granularity labels. Moreover, the
cross-view and cross-granularity fusion strategy is
designed to learn a robust co-association similarity
matrix, which effectively preserves the fine-grained
and coarse-grained structures of multi-view data
and facilitates subsequent clustering. Therefore,
MGE can provide a comprehensive representation
of local and global patterns within data, eliminat-
ing the requirement for view alignment and weight
tuning. Experiments demonstrate that MGE consis-
tently outperforms state-of-the-art methods across
multiple datasets, validating its effectiveness and
superiority in handling heterogeneous views.

1 Introduction
Multi-view clustering integrates complementary information
from various modalities (e.g., images, texts, sensor readings)
to produce more accurate and robust clustering [Chao et al.,

∗Corresponding author.

2021; Jiang et al., 2025b]. However, effectively leveraging
multi-view information remains challenging due to inconsis-
tencies in data quality, feature distributions, structural hetero-
geneity among views, and issues such as missing or redun-
dant views [Jiang et al., 2025a]. Multi-view clustering can be
broadly categorized based on their fusion strategies: (1) rep-
resentation and graph-based fusion methods [Xu et al., 2023;
Wang et al., 2024b; Huang et al., 2022; Huang et al., 2024],
which construct a unified feature representation or similar-
ity graph for clustering (commonly referred to as early fu-
sion), and (2) ensemble-based methods [Pfeifer et al., 2023;
Zheng et al., 2024; Xu et al., 2024], which combine clus-
tering labels from different views to form a consensus result
(referred to as late fusion). Some hybrid approaches combine
feature-level and label-level integration for improved perfor-
mance. Despite substantial progress, these categories face
challenges such as information loss due to reliance on single-
granularity labels [Wang et al., 2025], sensitivity to heteroge-
neous view inconsistencies, and the need for manual tuning
of view weights[Zhang et al., 2024a; Zhang et al., 2024b;
Sun et al., 2025].

Representation and graph-based fusion methods aim to
learn a shared representation or construct a consensus graph
by aggregating information from multiple views [Chen et al.,
2024b; Wen et al., 2024; Chen et al., 2024a; Huang et al.,
2023b]. For instance, the consensus graph learning frame-
work builds a robust consensus similarity graph by integrat-
ing spectral embeddings with a weighted tensor-based low-
rank representation [Li et al., 2021]. The summarized multi-
view clustering approach reduces redundancy and enhances
inter-view consistency by leveraging an information-theoretic
variational lower bound [Cui et al., 2024]. Similarly, the ro-
bust multi-view clustering with noisy correspondence method
employs a noise-tolerant contrastive loss to learn embeddings
that remain robust even with misaligned views [Sun et al.,
2024]. The multi-level feature learning framework for con-
trastive multi-view clustering independently learns low-level
and high-level features, avoiding direct feature fusion and en-
suring that private, view-specific information does not inter-
fere with shared representations [Xu et al., 2022]. However,
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Data

…

Multi-view and Multi-granularity Labels

…

CHC
Ensemble

Clustering

…

Co-association matrix

CHC

CHC

Figure 1: The proposed MGE framework exploits the constrained
hierarchical clustering (CHC) on each view to generate multi-
granularity labels. These labels progressively capture information
from fine-grained to coarse-grained structures (as the number of
clusters decreases), guiding the cross-view and cross-granularity fu-
sion to learn a robust co-association matrix for clustering.

these methods often involve complex representation or graph
alignment processes, which pose challenges for highly het-
erogeneous views, and they rely heavily on hyperparameter
tuning, such as adjusting view weights and embedding di-
mensions, to achieve optimal performance [Wu et al., 2024;
Lou et al., 2024; Liang et al., 2024; Wu et al., 2025].

Ensemble-based multi-view clustering methods aim to
combine the strengths of multiple base clustering results to
achieve robust and consistent consensus outcomes [Liang
et al., 2025]. For example, the Parea hierarchical cluster-
ing ensemble framework leverages late-stage fusion to in-
tegrate clustering solutions from heterogeneous biomedical
datasets, enhancing disease subtype discovery [Pfeifer et al.,
2023]. The low-rank and sparse decomposition approach for-
mulates ensemble clustering as a tensor decomposition prob-
lem, capturing high-order correlations across views [Zhang
et al., 2023]. Similarly, the hybrid multi-view clustering en-
semble method employs diverse view transformations and
hybrid subspace learning to enhance the diversity of base
clusterings [Yu et al., 2020]. The Fast Multi-view Ensem-
ble Clustering (FMVEC) approach introduces a hybrid early-
late fusion strategy with random view groups, achieving near-
linear time complexity for large-scale datasets [Huang et al.,
2023a]. However, most ensemble-based methods rely on
single-granularity clustering labels, which often fail to cap-
ture critical hierarchical structures and limit their ability to
learn more discriminative representations. Additionally, di-
rectly aggregating clustering labels into a final consensus la-
bel set can amplify errors, particularly when individual view-
specific labels are noisy, undermining their robustness and ef-
fectiveness [Wang et al., 2024a].

In this paper, we propose a novel multi-view clustering
framework called Multi-granularity Ensemble (MGE), which
addresses the limitations of both representation/graph fusion-
based and ensemble-based methods by incorporating multi-
granularity clustering labels and constructing a co-association
similarity matrix that encodes rich multi-view and multi-level
information. Specifically, a constrained hierarchical clus-
tering is introduced and exploited to each view and their

fused view to generate multi-granularity labels that capture
both fine-grained and coarse-grained cluster structures. The
cross-view and cross-granularity fusion is then performed on
these labels to construct a co-association matrix, encoding
discriminative representations across local and global, multi-
granularity, and multi-view levels. As a result. MGE effec-
tively avoids the challenges of heterogeneous view alignment
and view-weight hyperparameter tuning that are typically re-
quired in representation/graph fusion-based methods. More-
over, it mitigates the impact of noisy labels from individual
views by avoiding direct label aggregation and instead em-
ploying secondary clustering on the collaborative representa-
tion. Compared to existing ensemble-based methods, MGE
captures richer local and global clustering structures by in-
tegrating multi-granularity information, ensuring more dis-
criminative representation learning. Figure 1 illustrates the
basic framework of MGE and the main contributions of this
paper are summarized as follows:

• We propose a novel multi-view clustering framework,
i.e., Multi-Granularity Ensemble (MGE), which effec-
tively addresses the inherent information loss caused by
reliance on single-granularity labels in existing methods,
achieving more robust and accurate clustering results.

• MGE tackles the challenge of heterogeneous views ex-
isting in multi-view data, which effectively explore
the structure information from varying data distribu-
tions without requiring explicit view alignment, en-
abling more accurate and robust clustering.

• We enhance representation learning via the cross-view
and cross-granularity fusion that seamlessly integrates
fine-grained and coarse-grained clustering structures,
such that the local and global patterns across multiple
views are simultaneously considered, further improving
the discrimination and robustness of representations.

2 The Multi-granularity Ensemble Framework
2.1 Multi-view Multi-granularity Label Generation
To comprehensively capture fine-grained and coarse-grained
clustering structures across multiple views, the proposed
MGE framework introduced the Constrained Hierarchical
Clustering (CHC) [Yang and Lin, 2024] to accommodate
multi-view data, generating multi-granularity labels for each
view and the fused view. Let X = {X1,X2, · · · ,Xv} be
the multi-view dataset, where Xi represents the i-th view,
and v denotes the number of views. The fused view Xf is
defined based on the average of the similarity matrices Si de-
rived from each view:

Sf =
1

v

v∑
i=1

Si, (1)

where Si is the similarity matrix corresponding to the i-th
view. The matrix Sf serves as the similarity matrix for the
fused viewXf , preserving cross-view consensus information.

To generate multi-granularity label sets for each view
Xi (including Xf ), CHC is applied to produce Li =
{Li,1, Li,2, . . . , Li,ki

}, where Li,j represents the clustering
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Figure 2: Constraints in CHC facilitate the generation of high-purity
multi-granularity labels.

labels at the j-th granularity level for view i. The labels are
ordered such that Li,1 corresponds to the finest partition (with
the most clusters), and Li,ki

represents the coarsest partition
(with fewer clusters). The total number of clustering levels ki
is determined based on a granularity termination parameter λ
(discussed below).

Constrained Hierarchical Clustering
Hierarchical clustering (HC) constructs dendrograms to gen-
erate multi-granularity labels, enabling flexible exploration
of data structures. However, traditional HC methods, such
as single, complete, and average linkage, rely solely on 1-
nearest neighbor statistics, often merging sub-clusters from
different categories, leading to low-purity multi-granularity
labels. CHC addresses these limitations by introducing ad-
jacency constraints, prioritizing sub-clusters that align with
ground-truth structures, and using larger clusters to guide
smaller ones. As illustrated in Figure 2, for the current clus-
ters A, B, and C, a parallel merge based on 1-nearest neigh-
bor relationships would result in A merging with B, and B
merging with C. In contrast, CHC applies the constraint that
the size ofA is larger than that ofB, no merge them; whereas
the size of C is smaller than B, merge them, avoiding A
merging with B while allowing B merging with C. This per-
fectly matches the ground truth and significantly improves the
purity of the merging process at each iteration.

For each view Xi (including Xf ), CHC initializes each
sample as its cluster. A graph G = (V,E) is constructed,
where V represents the set of clusters (i.e., nodes), and an
edge (Ci, Cj) ∈ E exists if cluster Cj is the 1-nearest neigh-
bor (denoting as 1NN ) of cluster Ci and |Ci| ≤ |Cj |. The
adjacency matrix A is defined as:

Aij = I(1NN(Ci) = Cj ∩ |Ci| ≤ |Cj |) (2)

where I(·) is the indicator function that returns 1 if the con-
dition is true and 0 otherwise. The connected components
of the graph G after each iteration represent the clusters at
a specific granularity level. By iteratively merging clusters
based on adjacency constraints, CHC produces hierarchical
partitions corresponding to various levels of granularity.

When a target cluster number K is specified, CHC con-
structs a hierarchy and removes the K − 1 strongest edges
from the graph G. The weight of each edge is computed as:

w(Ci, Cj) = d2(Ci, Cj)× |Ci| × |Cj |, (3)

where d2(Ci, Cj) denotes the squared distance between clus-
ters Ci and Cj , and |Ci| represents the sizes of the clusters.

TheK−1 edges with the highest weights are removed to dis-
connect the graph into K connected components, resulting in
precisely K clusters.

Granularity Termination Hyperparameter λ
For each view Xi (including Xf ), CHC generates mi clus-
tering partitions ranging from fine-grained to coarse-grained
labels. The granularity termination parameter ki for view i
determines the number of labels selected from the hierarchy:

ki = max (1, bλmi + 0.5c) , (4)
where λ ∈ (0, 1] is a shared hyperparameter across all views,
ensuring consistency in the number of clustering levels. Here,
b·c denotes the rounding operation to the nearest integer. A
smaller λ results in fewer clustering partitions (i.e., lower ki),
corresponding to a coarser analysis. Conversely, a larger λ
produces more clustering partitions (i.e., higher ki), corre-
sponding to a finer breakdown with more detailed clustering
levels.

By performing CHC to each view Xi and the fused view
Xf , the proposed framework generates multi-granularity la-
bel sets Li = {Li,1, Li,2, . . . , Li,ki

}, where Li,ki
corre-

sponds to the clustering partition at the granularity level deter-
mined by ki. This ensures that both fine-grained and coarse-
grained clustering structures are captured, enabling richer
multi-view and multi-level representations for the subsequent
integration process.

2.2 Cross-view and Cross-granularity Fusion
Previous ensemble methods, such as the Ensemble Learning
via Propagation of Cluster-wise Similarities (ELPCS) [Huang
et al., 2018], are restricted to single-view contexts, integrat-
ing labels of the same granularity from different algorithms.
This design overlooks the complementary information inher-
ent in multiple views and the enriched discriminative power
provided by multi-granularity labels, thereby limiting cluster-
ing performance. To overcome these limitations, we extend
ELPCS to support multi-view and multi-granularity data by
introducing a cross-view and cross-granularity fusion strat-
egy. This strategy facilitates a seamless global interaction
between views and granularities, synergizing complementary
insights and hierarchical structures to extract the most dis-
criminative representations. The resulting co-association ma-
trix effectively captures intricate relationships across views
and granularities, serving as a robust foundation for accurate
and reliable consensus clustering.

Cluster-wise Similarity Graph Construction
Given the multi-granularity label Li = {Li,1, · · · , Li,ki} for
each view Xi (including the fused view Xf ), we construct a
combined cluster-wise similarity graph G = (V,E), where:
V represents the clusters across all views and granularities,
and E represents edges weighted by the Jaccard coefficient:

J(Cp, Cq) =
|Cp ∩ Cq|
|Cp ∪ Cq|

, (5)

where Cp and Cq are clusters from different views and/or
different granularities, reflecting the proportion of overlap-
ping data points. In this combined graph, nodes correspond
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Algorithm 1 MGE framework

Input: Multi-view data X = {X1, · · · ,Xv}, and the cluster
number c, and the granularity control parameter λ;

1: for each view Xi (including the fused view Xf );
2: Apply CHC to Xi to generate the multi-granularity

label set Li by Eqs. (1)-(4);
3: end for
4: Construct the cluster-wise similarity graph using all label

sets Li from all views by Eq. (5);
5: Construct the transition probability matrix P by Eq. (6);
6: Propagate cluster-wise similarities by Eq. (7);
7: Compute the cluster-wise similarity matrix Z by Eq. (8);
8: Construct the co-association matrix B by Eq. (9);
9: Apply CHC to B to obtain the final clustering label set L

by Eqs. (2) and (3);
Output: The clustering result L.

to clusters from different views and granularities, and edges
represent the similarity between these clusters based on the
overlap of their constituent points.

Propagation of Cluster-wise Similarities
To capture both direct and indirect connections among clus-
ters, a random walk propagation process is applied to the
combined graph G. Let P denote the transition probability
matrix forG, where each entry pp,q represents the probability
of transitioning from cluster Cp to Cq in one step:

pp,q =
ep,q∑

r∈V ep,r
, (6)

where ep,q is the Jaccard similarity between clusters Cp and
Cq . The random walk propagation matrix P(t) after t steps
captures indirect relationships:

P(t) = (P)t. (7)

The cluster-wise similarity matrix Z is computed by taking
the cosine similarity of the random walk trajectories:

zp,q =
〈P(1:t)(p, :),P(1:t)(q, :)〉
‖P(1:t)(p, :)‖ · ‖P(1:t)(q, :)‖

, (8)

where P(1:t)(p, :) represents the trajectory of cluster Cp dur-
ing the propagation process. The value of t is chosen to en-
sure clustering stability and efficiency, guided by practices
commonly observed in related works.

Construction of the Co-association Matrix
To map the cluster-level similarities back to the object level,
we construct the co-association matrix B as follows:

bx,y =
1

v + 1

v+1∑
i=1

1

ki

ki∑
j=1

z(j)p,q, (9)

where v is the number of original views, and “+1” accounts
for the fused view Xf , ki is the number of granularities in the
i-th view. z(j)p,q represents the propagated similarity between
clusters Cp and Cq at the j-th granularity level of the i-th

Dataset Classes Data size Feature size
100Leaves 100 1600 192(64/64/64)
UCI 10 2000 356(76/216/64)
COIL20 20 1440 11078(1024/3304/6750)
Handwritten 10 2000 316(76/240)
CMU-PIE 68 2856 90(30/30/30)
ORL 40 400 1689(512/59/864/254)

Table 1: The detailed information on multi-view datasets.

view. x ∈ Cp and y ∈ Cq indicate that data points x and y
belong to these clusters.

Figure 1 illustrates the proposed MGE framework. For a
multi-view dataset, the CHC is applied to each view (includ-
ing the fused view) to generate multi-view, multi-granularity
labels. These labels are then integrated through an ensem-
ble method that performs cross-view and cross-granularity fu-
sion, resulting in the co-association similarity matrix B. As a
result, the co-association matrix B averages the cluster-wise
similarities from all views and all granularity levels, capturing
direct and indirect object-level relationships across all views
and granularities, and it serves as input for the secondary clus-
tering to generate the final clustering results. Algorithm 1
presents the procedures of the MGE framework.

2.3 Computational Complexity Analysis
The computational complexity of MGE is primarily deter-
mined by three stages: multi-view multi-granularity label
generation, cross-view and cross-granularity fusion, and sec-
ondary clustering. In the first stage, applying CHC to
each view (including the fused view) incurs a complexity
of O(n2), where v is the number of views and n is the
number of data points. In the second stage, constructing
the cluster-wise similarity graph requires computing pairwise
Jaccard coefficients between clusters, resulting in a complex-
ity of O(K2

total), where Ktotal is the total number of clusters
across all views and granularities. The subsequent random
walk propagation step involves matrix multiplications with
a complexity of O(tK2

total), where t is the number of prop-
agation steps. Finally, the secondary clustering step applies
CHC to the co-association matrix, contributing an additional
complexity ofO(n2). Therefore, the computational complex-
ity of MGE is O(n2 + tK2

total). By utilizing approximate
methods such as kd-tree to accelerate the 1-nearest neigh-
bor search in CHC, the complexity can be further reduced
to O(n log n+ tK2

total).

3 Experiments
In this section, we present the experimental studies of the pro-
posed MGE on a synthetic data and six real-world datasets, in
which three views of the synthetic data are shown in Figures 3
(a)-(c), and the detailed information of real-world multi-view
datasets are reported in Table 1.

3.1 Experimental Settings
MGE is compared with the state-of-the-art competitors, in-
cluding three ensemble-based methods: Fast Multi-View En-
semble Clustering (FMVEC) [Huang et al., 2023a], Ma-
trix Multi-View Ensemble Clustering (MMEC) [Zhang et al.,
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Methods 100Leaves UCI COIL20 Handwritten CMU-PIE ORL Average
GMC 0.8237 0.8495 0.7910 0.8300 0.7048 0.6325 0.7719

TMMSC 0.8356 0.9024 0.8042 0.9105 0.7953 0.7825 0.8384
V3H 0.8237 0.9051 0.6012 0.8669 0.7231 0.7412 0.7769

LMVSC 0.6575 0.8935 0.7569 0.9005 0.4769 0.6300 0.7192
AWP 0.7856 0.8670 0.6757 0.9325 0.8120 0.6900 0.7938

ACC CoReg 0.8456 0.9560 0.8472 0.9110 0.7507 0.8200 0.8550
WMSC 0.8769 0.8410 0.8465 0.8335 0.6590 0.8300 0.8145
MMEC 0.6770 0.6996 0.6494 0.8578 0.3548 0.5860 0.6374
FMVEC 0.7981 0.7770 0.7979 0.8760 0.6604 0.7675 0.7794
CDEC 0.5162 0.7490 0.7208 0.8155 0.5014 0.5650 0.6447
MGE 0.9481 0.9725 1.0000 0.9825 0.9783 0.8525 0.9557
GMC 0.9296 0.9013 0.9410 0.8767 0.8892 0.8590 0.8995

TMMSC 0.9248 0.8885 0.9190 0.9190 0.9072 0.7800 0.8898
V3H 0.9096 0.8118 0.7639 0.7425 0.8667 0.8633 0.8263

LMVSC 0.8504 0.8321 0.8404 0.8366 0.6916 0.8246 0.8127
AWP 0.8968 0.8949 0.9148 0.9072 0.9296 0.8529 0.8989

NMI CoReg 0.9346 0.9188 0.9548 0.8811 0.8791 0.9011 0.9116
WMSC 0.9481 0.8839 0.9486 0.8772 0.8571 0.8985 0.9022
MMEC 0.8939 0.7177 0.8001 0.7814 0.7066 0.7984 0.7830
FMVEC 0.9235 0.8894 0.9433 0.9008 0.8242 0.9029 0.8974
CDEC 0.7123 0.6745 0.7754 0.7240 0.6224 0.7182 0.7045
MGE 0.9712 0.9406 1.0000 0.9604 0.9846 0.9245 0.9636

Table 2: The ACC and NMI of multi-view clustering methods, where the best and second are in bold and underlined, respectively.
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Figure 3: Results on the synthetic data. (a)-(c) depict the original
data distributions with three views, (d)-(f) show the co-association
matrices learned by MGE with different granularities (i.e. 3 granu-
larities, 6 granularities and 9 granularities), (g)-(i) illustrate the re-
sults of FMVEC, MMEC, and GMC, respectively.

2023], and Coordinate Descent Ensemble Clustering (CDEC)
[Li et al., 2024], as well as seven graph/representation fusion-
based methods, such as Graph-based Multi-View Clustering
(GMC) [Wang et al., 2019], Multi-view Subspace Cluster-
ing on Topological Manifold (TMMSC) [Huang et al., 2022],
View Variation and View Heredity for Multi-View Cluster-
ing (V3H) [Fang et al., 2020], Large-Scale Multi-View Sub-
space Clustering (LMVSC) [Kang et al., 2020], Multi-View
Clustering via Adaptively Weighted Procrustes (AWP) [Nie

200 1200 1400 1600
0

60

120
R

u
n
n
in

g
 t

im
e
 (

se
c
o
n
d
s)

Full View: Running Time of Methods on Subsets
CoReg
FMVEC
GMC
MGE
V3H

200 400 1000 1200 1400 1600
0

10

20

600 1000
Number of samples in subset

Zoomed View: Methods with Small Running Times
CoReg
FMVEC
GMC
MGE

800400

600 800
Number of samples in subset

Figure 4: Runtime of MGE and other representative methods.

et al., 2018], Co-Regularized Multi-View Spectral Cluster-
ing (CoReg) [Kumar et al., 2011], and Weighted Multi-View
Spectral Clustering (WMSC) [Zong et al., 2018]. We evalu-
ate the performance using two widely used external validation
metrics: Accuracy (ACC), and Normalized Mutual Informa-
tion (NMI) [Strehl and Ghosh, 2002]. For all methods, pa-
rameters are tuned according to the default settings in their
original publications to ensure optimal performance.

3.2 Experiments on Synthetic Dataset
To intuitively demonstrate the advantages of MGE, we gen-
erated a synthetic dataset with three heterogeneous views, as
illustrated in Figures 3(a)-(c). Differing from other ensemble-
based methods, MGE integrates multi-granularity labels, cap-
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turing both fine-grained and coarse-grained structures to en-
code local and global patterns within data. This manner facil-
itates the learning of more discriminative ensemble represen-
tations. As shown in Figures 3(d)-(f), increasing the number
of granularities (and λ is set to 0.3, 0.6, and 0.9, progres-
sively covering granularities from fine to coarse) from three
to nine progressively clarifies the clustering structures in the
co-association matrices, providing a stronger foundation for
subsequent clustering. Figures 3(g)-(i) further demonstrate
that FMVEC and MMEC produce weaker representations due
to their reliance on single-granularity label integration, while
GMC fails to fuse these heterogeneous views, manifesting the
limitations of graph fusion-based methods in such scenarios.

It should be pointed out that MGE can effectively lever-
age its advantages to enhance the clusterability of the co-
association matrix even when a single view exhibits near-
perfect clustering potential, as seen in View 3. By employ-
ing a constrained 1NN merging strategy, the multi-granularity
labels generated by MGE accurately capture proximity re-
lationships across both local and global scales. In contrast,
the single-granularity methods (e.g., FMVEC and MMEC)
and the fusion-based methods fail to utilize the multi-layered,
near-ground-truth information provided by such views, re-
sulting in co-association matrices with significantly dimin-
ished discrimination.

3.3 Experiments on Real-world Datasets
The results of the proposed MGE and other state-of-the-
art methods across six datasets are presented in Table 2,
from which we can find that MGE achieves the best per-
formance across all datasets on the ACC and NMI, Specif-
ically, MGE achieves improvements in the average ACC of
17.62% and 10.07% over the best ensemble-based method
(i.e., FMVEC) and the best graph fusion-based (i.e., CoReg),
respectively. For the average NMI metric, MGE likewise
achieves 7.38% and 5.70% improvements over the best
ensemble-based method (i.e., FMVEC) and the best graph
fusion-based (i.e., CoReg), respectively. The superior per-
formance of MGE can be attributed to its innovative clus-
tering mechanism that addresses key limitations of existing
methods. Unlike ensemble-based approaches like FMVEC
and MMEC, which rely on single-granularity label aggrega-
tion and are sensitive to noisy labels, MGE employs multi-
granularity clustering to preserve fine-grained and coarse-
grained structures. Its secondary clustering stage further mit-
igates the impact of noisy labels, ensuring robust results.
Compared to graph fusion-based methods like GMC and
CoReg, which require explicit view alignment and extensive
parameter tuning, MGE leverages multi-granularity informa-
tion for consistent and scalable clustering across heteroge-
neous views. Additionally, MGE surpasses representation
fusion-based methods like TMMSC and LMVSC by utilizing
clustering labels and encoding both local and global patterns,
delivering comprehensive and discriminative representations.

Figure 4 shows the runtime of MGE with several repre-
sentative methods on the 100Leaves dataset, in which the
number of samples varies from 200 to 1600. We note that
MGE consistently exhibits the shortest runtime across differ-
ent data sizes, attributed to its efficient two-stage process, i.e.,

generating multi-granularity clustering labels first and then
clustering on the co-association matrix. This manner mini-
mizes computational overhead by avoiding iterative optimiza-
tion and graph alignment, which demonstrates the scalability
of MGE and positions it as an effective solution for relatively
large-scale clustering tasks.

3.4 Visualization
To demonstrate the advantages of the cross-view and cross-
granularity fusion method in MGE, we compare its co-
association similarity matrix with those generated by two
ensemble-based methods, MMEC and FMVEC, on the
100Leaves dataset. As shown in Figure 5, the first row
presents the similarity matrices of the original three views,
and the second row displays the co-association matrices
learned by MGE, MMEC, and FMVEC. Specifically, the ma-
trix of MGE exhibits a much clearer and more coherent clus-
tering structure than those of MMEC and FMVEC. More-
over, the matrix of MMEC shows indistinct clustering pat-
terns with significant noises, while the matrix of FMVEC,
though clearer than MMEC, likewise suffers from low intra-
cluster similarity (indicated by lighter diagonal regions), re-
sulting in less compact clusters. This indicates that making
full use of multi-granularity information facilitates captur-
ing both fine-grained and coarse-grained structures as well as
learning a more comprehensive representation for clustering.

3.5 Ablation Study
The MGE framework involves two clustering processes: the
first generates multi-view, multi-granularity clustering labels,
and the second performs secondary clustering on the co-
association matrix to produce the final result. In both stages,
CHC is employed as the clustering method. To assess the im-
pact of this choice, we replaced CHC with other hierarchical
clustering algorithms, including single-linkage and average-
linkage, and named the corresponding variants MGE-1 and
MGE-2, respectively. As shown in Figure 6, the ACC scores
of MGE-1 and MGE-2 across three datasets were signifi-
cantly lower than that of MGE, indicating the importance of
using CHC in both stages of the proposed MGE framework.

3.6 Hyperparameter Sensitivity Analysis
The MGE framework contains only one hyperparameter λ,
which controls the granularity of the clustering labels gener-
ated for all views, including the fused view. Figure 7 illus-
trates the ACC scores of MGE on three datasets when adjust-
ing λ within the range of [0.1:0.1:0.9]. It can be observed
that setting λ around 0.5 achieves the best average perfor-
mance across the three datasets. A larger λ produces an ex-
cessive number of coarse-grained multi-view labels, reduc-
ing the discriminative ability between different classes in the
ground truth. Conversely, a smaller λ generates insufficient
types of multi-granularity labels, leading to significant infor-
mation loss and diminishing the ability of the co-association
matrix to distinguish ground-truth classes.

4 Conclusion
In this paper, we introduce Multi-view Clustering via Multi-
granularity Ensemble (MGE), a novel framework designed to
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Figure 5: Visualization of the learned matrices of MGE and other ensemble-based clustering methods on the 100Leaves dataset.
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Figure 6: Comparison of MGE with its variants.

address the challenges posed by view-specific inconsistencies
and single-granularity limitations in ensemble-based multi-
view clustering methods. The proposed framework lever-
ages the CHC to generate multi-granularity clustering labels
for each view, including the fused view, capturing both fine-
grained and coarse-grained cluster structures. By perform-
ing cross-view and cross-granularity fusion, we constructed
a co-association similarity matrix that integrates local and
global clustering patterns across views, enabling robust sec-
ondary clustering. Extensive experiments conducted on a
synthetic dataset with heterogeneous views and real-world
multi-view datasets demonstrated the superior performance
of MGE compared to state-of-the-art multi-view clustering
algorithms across key evaluation metrics (ACC and NMI).
Notably, MGE consistently achieved the highest clustering
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Figure 7: Performance of MGE with different λ values.

accuracy, highlighting its resilience to noisy or low-quality
views and its ability to provide comprehensive representa-
tions of complex data structures. In future work, we aim to
extend MGE to scenarios with incomplete or missing views
and explore its scalability for large-scale, high-dimensional
datasets. Additionally, we plan to investigate adaptive gran-
ularity control mechanisms to further enhance its generaliza-
tion across various domains.
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