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Abstract
We address the identification of direct causes in
time series with multiple time lags, and propose
a constraint-based window causal graph discovery
method. A key advantage of our method is that
the number of required conditional independence
(CI) tests scales quadratically with the number of
sub-series. The method first uses CI tests to find
the minimum trek lag between two arbitrary sub-
series, followed by designing an efficient CI testing
strategy to identify the direct causes between them.
We show that the method is both sound and com-
plete under some graph constraints. We compare the
proposed method with typical baselines on various
datasets. Experimental results show that our method
outperforms all the counterparts in both accuracy
and running speed.

1 Introduction
Causal discovery from time series is a fundamental prob-
lem in many fields of science and engineering, e.g. eco-
nomics, bioinformatics, and climate research [Xu et al., 2024;
Chen et al., 2024]. In contrast to the stationary cases [Zhang
et al., 2024], causal discovery from time series is partially less
and partially more challenging [Runge et al., 2019]. In prac-
tice, temporal order significantly facilitates the identification of
causal directions for lagged links. Meantime, it also faces sig-
nificant challenges, including high-dimensionality, nonlinear
dependencies, multiple lagged dependencies, and so on [Mas-
takouri et al., 2021]. Several approaches are addressing the
problem of time-series causal discovery, including summary
causal graph and window causal graph discovery [Assaad et
al., 2022], among which Granger causality-based [Granger,
1969; Cai et al., 2024], noise-based methods [Hyvärinen et
al., 2010], score-based methods [Pamfil et al., 2020] and
constraint-based [Runge, 2020] or conditional independence

(CI) based methods [Zhang et al., 2017] form the main pillar.
Although these methods have achieved some success in

certain scenarios under different assumptions, they still face
several problems. Granger causality-based methods have
misleading issues in some scenarios [Peters et al., 2017;
Ay and Polani, 2008]. Score-based and noise-based methods
typically exploit some assumptions of the causal mechanisms
or noise distributions. However, in real-world data, the as-
sumed causal mechanisms and distribution forms may not
hold, which largely restricts their applications [Zhang et al.,
2021]. Besides, previous constraint-based methods such as
PCMCI [Runge et al., 2019] have a high time complexity. Last
but not least, almost all these methods (except for PCMCI)
assume only one single time lag exists explicitly or implicitly,
which rarely occurs in complex dynamic systems.

In this work, we focus on the constraint-based technique
to discover window causal graphs in time series data with
multiple time lags, without assuming particular causal mecha-
nisms or data distributions. To boost efficiency, we develop a
pruning strategy by reducing the number of CI tests based on
fast-revealed minimum trek lag (see definition in Sec. 3).

Our main theoretical contributions include 1) providing
the necessary and sufficient conditions for identifying causal
relationships from time series with multiple time lags, and
2) proving that the subsequently proposed algorithm has a
time complexity of O(d2TCI) where d is the number of sub-
series, TCI is the time complexity of the chosen CI test algo-
rithm. Our practical contributions lie in 1) extensive nu-
merical experiments with performance comparison with typ-
ical Granger causality-based, noise-based, score-based, and
constraint-based methods, and 2) the open-source implemen-
tation of our time series causal discovery algorithm.

2 Preliminaries
We consider a d-variate discrete-time stochastic process Xt∈T
where T stands for the index set. For a fixed time point t ∈ T ,
Xt = (X1

t , ..., X
d
t ), Xp

t represents a measurement of the p-th
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time sub-series at time t. We use Xp to refer to the p-th time
sub-series when there is no need to specify its time t. In what
follows, we review some terminologies of the associations
between time series and causal modeling. Causality concepts
used here without explicit definition, such as causal graphs,
which can refer to standard literature [Pearl, 2009].
Definition 1. (Full-time causal graph). Let Xt∈T be a d-
variate discrete-time stochastic process and Gfull = (V, E)
the associated full-time causal graph. The set of vertices V
consists of the set of components X1, ..., Xd at each time t ∈ T .
There is an edge Xp

t → Xq
t+ν ∈ E if and only if Xp

t causes Xq
t+ν,

i.e. Xp
t ∈ PA(Xq

t+ν).
For a full-time causal graph, we usually set index set T to Z.

Then it is generally impossible to infer full-time causal graphs
as there usually exists a single observation for each time series
at each time instant [Malinsky and Spirtes, 2018]. To remedy
this, in time-series causal discovery, it is common to rely on
causal stationarity assumption [Runge, 2018].
Definition 2. (Causal stationarity). A multivariate discrete-
time stochastic process Xt∈T is said to satisfy the causal sta-
tionarity assumption if X follows a stationary discrete-time
structural vector-autoregressive process that remains invari-
ant throughout the time, which is described by the following
structural causal model (SCM):

∀t ∈ T , Xp
t = f (PA(Xp

t ), ϵ p
t ), (1)

where f denotes any real-valued multivariate function, and ϵ p
t

represents the noise variable independent from all Xp
t ’s causal

parents PA(Xp
t ).

In this paper, we assume ∀p ∈ [1, d], t ∈ T , ϵ p
t are mutu-

ally independent. Under the causal stationarity assumption,
the full-time causal graph can be simplified to a finite graph,
commonly referred to as the window causal graph. In what
follows, if not specified for the full-time graph, we assume the
index set T is a finite set with size T .
Definition 3. (Window causal graph) [Assaad et al., 2022].
Let Xt∈[1,T ] be a d-variate discrete-time stochastic process
and Gw = (V, E) the associated window causal graph with a
window size w. V consists of the set of components X1, ..., Xd

at each time t, · · · , t + w, Xp
t → Xq

t+ν ∈ E if and only if Xp
t

cause Xq
t+ν (0 ≤ ν ≤ w).

In some scenarios, it is sufficient to know the causal rela-
tions between time series as a whole, without knowing pre-
cisely the relations between time instants. In that case, one
can further simplify the window causal graph into a summary
causal graph.
Definition 4. (Summary causal graph) [Gong et al., 2023].
Let Xt∈[1,T ] be a d-variate discrete-time stochastic process and
Gs = (V, E) the associated summary causal graph. The set of
vertices V consists of the set of components X1, ..., Xd. There
is an edge Xp → Xq ∈ E if and only if Xp causes Xq at some
time t, i.e., Xp

t ∈ PA(Xq
t′ ) for some t and t′ (t ≤ t′).

The methods for discovering summary causal graphs are
usually interested in only the causal relations between time
series without specifying time lags, while the methods for
discovering window causal graphs focus on the causal relations
between time series with time instants.

Xp

��
Xq

��

ZZ

Xr

Figure 1: Examples of trek lags in time series data. Left: part of a
full-time graph; Right: a summary graph.

The challenge of multiple time lags. Multiple time lags
will cause PA(Xp

t ) ∩ PA(Xp
t′ ) , ∅ for some p with all t , t′,

making the full-time and window causal graphs more complex
and dense. Consequently, multiple time lags not only increase
the difficulty of causal discovery, but also highly increase time
consumption, especially for constraint-based methods [Runge
et al., 2019], which will also be verified by our experiments
(Section 5). Some methods like SyPI [Mastakouri et al., 2021]
ignore the multiple time lags and only detect the first/minimum
one to improve their performance. In this work, our goal is
to detect all time lags between different sub-series effectively
and efficiently.

3 Related Works
There are four main categories of methods for learning causal
graphs in time series data including Granger causality-based,
constraint-based, score-based and noise-based methods.

Granger causality [Granger, 1969; Granger, 1980] has
been the standard approach in causal analysis of time se-
ries for half a century. We can detect that a time series
Xp Granger-causes Xq if the past values of Xp provide
unique, statistically significant information about future val-
ues of Xq. Generally, Granger causality cannot deal with
contemporaneous links [Peters et al., 2017], and may be
problematic in dynamic systems with weakness to moder-
ate coupling, because separability (causes information is
not contained in effects) is not always met [Granger, 1969;
Sugihara et al., 2012].

Constraint-based methods are largely based on the graphi-
cal criterion of d-separation [Spirtes et al., 2000] and CI tests
under the causal Markov and faithfulness assumptions. ts-
FCI [Entner and Hoyer, 2010] and SVAR-FCI [Malinsky and
Spirtes, 2018] are both inspired by the FCI algorithm [Spirtes
et al., 2000]. tsFCI uses time order and stationarity to restrict
conditioning sets and to apply additional edge orientations;
SVAR-FCI utilizes stationarity to infer additional edge re-
movals. These methods are computationally intensive due
to exhaustive searching over all time lags and conditioning
sets, i.e., requiring extensive CI tests [Mastakouri et al., 2021].
PCMCI [Runge et al., 2019] is a more efficient constraint-
based method, which first constructs a partially connected
graph, then removes all unnecessary edges by testing CIs, fi-
nally deals with the autocorrelations by using the Momentary
Conditional Independence (MCI) test.

Score-based methods are developed based on Structural
Equation Models (SEM), describing a causal system by a set
of equations, each of which explains one variable of the sys-
tem in terms of its direct causes and some additional noise.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Among the existing score-based methods, the recent continu-
ous optimization-based methods DYNOTEARS [Pamfil et al.,
2020] and NTS-NOTEARS [Sun et al., 2023] should stand
for the state-of-the-art. They revolve around minimizing a pe-
nalized loss subject to an acyclicity constraint by leveraging a
recent algebraic result characterizing the acyclicity constraint
as a smooth equality constraint [Zheng et al., 2018].

For noise-based methods, [Hyvärinen et al., 2010] intro-
duced a temporal extension of LiNGAM [Shimizu et al., 2006],
called VarLiNGAM. [Huang and Kleinberg, 2015] extended
VarLiNGAM by considering linear and nonlinear time-varying
models. Recently, [Lanne et al., 2017] generalized the initial
VarLiNGAM by considering graphs that may contain cycles.

Some causal feature selection methods focus on the causal
relations regarding the target series, which sometimes can be
treated as a subtask of causal discovery. The most well-known
methods are seqICP [Pfister et al., 2019] and SyPI [Mastak-
ouri et al., 2021]. seqICP requires sufficient interventions in
the dataset while SyPI removes this limitation and works effi-
ciently in the case of a single time lag with latent confounders.

4 Method
For a multivariate discrete-time stochastic process X, our goal
is to discover the underlying window causal graph Gw = (V, E)
by detecting the parents of each Xp

t (t ∈ T ), i.e. the PA(Xp
t ) in

Eq. (1). In what follows, we first introduce some terminologies
and notations.
Terminology notation:
T1. Xp

t → Xq
t′ (t ≤ t′ ∈ T ) means a directed edge in the

full-time graph (Def.1), i.e., Xp
t directly causes Xp

t′ .

T2. Xp
t d Xq

t′ (t ≤ t′ ∈ T ) means a directed path that may
contain intermediate nodes in the full-time graph, i.e., Xp

t
is either a direct or indirect cause of Xp

t′ .

T3. Xp
t - - - Xq

t+ν (t, t + ν ∈ T ) means a trek, a collider-free
path (not necessarily directed) in the full-time graph, i.e.,
Xp

t is an ancestor of Xq
t+ν, or Xp

t is one of the descendants
of Xq

t+ν, or they share a common ancestor.
T4. v is a trek lag for the ordered pair (Xp, Xq) if there exists

a trek Xp
t - - - Xq

t+ν (t, t + ν ∈ T , ν ≥ 0) that does not
contain a link of the form Xr

t′ → Xr
t′+1, with arbitrary

t′, t′ + 1 ∈ T , r , p, q, nor any duplicate node, and any
node in this path does not belong to Xp and Xq.

T5. ν is a causal lag for the ordered pair (Xp, Xq) if there
exists a directed path Xp

t d Xq
t+ν (t, t + ν ∈ T , ν ≥ 0)

that does not contain a link of the form Xr
t′ → Xr

t′+1, with
arbitrary t′, t′ + 1 ∈ T , r , p, q, nor any duplicate node,
and any node in this path does not belong to Xp and Xq.

T6. ν is a direct causal lag for the ordered pair (Xp, Xq) if
there exists a directed edge Xp

t → Xq
t+ν (t, t+ν ∈ T , ν ≥ 0).

For simplicity, we also call ν a time lag throughout the
whole paper when no ambiguity exists.

T7. We say that ν is a non-causal lag for the ordered pair
(Xp, Xq) if ν is a trek lag but not a causal lag for this pair.

T8. The maximum time lag τ = max{τpq|∀p , q ∈ [1, d]},
where τpq denotes the maximum time lag for (Xp, Xq).

Fig. 1 shows examples of trek lags in time series based on
T1-T8. There is a causal lag ν = 2 for (Xp, Xr) regarding the
path Xp

t−1 → Xq
t → Xr

t+1, and the path Xp
t−1 → Xq

t → Xr
t+2

defines another causal lag ν = 3 for (Xp, Xr). An example
for the non-causal lag is ν = 1 for (Xr, Xp) regarding the path
Xp

t+2 ← Xq
t−1 → Xr

t+1. Notably, Xr
t+1 is not a cause of Xp

t+2
but they still define a trek lag for (Xr, Xp). Besides, there are
multiple trek lags for (Xq, Xr), which are ν = 1 and ν = 2,
respectively, shown by Xq

t → Xr
t+1 and Xq

t → Xr
t+2. The path

Xp
t−1 → Xq

t → Xq
t+1 → Xr

t+2 does not meet the definition of a
trek lag, because it contains a link Xq

t → Xq
t+1.

In this work, T4∼T7 are slightly different from those in
some previous works [Mastakouri et al., 2021]. Besides, we
use another name “trek lag” instead of “lag” in their paper
as in most other papers (e.g., [Gong et al., 2022; Runge et
al., 2019]) “lag” means “direct causal lag” (defined in T6) by
default. Inspired by [Sullivant et al., 2010] that uses “trek”
to represent a collider-free path between two variables, we
rename the term to avoid ambiguity. In what follows, we list
the assumptions used in this work.

General assumptions:
A1. Causal Markov condition in the full-time causal graph.

A2. Causal Faithfulness in the full-time causal graph.

A3. No backward arrows in time Xp
t ↛ Xq

t−ν,∀ν > 0.

A4. Acyclic is satisfied in the full-time causal graph.

A5. Causal stationarity (Def. 2) is satisfied in the full-time
causal graph.

A6. The maximum time lag τ exists in the observed data.

A7. There is no arrow Xp
t−ν → Xp

t for ν > 1.

A8. No contemporaneous link is contained in the full-time
causal graph.

Notice that A1∼A7 are standard assumptions for causal
discovery in time series, A8 is an assumption used in many
previous works [Mastakouri et al., 2021; Entner and Hoyer,
2010] that cannot detect contemporaneous causal relations.
A4 is for the full-time causal graph, acyclic is not necessarily
assumed for the summary causal graph (Def. 4). As for A6,
if τ is so large that it exceeds T , we naturally cannot test
all possible time lags using our observed data. Thus, the
methods that can deal with multiple time lags [Runge et al.,
2019] usually need to make an additional assumption on τ
in the whole X, so does our method. Besides, τ itself can be
treated as a hyper-parameter influences performance in the
experiments.

In what follows, we introduce the details of the proposed
method. Our proposed method consists of two phases: the
first phase aims to detect the minimum trek lag (causal or non-
causal lag) for every two sub-series, and in the second phase
the causal relations are discovered based on these minimum
trek lags. We have the following results.

Lemma 1. Given a d-variate discrete-time stochastic pro-
cess Xt∈[1,T ], assuming A1∼ A8 and the maximum time lag
τ between two arbitrary sub-series. The minimum non-zero
trek lag ν for (Xp, Xq) coincides with the minimum non-zero
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integer ν′ (1 ≤ ν′ ≤ τ) that satisfies
Xp

t−ν′ ̸y Xq
t |(X

p
(t−ν′−τ):(t−ν′−1), X

q
t−1) (2)

except for the following conditions are all satisfied: 1) there
is no path defining a trek lag ν′ for Xp

t−ν′ to Xq
t , and 2) Xp has

memory, i.e., ∀t, Xp
t−1 → Xp

t , and 3) there is a trek between
Xp

t′ and Xq
t that does not contain any duplicate node, nor any

node in this path belonging to Xp and Xq.
The proof is provided in the Appendix. Take Fig. 1 as an

example, we can find a minimum trek lag v = 2 for (Xp, Xr)
and also a minimum trek lag v = 1 for (Xr, Xp). Lemma 1
summarizes the cases that would fail to detect the true min-
imum trek lag between two series by testing CI defined in
Eq. (2). Besides, Lemma 1 indicates that the minimum trek
lag for an arbitrary ordered pair (Xp, Xq) can generally be
identified by testing at most τ times of the CI test in Eq. (2). If
CI tests unfortunately return a false minimum trek lag smaller
than the actual minimum trek lag wpq, it will just increase the
size of controlling set of some CI tests in the phase of causal
discovery. Assuming there are no minimum trek lag returns,
we can deduce that no causal link exists from Xp to Xq given
the maximum time lag τ condition.

Next, we investigate the causal relations from Xp to Xq

based on the returned minimum trek lags.
Lemma 2. Given a d-variate discrete-time stochastic process
Xt∈[1,T ], assuming A1∼ A8 and the maximum time lag τ be-
tween two arbitrary variables. Let wpq be the minimum trek
lag for (Xp, Xq), then Xp directly causes Xq with a time lag v
(v ≥ wpq) if and only if

Xp
t−v ̸y Xq

t |(Z
1, ...,Zd), (3)

where Zp = (Xp
t−v−1, ..., X

p
t−wpq

) \ Xp
t−v, Zq = Xq

t−1 and ∀r ∈
[1, d] \ {p, q}, Zr = (Xr

t−τ−1, ..., X
r
t−wrq

) where wrq denotes the
minimum trek lag for (Xr, Xq).

Proof. The necessity is evident by the fact that Xp
t−v directly

causes Xq
t will lead to Xp

t−v ̸y Xq
t controlling on any other

variables. Then, we focus on how to prove the sufficiency by
contradiction. First, assume that Xp

t−v ̸y Xq
t |(X

q
t−1,Z

1, ...,Zd)
and Xp

t−v ↛ Xq
t , then there are three cases of relations between

Xp
t−v and Xq

t : 1) there exists an indirect causal link Xp
t−v d Xq

t ,
2) Xp

t−v and Xq
t share a common ancestor, i.e., Xp

t−v c Xr
t′ d

Xq
t , 3) Xp

t−v and Xq
t have a collider, i.e., Xp

t−v d Xr
t′ c Xq

t .

Case 1. (i) If path Xp
t−v d Xq

t does not contain any interme-
diate node (except Xp

t−v and Xq
t ) belonging to Xp ∪ Xq, then

Zr containing the direct causes of Xq
t will block this link, then

Xp
t−v y Xq

t |(Z
1, ...,Zd). (ii) If path Xp

t−v d Xq
t contains an inter-

mediate node Xq
t′ (t′ < t) and each node in Xq

t′ d Xq
t belongs

to Xq, then Zq = Xq
t−1 will block this link; else if Xq

t′ d Xq
t con-

tains a node from a third series, then Zr containing the direct
causes of Xq

t will also block this link. (iii) If Xp
t−v d Xq

t con-
tains Xp

t′ where t − wrq < t′, then the CI between Xp
t′ and Xq

t is
ensured by Xp

t−v y Xq
t |(X

p
1:(t−v′i−1), X

q
t−1) according to Lemma 1;

if t − wrq ≥ t′ and each node in Xp
t−v d Xp

t′ belongs to Xp,
then Xp

t−v+1 ∈ Zp blocks this link, else if Xp
t−v d Xp

t′ contains a
node from a third series, then (Xp

t−v+1, ..., X
p
t−w) ⊂ Zp) will also

block this link.

Case 2. Similarly, we can deduce that Xp
t−v and Xq

t are d-
separable when Xp

t−v c Xr
t′ d Xq

t does not contain any in-
termediate node (except Xp

t−v and Xq
t ) belonging to Xp ∪ Xq,

and Xp
t−v c Xr

t′ d Xq
t contains Xq

t′ (t′ < t). The only case
necessitates consideration is when Xp

t−v c Xr
t′ d Xq

t contains
Xq

t′ (t′ < t − v). (i) If each node in Xp
t′ d Xp

t−v belongs to
Xp, then Zp blocks this link. (ii) If Xp

t′ d Xp
t−v contains a

node from a third series Xr, when Xp
t′ d Xp

t−v has the form of
Xp

t′ d Xr d Xp
t−v−1 → Xp

t−v, then Xp
t−v−1 ∈ Zp blocks this link;

when Xp
t′ d Xp

t−v has the form of Xp
t′ d Xr

t−v−1 → Xp
t−v, then

Xr
t−v−1 ∈ Zr also blocks this link.

Case 3. Under assumption A3, Xp
t−v d Xr

t′ c Xq
t exists

only when t′ > t > t − v. Consequently, neither Xr
t′ nor its

descendent(s) can be contained in (Z1, ...,Zd), thus Xp
t−v and

Xq
t are d-separable.

Therefore, there is a contradiction in the three cases. □

Lemma 2 provides the sufficient and necessary conditions
Eq. (2) for detecting a direct causal relationship between two
sub-series Xp and Xq given the minimum trek lag wpq for
(Xp, Xq). For the case of multiple time lags, we just need to
test at most τ times of CI test of Eq. (3) by searching v from
wpq,wpq + 1, ... to τ, where τ denotes the maximum time lag.
Back to Lemma 1, if the CI test of detecting the minimum trek
lag unfortunately returns a false one, it will increase the size
of controlling set of some CI tests in Eq. (2), leading to more
time consumption and lower accuracy. However, this does
not affect the soundness and completeness of our method in
theory. The final task is to detect the self-connections, as we
do not make any assumptions regarding the presence of self-
connections for each time series. This goal can be achieved
by the following lemma.

Lemma 3. Given a d-variate discrete-time stochastic process
Xt∈[1,T ], assuming A1∼ A8, then there is a self causal link
Xp

t−1 → Xp
t if and only if

Xp
t−1 ̸y Xp

t |PA(Xp
t ) \ Xp

t−1, (4)

where PA(Xp
t ) is the parent set of Xp

t .

The proof of Lemma 3 is straightforward, because PA(Xq
t )

blocks all the connections between Xp
t−1 and Xp

t if there is no
self-connection.

5 Algorithm
Now, put all the theoretical results above together, we propose
a novel method for fast causal discovery in time series with
multiple time lags, which is called CDiT (an abbreviation
of Causal Discovery in Time series). The process of CDiT
is outlined in Alg. 1. Alg. 1 consists of two phases: the
first phase aims to detect the minimum trek lag (causal or non-
causal lag) for every two sub-series by testing the CI defined in
Eq. (2) (Lines 1∼7), and the second phase aims to discover the
causal relations based on these minimum trek lags by testing
the CI defined in Eq. (3) (Lines 8∼11), and check the self-
connections by testing the CI defined in Eq. (4) (Lines 12∼14).
It can be seen that there is only one hyper-parameter τ in Alg. 1
(except the possible hyper-parameters used in the chosen CI
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Figure 2: Performance vs. sample size T = {200, 400, 600, 800, 1000}.

Algorithm 1 CDiT (Causal Discovery in Time series)
Input: A d-variate discrete-time stochastic process Xt∈[1,T ];
maximum time lag τ.
Output: The window graph Gw of X.

1: for ∀Xp, Xq ∈ X do
2: for wpq = 1 to τ do
3: if Xp

t−wpq
̸y Xq

t |(X
p
t−wpq−τ

, ..., Xp
t−wpq−1, X

q
t−1) defined in

Eq. (2) holds then
4: save wpq as the minimum trek lag for Xp to Xq.
5: break
6: else
7: save wpq = ∅.
8: for ∀Xp, Xq ∈ X and wpq , ∅ do
9: for vpq = wpq to τ do

10: if Xp
t−vpq

̸y Xq
t |(X

q
t−1,Z

1, ...,Zd) defined in Eq. (3)
holds then

11: save vpq as one time lag for Xp directly causing
Xq.

12: for ∀Xp ∈ X do
13: if Xp

t−1 ̸y Xp
t |PA(Xp

t ) \ Xp
t−1 defined in Eq. (4) holds

then
14: save 1 as the time lag for Xp directly causing itself.
15: Constructs Gw based on all vpq of ∀Xp, Xq ∈ X.

test method), which is also a standard parameter required by
many previous approaches that can deal with multiple time
lags [Runge et al., 2019].

A significant advantage of the proposed method is its high
efficiency, we have the following theoretical result:

Lemma 4. The time complexity of Alg. 1 is O(d2TCI) where d
is the number of sub-series, TCI is the time complexity of the
chosen CI test algorithm.

Theoretically, we have to use at least one CI test to check CI
between two series, then the total number of CI tests should
be at least d(d − 1), leading to O(d2TCI) time complexity.
So, we have reason to conjecture that Alg. 1 meets the lower
bound of the complexity of constraint-based methods. In
contrast, PCMCI [Runge et al., 2019] requires O(d3TCI) time
complexity, which will take significantly longer time than
CDiT when d is large.

Discussion. The performance of Alg. 1 highly depends on
two high-order CI tests (Lines 3&13 in Alg. 1), which easily

cause Type-II error [Ramsey, 2014], i.e. the CI hypothesis
is accepted even though it is actually false. We cannot com-
pletely avoid this problem but alleviate it by detecting the
minimum trek lags (Lines 1∼10 in Alg. 1), or the size of con-
ditional set in Eq. (3) would be up to dτ. Such dτ-order CI
tests would not be reliable in many cases according to some
previous works [Zhang et al., 2012]. Detecting the minimum
trek lags can reduce dτ to a smaller number, since many pair
sub-series can be first detected as no trek lag between them,
and a detected minimum trek lag close to τ also helps to re-
duce the size of conditional set. On the other hand, because
Alg. 1 requires at most 2τ times of CI test to detect the causal
relations between two series, it is able to reduce the probability
of Type-II error by reducing the number of CI tests. Therefore,
it is reasonable to believe that the proposed method not only
is faster but also has better performance in some cases when
compared to other constraint-based methods, which will be
verified by extensive experiments in the next section.

6 Performance Evaluation
We compare CDiT with five typical time series causal dis-
covery methods including PCMCI [Runge et al., 2019]
(constraint-based), DYNOTEARS [Pamfil et al., 2020]
and NTS-NOTEARS [Sun et al., 2023] (score-based),
VarLiNGAM [Hyvärinen et al., 2010] (noise-based) and
TCDF [Nauta et al., 2019] (Granger causality-based). The ex-
periments are conducted on simulations with different sample
sizes/signal-to-noise ratio/maximum time lags, and two well-
known real-world biological datasets NETSIM and DREAM3.
The details including the parameters selection of these meth-
ods are presented in the Appendix.

6.1 Simulations
Setting. We take three commonly-used causal graphs as the
summary causal graphs Gs: Cancer (4 nodes, 4 arcs) [Korb
and Nicholson, 2010], Sachs (11 nodes, 17 arcs) [Sachs et al.,
2005] and Child (20 nodes, 25 arcs) [Spiegelhalter et al., 1993].
For the full-time causal graph Gfull, we first initialize G f with
only nodes, then draw an edge for Xp

t−1 → Xp
t for ∀t ∈ [2,T ]

and each time series Xp, p ∈ [1, d]. If there is a causal link
Xp → Xq in Gs, we randomly draw l ∈ [1, τ] edges from Xp to
Xq, where τ is the maximum time lag, for each edge there is a
time lag ν uniformly chosen from (1, 2, ..., τ), i.e. Xp

t−ν → Xq
t is

contained in Gfull. The data are generated by following SCM
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Figure 3: Performance vs. SNR with the coefficient a = {1, 1.5, 2, 2.5, 3}.
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Figure 4: Performance vs. time lag with the maximum time lag τ = {1, 2, 3, 4, 5}.

based on Gfull: ∀t ∈ [1,T ], Xp
t =
∑

a ·PAk(Xp
t )+0.1 ·ϵ p

t , where
PAk(Xp

t ) is the k-th parent of Xp
t , a is a coefficient controlling

signal-to-noise ratio (SNR), the noise ϵ p
t ∼ [N(0, 1)]3. And if

Xp
t is a root node, then Xp

t ∼ U(−1, 1). We aim to evaluate the
performance of discovering window causal graph, where the
main factors highly impacting the performance are generally
data dimension d, sample size T (the length of the observed
time series), the maximum time lag τ and SNR a. To cover
more cases in simulation, we take the following three scenarios
into account:

• Different sample sizes. The sample size T =
{200, 400, 600, 800, 1000}, τ = 5, a = 3.

• Different SNRs. The coefficient a = {1, 1.5, 2, 2.5, 3},
τ = 5, T = 1000.

• Different maximum time lags. The maximum time lag
τ = {1, 2, 3, 4, 5}, T = 1000, a = 3.

We use the partial correlation test for testing CI with the sig-
nificance level fixing at 0.01. We randomly repeat the test 100
times and average the results for each parameter setting. Due
to space limitations, here only F1, SHD and elapsed time are
presented, more results are given in Appendix.

Performance vs. sample size. The results are illustrated in
Fig. 2. As shown in the figure, the performance of all methods
gets better as the sample size increases, while degrades as
the data dimension increases. CDiT achieves the best perfor-
mance in most cases except for Cancer network, where the
SHD of CDiT and PCMCI are very close. Another competi-
tive method is NTS-NOTEARS, whose F1 score approaches
that of PCMCI when the sample size increases. However,

there remains a gap between them in terms of SHD. The pri-
mary reason is that NTS-NOTEARS predicts numerous false
edges, resulting in low Precision (see Fig. 6 in Appendix).
VarLiNGAM and TCDF are not competitive with the other
methods, especially when the sample size is large. An advan-
tage of CDiT is it performs relatively better with a limited
number of samples.

Performance vs. SNR. From Fig. 3 we can see that SNR
highly affects the performance of all methods. All their per-
formance improves as SNR increases. our method CDiT still
achieves the best performance in most cases. These results
are similar to those for different sample sizes, where CDiT,
DYNOTEARS, NTS-NOTEARS and PCMCI are competitive,
while the remaining two are not. And we can see that CDiT
can handle low SNR cases better than the other methods.

Performance vs. maximum time lag. The results are pre-
sented in Fig. 4. We can see the F1 scores of almost all
methods are not significantly affected by the value of maxi-
mum time lag, except for VarLiNGAM, whose performance
degrades obviously as the maximum time lag increases. On
the other hand, the SHD of all methods gets larger with the
maximum time lag increasing. The main reason is that the
ground-truth window graph becomes denser when the max-
imum time lag increases. Among all methods, CDiT and
PCMCI are better equipped to handle cases with multiple time
lags. In most cases, CDiT obtains the best performance in
terms of F1 score and SHD.

Elapsed time. As the time consumed by all methods is
mainly dependent on the sample size and the maximum time
lag, we fix SNR a to the default value 3 and only evaluate
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Figure 5: Elapsed time on Child. (Left: vs. sample sizes T ; Right: vs. maximum time lag τ). For better visualization, the time of PCMCI,
NTS-NOTEARS and TCDF is divided by 10.

CDiT (Ours) PCMCI DYNOTEARS NTS-NOTEARS VarLiNGAM TCDF

NETSIM

Recall 1.00 1.00 0.58 0.67 0.48 0.52
Precision 0.60 0.27 0.59 0.69 0.47 0.68
F1 score 0.75 0.42 0.58 0.68 0.48 0.59
SHD 22 90 27 22 35 24
Time (s) 0.9 159.0 10.0 253.8 12.5 173.2

DREAM3

Recall 0.18 0.36 0.00 0.27 0.27 0.00
Precision 0.50 0.09 0.00 0.06 0.1 0.00
F1 score 0.27 0.14 0.00 0.09 0.15 0.00
SHD 11 49 27 58 35 12
Time (s) 0.1 3.6 0.3 53.2 1.0 111.5

Table 1: Results on real-world biological datasets.

the performance on Child due to space limit. The results are
shown in Fig. 5. It is worth noting that the elapsed time of
PCMCI, NTS-NOTEARS and TCDF is divided by 10 for
better visualization, as they are time-consuming. The time
consumed by DYNOTEARS and NTS-NOTEARS decreases
as the sample size increases, because fewer samples will lead
to longer convergence time during iterations. In conclusion,
CDiT runs significantly faster than all the other methods.

6.2 Results on Real Data
Here we evaluate CDiT with two real-world biological datasets
NETSIM and DREAM3. These two datasets are often used to
evaluate both summary and window causal graph discovery
methods [Assaad et al., 2022; Gong et al., 2023]. NETSIM is
an fMRI imaging dataset with 15 time series describing differ-
ent regions in the brain with 200 timestamps representing the
signal of each human subject. The goal is to infer the connec-
tivity between different brain regions. It is generally assumed
that different human subjects share the same connectivity. We
use the data1 from the 1∼20 subjects with self-connections,
i.e., the dimension d = 15 and the total sample size T = 4000.
DREAM3 [Prill et al., 2010] is a gene network dataset con-
sisting of silico measurements of gene expression levels for
the networks. We use the data from the first network having
10 time series and 80 timestamps without self-connection, i.e.,
d = 10 and T = 80. The goal is to recover the actual network
structure with such a few samples. The maximum time lag for
each method is fixed at τ = 5 on both two datasets.

The results are presented in Tab. 1. CDiT achieves much

1https://www.fmrib.ox.ac.uk/datasets/netsim/index.html

better performance on the two datasets than the other meth-
ods in terms of F1, SHD and elapsed time. DYNOTEARS,
NTS-NOTEARS, VarLiNGAM and TCDF also get competi-
tive accuracy while PCMCI achieves the best Recall but very
low Precision.We also see that PCMCI, NTS-NOTEARS and
TCDF are time-consuming when the sample size is large,
which is consistent with the results shown in Fig. 5. On the
other hand, the performance of all the methods degrades on
DREAM3. One major reason is the small sample size of 80,
which leads to 0% accuracy for DYNOTEARS and TCDF.
However, our method can still cope with such hard cases caus-
ing many Type-II errors, resulting in low Recall.

7 Conclusion
In this work, we develop a constraint-based window causal
graph discovery method in time series with multiple time
lags. A significant advantage of our method is its efficiency,
having a time complexity of O(d2TCI) where d is the number
of sub-series, TCI is the time complexity of the chosen CI
test. We conduct extensive experiments with performance
comparison to typical existing methods, including Granger
causality, constraint-based and score-based methods. We show
in simulations that our method can handle the cases of fewer
samples and low SNR better than the other competitors with
only 1/3 ∼ 1/1000 of their consuming time. Furthermore,
the results on two well-known real-world biological datasets
also indicate that our method outperforms the other methods.
Currently, the proposed method struggles with cases involving
latent confounders or contemporaneous links, which requires
additional CI tests to achieve it. We leave this for future work.
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