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Abstract

Facial Expression Recognition (FER) is a funda-
mental problem in computer vision. Despite re-
cent advances, significant challenges remain. Cur-
rent methods primarily focus on extracting visual
representations while overlooking other valuable
information. To address this limitation, we pro-
pose a novel method called Component Separation
and Granular-ball Space Bootstrap Fusion (CS-
GBSBF), which leverages granular balls to trans-
form visual images to spatial graphs, thereby en-
larging the spatial information embedded in im-
ages. Our method separates the face into differ-
ent components and utilizes the spatial informa-
tion to bootstrap the fusion. More specifically,
CS-GBSBF mainly consists of three crucial net-
works: Represent Extraction Network (REN), Rep-
resent Separation Network (RSN) and Represent
Fusion Network (RFN). First, granular balls are
used to represent expression images as graphs,
which are fed into REN along with images. Then,
RSN separates basic visual/spatial representations
extracted from REN into a set of component vi-
sual/spatial representations. Next, RFN utilizes
spatial representations to bootstrap component vi-
sual integration. A significant challenge in two-
stream models is feature alignment, for which
we have developed Attention Guidance Module
(AGM) and Bootstrap Alignment Loss (Lp4) in
REN and RFN, respectively. Results of experi-
ment on eight databases show that CS-GBSBF con-
sistently achieves higher recognition accuracy than
several state-of-the-art methods. The code is avail-
able at https://github.com/Lsy235/CS-GBSBF.

1 Introduction

As artificial intelligence technologies advance at a rapid pace,
understanding human emotions through facial expressions
has become paramount for creating intelligent systems that
can interact naturally with humans. Facial expression is one
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Figure 1: Component analysis of facial expressions. (b) is facial
graphs gained by using granular ball to represent expressions. The
top part is separation of the expression components.

way for us to express our emotions without words, and if ma-
chines can read these “silent signals”, they can engage with
us more effectively. According to researches [Taheri ef al.,
2013], the variation in facial expressions is caused by the
brain transmitting emotional signals, and the resulting facial
muscle movements lead to morphological changes in the or-
gans of the facial component (hereafter referred to as compo-
nents), thus forming different facial expressions. As shown in
Fig. 1, when someone is angry, his eyes will obviously widen,
pupils will become smaller, eyebrows will be depressed, etc.
These forms of expression are not only intuitive visual ex-
pressions, but also have internal spatial structural differences,
such as changes in relative positions between different com-
ponents, changes in the shape of individual components, etc.
However, the vast majority of researches ignore the explo-
ration of spatial information or fails to use spatial information
effectively for facial expression recognition tasks.

Many proposed deep learning-based expression recog-
nition methods [Psaroudakis and Kollias, 2022; Roy and
Etemad, 2023; Li ef al., 2022] have achieved good results.
However, most current recognition methods focus entirely on
extracting the visual representation of expression images to
achieve expression recognition tasks [Wu et al., 2023b]. This
type of method focuses solely on extracting visual representa-
tions and directly discards the spatial structure information of
facial expressions. After the emergence of graph neural net-
work (GNN), a considerable number of researchers applied
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it to the field of expression recognition, hoping to use the
advantages of graph neural network to extract spatial struc-
ture information of visual representation [Li et al., 2023].
However, the inputs transmitted to GNN by these methods
are hidden features of the same image passing through dif-
ferent network layers, or hidden features of different patches
passing through the same network layer. What these methods
have in common is that the features processed by GNN are
non-graph structured data or non-source data that have been
extracted from images through the backbone of CNN-based
or Transformer-based. As mentioned earlier, image itself has
very limited spatial information, and a lot of spatial informa-
tion has been lost after backbone.

With the advent of facial landmark localization, as shown
in Fig. 1c, more researchers try to use landmark information
to extract spatial structure information in expressions [Zhao
et al., 2024; Wu and Cui, 2023]. However, accurate facial
landmarks require not only labor-intensive labeling to obtain
but also provide limited spatial information that is highly cor-
related with the quality of label. As shown in Fig. 1b, we
propose a novel and more effective way to represent spatial
structure information of expressions by importing granular
balls method [Xia et al., 2023], which represents expression
as graphs with rich spatial information.

Compared to images composed of tens of thousands of
pixel points, graphs consist of a finite number of edges and
points. In addition, the edge-point structure makes graphs
richer in spatial information while the number of data points
is reduced. Granular balls representation is a data representa-
tion method that reduces redundant data and improves model
generalization. Applying it to 2D image data to process pixel
points [Xia er al., 2023], we are able to give more spatial
structure to expressions while ensuring the quality of expres-
sion images. In order to solve the problem of how to effec-
tively utilize spatial information to improve the accuracy of
FER, we propose a novel FER method based on Component
Separation and Space Bootstrap Fusion (CS-GBSBF), which
mainly consists of Represent Extraction Network (REN),
Represent Separation Network (RSN) and Represent Fusion
Network (RFN).

Specifically, input data are divided into image and graph
streams, then the data are first fed into the two backbone
of the REN respectively. For images and graphs, the back-
bone is used to extract basic visual and spatial representation
features. Then, two types of features are input to Vision-
represent Separation Network (VRSN) and Space-represent
Separation Network (SRSN) in RSN, which effectively sepa-
rate the basic features into component representation features.
Next, component features are input into RFN, which uses
component spatial representation features to bootstrap the fu-
sion of component visual representation features. In partic-
ular, bootstrap alignment loss is developed to solve the non-
alignment problem that occurs when guide fusion of compo-
nent features. Finally, a classify head network is employed
for expression classification.

Our main contributions can be summarized as follows.

e A novel CS-GBSBF method is proposed to perform
FER. In CS-GBSBF, granular balls representation is in-
novatively applied to expression images and imports a

new spatially structured representation for the 2D visual
expression domain.

e We innovatively propose a novel FER paradigm based
on component representation, where the overall facial
expression is separated into different components. RSN
is developed to extract the visual representation features
of components along with the spatial representation fea-
tures. In RFN, bootstrap alignment loss is developed to
solve the problem of unaligned fusion between compo-
nents caused by RSN.

Our method is evaluated on multiple popular real and
wild databases compared with a variety of state-of-the-
art methods in recent years and achieves superior results.
In particular, CS-GBSBF achieves recognition accuracy
of 97. 34% and 96. 74% on the databases Oulu-CASIA
and SAMM, respectively.

2 Related Works

2.1 Facial Expression Recognition

Facial expression recognition (FER) is a complex and practi-
cal CV task that has gained significant attention recently.
With the substantial advancements over the past decades,
deep learning has shown extraordinary performance in ex-
tracting visual representational features of expressions, mak-
ing the application of deep learning models to FER tasks in-
creasingly popular. Since then, an increasing number of re-
searchers have used deep learning to extract more effective vi-
sual representational features [Psaroudakis and Kollias, 2022;
Roy and Etemad, 2023]. Sun [Sun et al., 2023a] propose
a novel Feature Decomposition and Reconstruction Learn-
ing method for FER. In the process of research, successive
researchers have discovered that there is spatial structure in-
formation between facial components. The graph neural net-
work model was imported to extract the spatial information,
and different graph structure data fed into GNN were de-
signed [Liu et al., 2024; Li et al., 2023]. Kim [Kim et al.,
2023] propose that a face graph is constructed by combining
the attention map with face patches and then is fed to GCN.

2.2 Granular-ball Computing

Granular ball is a method for data representation, which is in-
spired by the “large scale first” cognitive mechanism. Gran-
ular balls represent the data using multiple scales granular
balls, which greatly reduce the amount of data while pre-
serving the quality of the original dataset. In recent years,
granular balls has made significant strides in many fields,
such as clustering [Cheng et al., 2023], classification [Xie
et al., 2024], graph generation [Xia er al., 2023], etc. Zhang
et al. [Zhang et al., 2023] proposed GBRS based on incre-
mental granularity computation for better classification tasks.
Quadir et al. [Quadir and Tanveer, 2024] proposed a granu-
lar ball twin support vector machine to deal with significant
challenges in the TSVM field.

In this paper, we import the method of granular balls rep-
resenting images [Xia et al., 2023] to the field of FER by
structuring expression images as graphs. Image is one kind of
high-density point-integrated data, while graph is the kind of
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Figure 2: Overview of our proposed CS-GBSBF method. VREN (Top of REN) and SREN (Bottom of REN) form the main structure of REN.
Each block contains several layers. Vision-represent Separation Network (Fig. 3a) and Space-represent Separation Network (Fig. 3b) form

the main structure of RSN.

sequence-structured edge-point data. Compared with image,
graph has richer spatial information, such as relative position,
spatial topology, angular direction and so on. Particularly, the
conversion from image to graph is highly consistent with the
principles and advantages of granular balls representing data.

3 Proposed Method

3.1 Overview

The proposed CS-GBSBF method consists of a Represent
Extraction Network (REN), a Represent Separation Network
(RSN), a Represent Fusion Network (RFN) and a Classify
Head Network (CHN). An overview is shown in Fig. 2.
Given a batch of facial expression images, we firstly use
granular balls representation to generate the corresponding
graphs of the images. For the too large graphs that are diffi-
cult to be processed, the model will use Graph Down Sample
(GDS) to downsample graphs to obtain the graphs that are in
appropriate size. Then, images are input into Vision-represent
Extraction Network (VREN) in REN to extract basic visual
representation features, while graphs are input into Space-
represent Extraction Network (SREN) in REN to extract basic
spatial representation features. In order to align the regions
of features extracted by VREN and SREN, we set up an at-
tention steering module that employs the attentional output
of VREN to correctly guide the attention regions of SREN.
Next, basic visual and spatial representation features will be
fed to VRSN and SRSN, respectively, in order to separate
and enhance the basic visual/spatial features and then gain
the component visual/spatial representation features. Then,
the two types of component features will be fed into RFN,
which uses component spatial features to guide the fusion of
the component visual features. Finally, CHN, equipped with
a categorical linear layer, performs FER on the fused features.

3.2 Granular-ball Represent

With the advent of GNN, there is a growing number of meth-
ods for representing non-graph data as graph-structured data.

In the case of expression images, basically all the represen-
tations follow the same paradigm, which first extracting the
features of the same sized region block using visual network
model, and then constructs graph-structured data to expect to
enrich spatial information of data. Unlike previous methods,
we propose to utilize granular balls [Xia er al., 2023] to rep-
resent expression images x, that is:

xf = GBR(X;), (1)

where GBR is the process of granular balls representation im-
ages and x? is the graph after representation.

Compared to previous methods, our method preserves
rather than produces spatial information from the source of
images rather than the intermediate data, and extracts spatial
information such as the shape and density of granular balls,
as well as the relative positions and relative distances between
granular balls, in a multi-granularity rather than a single-size
patch manner. The basic idea of GBR algorithm is to divide
the image into matrix regions of different sizes with the cri-
terion of ensuring that the pixel values of all positions within
each matrix are as similar as possible, as shown in Fig. 1b.
Each of these matrices is treated as one point in graph, and
the region intersecting matrices are treated as if there is one
edge between the matrices.

The number of nodes of graph represented by granular
balls method is highly dependent on the resolution and color
complexity. An image with resolution 384 x 384 may extract
nearly 10,000 nodes, some of which are located in the hair,
clothing, and other non-expression related areas, which will
import noise nodes. We use downsample to merge nodes to
reduce noisy nodes while keeping the effective spatial infor-
mation. Unlike the edge-focused downsample method pro-
posed in [Xia er al., 2023], we improve the downsample
method with the basic idea that if a node and another node
with minimal distance is merged for the downsample opera-
tion. More specific details can be viewed in Appendix® A.

'The  appendix material version is available at

https://github.com/Lsy235/CS-GBSBF/tree/main/supplyMaterials.
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3.3 Represent Extraction Network
Given the j-th expression image xz. and the j-th corresponding
graph x? , VREN will extract the basic visual representational
features Fj € R'*Pe in xj. As well as SREN will extract
the basic spatial representational features Fj € R'*P< in x4,
which can be formulated as:

FY =LY (L} (. (L4 (%)) for 1=1,2,...,N, (2)

J
Fy = L (LG (LY (30) for 1=1,2,., N, (3)

where L] denotes the /-th network layer of the VREN and L]
denotes the [-th network layer of the SREN. N indicates the
number of layers in the backbone network.

Since REN contains dual data processing streams for
VREN and SREN, there are bound to be unaligned prob-
lems in the feature regions where VREN and SREN focus
on. To solve this problem, we set Attention Guidance Module
(AGM) in REN, which is expected to be used for the attention
output of VREN to guide the attention of SREN to the corre-
sponding region. Specially, the attention output of the /-th
layer of VREN is summed with the output of the [-¢h layer of
SREN after a layer of fully connected layer transformation,
which can be formulated as:

outj = Lj(out] 1) & FC(L] (out}_,)) for l=1,...,N,
“)
where out; € R'*P< and our} € R**P< denote the output of
the [-th network layer of SREN and VREN, respectively. FC
indicates a fully connected layer.

Images have better location information, while graphs have
more information of relative location that can reflect spatial-
ity. We use VREN to guide SREN. When [ takes a later value,
the attention of VREN is more obvious and the effect of guid-
ance is better. In the realization, the value of [ is set to N.

3.4 Represent Separation Network

F} and Fj extracted by REN which are broadly focused on all
the components of the face but not specific to one, as shown
in the attention heat map in Fig. 3. As mentioned in the
opening section, facial expression consists of a combination
of variations of components. Therefore, in order to extract the
component visual representation features Cj, € R1*P= with
the component spatial representation features Cj € R*Ps,
we propose RSN to separate F; and F}, which can be formu-
lated as:

Cy, = sigmoidy,(FCy(GeLU,(FCy(Fy)))), )
C; = sigmoidy,(FCy(Fp)) for k=1,..., K,

where K denotes the number of components separated by the
overall face. sigmoid, indicates the sigmoid activation func-
tion for the k-th component and GeLUj, indicates the GeLU
activation function for the k-th component. In addition, each
component has its own network layers.

We separate the overall face into K components for the
expectation that the representational features of each compo-
nent correspond to the representational features of an unover-
lapped region of the face. As shown in the attention heat map
in Fig. 3, F} and F} mainly focus on the overall face. While
C; and Cj, in Eq. (5) appear to split the overall attention

and gradually focus on different face regions. Next, we em-
ploy sigmoid function to augment the attention. sigmoid of-
ten plays an important role in anomaly detection and logistic
regression binary classification, while the meaning of C}, and
% are whether or not to pay attention to one region of the
face, which belongs to the same binary classification task. In
the process of continuous supervised training, C, and Cy, tend
to focus more and more on the regions where the differences
between samples are large. The most obvious regions where
the differences between expressions are at the region of facial
component, such as mouth, eyes, eyebrows and so on. Af-
ter the model has fully converged, the regions of attention for
both C}, and Cj, are distributed near the facial components.

3.5 Represent Fusion Network

For the task of FER, not all C; and Cj are beneficial for
recognition. At the same time, expression recognition does
not require observation of the full components [Barros and
Sciutti, 2021]. As shown in Fig. 1, based on the changes
in the eyebrows, eyes and mouth alone, we can fully deduce
that the one is in an angry spirit. Only the components that
undergo change are useful, the more change, the more useful.
However, due to the differences between samples, the degree
of usefulness of component change for expression recogni-
tion can be inconsistent across samples. Then, to learn the
fusion feature F,, € R'*Ps with high generalization, adaptive
weights reflecting the degree of usefulness must be designed
to guide feature fusion. Cj, extracted by SRSN is fully com-
patible. The spatial structure information can well reflect the
degree of change that has occurred in component. When one
component has a relatively large spatial structure transition,
then that component must be an important representation of
that individual’s expression. As shown in Fig. 2, we first
multiply the transposed Cj, with Cj, in vector counterparts,
and the result obtained is passed through softmax function.
Then, the weight W € R*X which reflect the degree of
component change, are obtained, that is:

W = softmaz([C} @ C3')) for k=1,..,K, (6)

where so ftmax denotes the softmax activation function.

C;. with C}, are learned by REN and RSN based on sam-
ples. The differences between the samples make Cj, with C7,
also have variations. W in Eq. (6) will adaptively modify the
weight values for different samples, which makes F, have
higher generalization. Eventually, W is used to guide the fu-
sion of visual representation features to obtain F,,. Specially,
matrix multiplication of W;, € R*! with C} leads to F,,
which can be formulated as:

K
Fu=> WioCy, (7)
k=1

where F,, will be fed to CHN for the task of FER.

Bootstrap Alignment Loss. W is particularly important in
the whole process of feature fusion in RFN. As well as in Eq.
(6), although we have given an explicit inference formula, we
have neglected the question of whether the components indi-
cated by C, and Cj, are the same component. In other words,
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Figure 3: The proposed (a) Vision-represent Separation Network (VRSN) and (b) Space-represent Separation Network (SRSN). More details

of VRSN and SRSN can be found in Sec. 3.4.

although REN is designed with AGM to guide attention re-
gion alignment, whether C} and Cj, after RSN separation can
still be aligned. It is obvious that RSN does not understand
alignment. When the RSN separates F; and Fj; of different
samples, there is a high probability that the resulting C}, and
C; cannot be aligned. To solve the problem of representation
alignment, we propose Bootstrap Alignment Loss L5 4. The
ideal meaning of W is the degree of component change. In
addition, the larger the degree of component change is, the
more effective the corresponding C}. is for expression recog-
nition. Then, we directly perform facial expression recogni-
tion based only on each Cj. Next, we can obtain K recogni-
tion accuracies, which are denoted as ACCs € RY*X_ Tt can
be formulated as:

ACCs = |acc(CHN(C}),y)] for k=1,..,.K, (8)

where acc denotes the computational function of recognition
accuracy and y denotes the label of expression images.

At this point, ACCs are also expressed as the extent to
which each Cj, contributes to the recognition of that expres-
sion. In addition, the values of ACCs and W are at the same
order of magnitude, ranging from O to 1. Then, we calculate
the KL divergence of ACCs and W to see if the distributions
are consistent. If there is agreement, then it is numerically
proven that W has the same distribution as ACCs. The mean-
ing of ACCs for FER task does not alter and then the only
thing that can be proven is that I reaches the desired mean-
ing during the process of training. Mathematically, Lp 4 is
formulated as:

Lpa = KL(ACCs, W), 9)
where KL(..) indicates the function of KL divergence.

3.6 Joint Loss Function

In the proposed CS-GBSBF, REN, RSN, RFN and CHN are
jointly trained in an end-to-end manner. The whole network
minimizes the following joint loss function:

L=Leas+ Apa, (10)

where L5 and Lp4 represent the classification loss and
bootstrap alignment loss. In this paper, we use the cross-
entropy loss as the classification loss. A denotes the regular-
ization parameter. By minimizing the joint loss, CS-GBSBF
is able to extract discriminative represent features for FER.

4 Experiments

4.1 Databases and Evaluation Setups

The databases involved in the experiments include
AffectNet-§, CAER-S, RAF-DB, Oulu-CASIA, CK+,
SFEW 2.0, FER-2013 and SAMM, as shown in Table 1.The
evaluation metric of Accuracy and UF1 are selected. UFI,
named unweighted f1-score, is one metric that is more effec-
tive in evaluating on multicategorical unbalanced databases,
and is commonly used in the field of microexpression.

Databases Size Resolution Class Type
AffectNet-8 [2017] 37,303 100 x 100 8-cla wild
CAER-S [2019] 70,000 712 x 400 7-cla wild
RAF-DB [2017] 29,672 100 x 100 7-cla  wild
Oulu-CASIA [2011] 64,913 320 x 240 6-cla  lab
CK+ [2010] 774 48 x 48 7T-cla  lab
SFEW [2011] 1,766 143 x 181 7-cla wild
FER-2013 [2013] 35, 886 48 x 48 9-cla wild
SAMM [2016] 11,816 960 x 650 7-cla  lab

Table 1: Detailed information about all databases. The type of wild
indicates that this database belongs to the in-the-wild database, and
the type of lab indicates in-the-lab.

For the database divided by the original test database, we
keep it constant. And for the undivided database, we follow
the rules most methods [Gan et al., 2019] adopt for classifi-
cation.

4.2 Experimental Settings

For each database, all the facial images need to be represented
by granular balls, followed by graph downsample operation
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to obtain the input graphs. During the process of training,
images are further resized to 224 x 224 and then a random
crop is applied for data augmentation. During the test pro-
cess, images are resized to the size of 224 x 224 and then fed
into the trained model along with graphs. The CS-GBSBF
method is implemented with the Pytorch toolbox, employ-
ing swinT-base [Liu ef al., 2021] as the backbone of VREN
and utilizing GCN to build the backbone of SREN, where the
swinT-base is pre-trained on the ImageNet-1K database.

The dimensions of both Fj and Fi are R®*1924 and C}
and Cj have dimensions of R®*128, Based on extensive ex-
periments in the validation set, the value of A in Eq. (10) is
empirically set to 0.1, while the value of the hyperparameter
K is set to 9. We train CS-GBSBF in an end-to-end manner
with one single NVIDIA GeForce RTX 4080 SUPER for 40
epochs, and the batch size for all databases is set to 16. Then
our model is trained using the Adam algorithm with an initial
learning rate of 0.0001, weight decay = 0.01.
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Table 2: The ablation study of the proposed important modules on
the validation set of the three databases. #1 denotes AGM module,
#2 denotes SRSN module and #3 denotes £5 4 module.

Backbone
Database "ResNet ResNet VGG swinT swinT
-34 -50 -16  -base -large
ER- . . 57 . i
FER-2013 82.04 82.81 81.72 84.98 83.69
RAF-DB 87.91 88.23 85.72 90.57 90.71

Table 3: The ablation study of backbone in VREN. Note that the
evaluation metric remains Accuracy (%).

4.3 Ablation Studies

The ablation studies in this section are recorded in the vali-
dation set. The ablation studies set up in this subsection fo-
cus on the important modules of the proposed design (AGM,
SRSN, Lp4), variation in the value of the component num-
ber K, and the weight value A. The effect of each module
in the proposed method is explored through ablation studies
on the validation set. Ablation studies for the other model
parameters are shown in Appendix B.

Influence of the key modules. When only the SRSN mod-
ule is introduced without any bootstrap alignment methods,
C" do not contribute to improving the recognition accuracy
compared to when SRSN is not included. This also shows that
the direct introduction of spatial representations is not suit-
able for FER. When only the AGM module is added, which

CAER-S

FER-2013

Figure 4: Ablation studies for the different value of K on the vali-
dation set of CAER-S and FER-2013 databases.
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Figure 5: Ablation studies for the different value of A on the valida-
tion set of FER-2013 and Oulu-CASIA databases.

only ensures that C}, and Cj, are aligned at the stage of REN,
the accuracy of our method on the three validation database
drops by an average of 1.93%. When both SRSN and Lp4
modules are added, the extent of the decline is attenuated.
The two ablation experimental schemes differ in model de-
sign in that the former tends to realize bootstrap alignment
in REN and the latter tends to realize bootstrap alignment in
RFN. The experiments show that the alignment design mod-
els for the front and rear modules work, with the latter being
somewhat more effective.

Influence of the K value. We evaluate the recognition per-
formance of our method with the different values of K in Eq.
(5), as shown in Fig. 4.

In particular, we can observe that our method achieves the
best recognition accuracy when value of K is set to 9. When
separated into too many components, the basic representa-
tions are separated too finely, weakening the representation
in someone component. However, too few results in merging
of components, which makes it impossible to obtain spatial
information between the merging components and results in
difficult to bootstrap better feature fusion.

Influence of the \ weight. As shown in Fig. 5, we can
see that CS-GBSBF achieves the best performance when the
value of ) is set to 0.1. When a large weight of Lp 4 is set,
the model will ignore the loss of cross-entropy, resulting in
a worse classification effect. However, when the value of \
is set to 0, the lack of consideration of feature alignment in
RFN leads to worse fusion.

Influence of backbone in VREN. We show our CS-
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CAER-S Oulu-CASIA RAF-DB AffectNet-8
Methods Acc.T | Methods Acc.T | Methods Acc.T | Methods Acc.T
MA-net [2021] 88.42 | FDRL [2021] 88.26 | RUL [2021] 88.98 | RUL [2021] 60.66
Poster [2023] 92.73 | GEPm [2022] 89.05 | FDRL [2021] 89.47 | Ada-CM [2022] 57.42
SMResNet [2023]  88.52 | SPNDL [2023a] 90.14 | Ada-CM [2022] 84.42 | CDB [2022] 64.23
Poster++ [2024] 93.00 | SSF-ViT [2023] 88.06 | RUL-C [2024] 89.51 | Poster [2023] 63.34
HAM [2024] 92.86 | im-cGAN [2023b] 93.34 | Poster++ [2024] 91.09 | Poster++ [2024] 63.77
CS-GBSBF (ours) 93.06 | CS-GBSBF (ours) 97.34 | CS-GBSBF (ours) 90.10 | CS-GBSBEF (ours) 64.60

FER-2013 CK+ SFEW SAMM
Methods Acc.T | Methods Acc.T | Methods Acc.T | Methods Acc.F/UFIT
RUL [2021] 73.75 | FDRL [2021] 99.54 | MA-net [2021] 59.40 | MESTD [2021] 91.90/89.60
ResMask [2021] 76.82 | FERS [2022] 97.83 | FDRL [2021] 62.16 | LR-GAC [2021] 88.24/—
Ad-Corre [2022] 72.03 | SPNDL [2023a] 99.69 | FERS [2022] 35.91 | SparseT [2022] 80.15/—
SSF-ViT [2023] 74.95 | HCCL [2023] 93.00 | Ada-CM [2022] 52.43 | p-BERT [2023] 87.35/83.36
RUL-C [2024] 71.83 | SSFE-ViT [2023] 98.96 | SSF-ViT [2023] 63.69 | HTNet [2024] 86.67/81.31
CS-GBSBF (ours) 83.99 | CS-GBSBF (ours) 100.00 | CS-GBSBF (ours) 65.56 | CS-GBSBF (ours)  96.74/95.70

Table 4: Performance comparisons among different methods on the test set of several public FER databases. The best results are boldfaced

amd the second results are underlined.

Figure 6: Visualization of component representation features C* and C° by CAM. More visualization can be viewed in Appendix B.

GBSBF with different backbones in Table 3, and give the
accuracy of CS-GBSBF as a metric for comparison. CS-
GBSBF with different backbones can work well. Results
prove it that swinT-base [Liu et al., 2021] is able to extract
F} that are more suitable for CS-GBSBF.

4.4 Comparisons with State-of-the-Art Methods

Table 4 shows the comparison results between the proposed
CS-GBSBF method and several state-of-the-art FER methods
on all databases shown in Table 1. Only a different portion of
the databases in Table 1 is generally selected in the article
for each comparison method, and not all comparison meth-
ods have open source code. Therefore, for each database, we
try to find the state-of-the-art approach to compare with our
proposed method.

As shown in Table 4, the proposed CS-GBSBF method
basically improves the recognition accuracy on all databases
with an average improvement of 2.48%. This is significantly
improved by 2.71% and 7.17% in Oulu-CASIA and FER-
2013, respectively. Even on the micro-expression database,
SAMM, CS-GBSBF far outperforms the compared methods
on Acc. and UF1. It also improves on all other databases ex-
cept RAF-DB. These comparison experiments with the state-
of-the-art method clearly demonstrate our advantage in FER
as well as the existence of the proposed CS-GBSBF method
with high recognition generalization on different databases.

4.5 Visualization

Attention visualization. We use CAM [Zhou et al., 2016]
to draw the attention heat maps based on C” and C® respec-
tively, as shown in Fig. 6. We can observe that after passing
through RSN, the attentional attention regions of each C* and
C? are different but the attention regions of both correspond
to each other. All the regions are distributed near the different
component organs of face, which is one of the reasons why
we call proposed method component separation. Similarly in
exploring the attention regions of C® on graphs, the graph is
visualized and plotted, and then the regions of attention ob-
tained by CAM are appended to the visualized graphs in the
same way as images.

5 Conclusion

In this paper, we propose a novel CS-GBSBF method con-
sisting of REN, RSN, and RFN. To address the problem that
current researches focus too much on visual information and
ignore other valid information, we import granular balls to
represent images and extract visual and spatial information
from the source of data. In our method, to address the arising
problem of features alignment, we propose AGM and Lp4
in the stages of REN and RFN, respectively. We conducted
ablation studies to demonstrate the effectiveness of our pro-
posed modules. The extensive experimental results on multi-
ple databases demonstrate the superiority of our method for
facial expression recognition.
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