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Abstract
In this paper, we investigate the issue of error accu-
mulation in critic networks updated via pessimistic
temporal difference objectives. We show that the
critic approximation error can be approximated via
a recursive fixed-point model similar to that of the
Bellman value. We use such a recursive defini-
tion to retrieve the conditions under which the pes-
simistic critic is unbiased. Building on these in-
sights, we propose Validation Pessimism Learn-
ing (VPL) algorithm. VPL uses a small validation
buffer to adjust the levels of pessimism throughout
the agent’s training, with the pessimism set such
that the approximation error of the critic targets is
minimized. We investigate the proposed approach
on a variety of locomotion and manipulation tasks
and report improvements in sample efficiency and
performance.

1 Introduction
Approximation errors, although ubiquitous in machine learn-
ing, are particularly exaggerated in the context of value-based
Reinforcement Learning (RL). Such exaggeration stems from
Temporal Difference (TD) in which the critic is supervised
via value estimate calculated at a different state [Silver et al.,
2014], [Mnih et al., 2015].
Inaccuracies in this estimate lead to propagated errors in

state-action updates, and the use of maximization in value
estimation inherently promotes overestimation. Addressing
such overestimation has proven to be an effective strategy in
discrete and continuous action environments [Hasselt, 2010],
[Van Hasselt et al., 2016], [Hessel et al., 2018], [Haarnoja
et al., 2018]. Clipped Double Q-Learning (CDQL), a com-
mon solution to overestimation in continuous action actor-
critic algorithms aims to mitigate overestimation by balanc-
ing errors against a pessimistic lower bound value approxi-
mation [Fujimoto et al., 2018]. However, challenges arise if
the lower bound is insufficiently pessimistic, leading to con-
tinued overestimation, or overly pessimistic, causing under-
estimation [Cetin and Celiktutan, 2023]. The latter, though
less recognized, can significantly reduce sample efficiency
and degrade actor-critic agents’ performance in both low and
high replay ratio settings which we show in Figure 1.
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Figure 1: Pessimism adjustment can yield performance benefits ex-
ceeding those of increased replay ratio and full-parameter resets.
The pessimistic algorithm dominates Humanoid, whereas the op-
timistic algorithm dominates Hopper. 10 seeds and 95% CI.

In this paper, we investigate the relationship between pes-
simism in Q-value approximation and error accumulation
in critic networks. We start by characterization of existing
strategies for pessimism adjustment. Furthermore, we ana-
lyze the pessimistic critic approximation error and show that
such error can be represented recursively forming a fixed-
point model, akin to values. This recursive representation
helps us highlight the bias inherent in pessimistic actor-critic
algorithms, examine their convergence dynamics, and iden-
tify the conditions under which pessimistic critics can achieve
zero error. Building on these insights, we propose the Valida-
tion Pessimism Learning (VPL) algorithm. VPL employs a
small validation replay buffer to adjust the pessimism levels
online, aiming to minimize the approximation error of critic
targets while preventing overfitting to accumulated experi-
ence. We evaluate VPL against existing pessimism adjust-
ment methods on DeepMind control [Tassa et al., 2018] and
MetaWorld [Yu et al., 2020]. Our findings demonstrate that
VPL not only achieves performance improvements but also
exhibits less sensitivity to hyperparameters compared to the
baseline algorithms. We list our contributions below:

• We show that critic error can be defined recursively
through a fixed-point model. We demonstrate that pes-
simistic TD learning, a method often used in RL, con-
verges to the true value under strict conditions.

• We present an empirical analysis showing that the per-
formance loss associated with not including every tran-
sition in the replay buffer diminishes as training pro-
gresses. This observation challenges the traditional be-
lief that every transition must be used in value learning
for sample-efficient RL and builds a case for employing
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a validation buffer in an online RL setting.
• We propose VPL, an algorithm that uses a small vali-
dation buffer for online adjustment of pessimism asso-
ciated with lower bound Q-value approximation. We
test the effectiveness of VPL and other pessimism ad-
justment strategies in low and high replay regimes. We
show that VPL offers performance improvements across
a variety of locomotion and manipulation tasks.

2 Background
2.1 Maximum Entropy Reinforcement Learning
We consider an infinite-horizon Markov Decision Pro-
cess (MDP) [Puterman, 2014], represented by the tuple
(S,A, r, p0, ω), where S and A are continuous state and ac-
tion spaces, rs,a is the reward, p0(s) is the initial state dis-
tribution, and ω → (0, 1] is the discount factor. The pol-
icy ε(a|s) is a distribution of actions given states. The goal
of Maximum Entropy Reinforcement Learning (MaxEnt RL)
[Haarnoja et al., 2017] is to maximize the expected cumula-
tive discounted return augmented with an entropy term:

ε→ = argmax
ω

E
p0,ω

↑∑

t=0

ωt
(
rst,at + ϑH(ε(·|st))

)
, (1)

where ϑ controls the balance between reward and entropy
[Haarnoja et al., 2018]. The soft Q-value is defined as:

Qω(s, a) = rs,a + ω E
s→↓p

[
V ω(s↔)

]
, (2)

and the soft value is given by:

V ω(s) = E
a↓ω

[
Qω(s, a)↑ ϑ log ε(a|s)

]
. (3)

MaxEnt RL algorithms, such as Soft Actor-Critic (SAC),
parameterize the policy (actor) εε and the Q-value (critic)
Qϑ, which are optimized iteratively using objectives derived
from policy iteration [Haarnoja et al., 2018]. The critic en-
semble is often used to address Q-value overestimation via
Clipped Double Q-Learning (CDQL) [Fujimoto et al., 2018].
In CDQL, the value lower bound is approximated as:

V lb
ϑ (s) ↓ Qlb

ϑ (s, a)↑ ϑ log εε(a|s), a ↔ εε, (4)

where Qlb
ϑ (s, a) = min(Q1

ϑ(s, a), Q
2
ϑ(s, a)).

2.2 Pessimism Adjustment
Building upon CDQL, recent works propose parameterizing
the lower bound of Q-values as:

Qlb
ϑ (s, a) = Qµ

ϑ(s, a)↑ ϖQϖ
ϑ(s, a), (5)

where Qµ
ϑ and Qϖ

ϑ represent the mean and standard devia-
tion of the critic ensemble, respectively [Ciosek et al., 2019],
[Nauman and Cygan, 2023]. This formulation allows the ad-
justment of the pessimism level ϖ, controlling the influence
of critic disagreement. Algorithms such as Generalized Pes-
simism Learning (GPL) [Cetin and Celiktutan, 2023] and On-
Policy Pessimism Learning (OPL) [Kuznetsov et al., 2021]
optimize ϖ online by aligning pessimism with approximation

error. For example, GPL treats this adjustment as a dual opti-
mization problem:

ϖ = argmin
ϱ

E
p0,ω

ϖ
(
Qω(s, a)↑ rs,a ↑ sg(ωV lb

ϑ (s↔))
)
, (6)

where V lb
ϑ (s↔) ↓ Qµ

ϑ(s, a) ↑ ϖQϖ
ϑ(s, a) ↑ ϑ log εε(a|s) and

sg denotes the stop-gradient operator. This approach risks
overfitting, as the adjustment heavily relies on critic outputs.
Alternative methods, such as Tactical Optimism and Pes-
simism (TOP) [Moskovitz et al., 2021], use external bandit
controllers for ϖ, but they can be less effective with continu-
ous pessimism adjustments. We include additional discussion
of critic disagreement in the appendix, as well as key compar-
isons of pessimism adjustment methods in Table 2.

3 Approximation Error and Pessimism
In this section, we focus on the analysis of critic approxima-
tion errors within the framework of pessimistic updates. For
simplicity, we consider a fixed policy εε and use V (s) and
Q(s, a) to represent the value and Q-value under this policy.
We define the mean and lower bound approximation errors
denoted as Uµ

ϑ and U lb
ϑ respectively:

Uµ
ϑ (s, a)Q(s, a)↑Qµ

ϑ(s, a),

U lb
ϑ (s, a)Q(s, a)↑Qlb

ϑ (s, a).
(7)

Here, Q(s, a) denotes the true Q-value, the term Qµ
ϑ(s, a)

represents the mean Q-value estimated by an ensemble of
k critics, calculated as Qµ

ϑ(s, a) = 1
k

∑k Qi
ϑ(s, a), and

Qlb
ϑ (s, a) is the lower bound Q-value as defined in Equation

5. Additionally, we introduce the mean and lower bound tem-
poral critic errors, denoted as uµ

ϑ and ulb
ϑ , respectively:

uµ
ϑ(s, a, s

↔)rs,a + ωV µ
ϑ (s↔)↑Qµ

ϑ(s, a),

ulb
ϑ (s, a, s

↔)rs,a + ωV lb
ϑ (s↔)↑Qµ

ϑ(s, a).
(8)

These temporal critic errors quantify the deviation between
the Q-values Qµ

ϑ(s, a) and the mean or lower bound Tempo-
ral Difference (TD) targets. The value V lb

ϑ (s) is equal to the
expected value of Qlb

ϑ (s, a) over all state-action pairs under
policy ε, such that V lb

ϑ (s) = EωQlb
ϑ (s, a)↑ log εε(a|s).

Lemma 3.1 (Approximation error operator). Given policy ε,
k on-policy q-value approximations Q1

ϑ, Q
2
ϑ, ..., Q

k
ϑ, sample

mean Qµ
ϑ and standard deviation Qϖ

ϑ, the mean and lower
bound approximation errors follow a recursive formula:

Uµ
ϑ (s, a) = uµ

ϑ(s, a, s
↔) + ω E

a→↓ω
Uµ
ϑ (s

↔, a↔),

U lb
ϑ (s, a) = ulb

ϑ (s, a, s
↔) + ϖQϖ

ϑ(s, a) + ω E
a→↓ω

U lb
ϑ (s↔, a↔),

U lb
ϑ (s, a) = Uµ

ϑ (s, a) + ϖQϖ
ϑ(s, a).

We expand on Lemma 3.1 in Appendix A. The lemma
reveals that approximation errors exhibit a recurrent pattern
analogous to Q-values. Specifically, the temporal errors func-
tion as an immediate signal, akin to rewards, while the future
approximation errors serve as the bootstrap signal. Further-
more, this observation formalizes the intuitive concept that
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minimizing the lower-bound error necessitates a precise cali-
bration of the pessimistic correction against the temporal er-
ror and the approximation errors of subsequent states.

Key Insight

Lemma 3.1 shows that approximation errors propa-
gate through recursive updates, just as Q-values prop-
agate through Bellman equations. The temporal er-
rors, uµ

ϑ and ulb
ϑ , act as immediate signals, while fu-

ture approximation errors (weighted by ω) bootstrap
over time. This highlights the need to balance imme-
diate errors and long-term disagreement for effective
learning.

It can be shown that similarly to the Bellman operator,
both mean and lower bound error approximation operators
are monotonic contractions:
Theorem 3.2 (Approximation error contraction). Let F be
the space of functions on domain S ↗A. We define the mean
error and lower bound error operators Uµ,U lb : F ↘ F as:

Uµ
(
f(s, a)

)
uµ
ϑ(s, a, s

↔) + ω E
a→↓ω

f(s↔, a↔),

U lb
(
f(s, a)

)
ulb
ϑ (s, a, s

↔) + ϖQϖ
ϑ(s, a) + ω E

a→↓ω
f(s↔, a↔).

Above, f(s, a) : S ↗ A ↘ R represents an estimate of the
approximation error, and we assume that Qϖ

ϑ(s, a) ↘ 0 as
training progresses. Then it follows that both Uµ and U lb are
monotonic contractions for any f1 and f2:

||U(f1)↑ U(f2)||↑ ≃ ω||f1 ↑ f2||↑.

We provide the relevant derivations in Appendix A.

Key Insight

Theorem 3.2 formalizes that both mean and lower-
bound approximation error operators are contrac-
tions. This ensures that repeated applications of these
operators converge to a fixed point. Intuitively, this
means that as training progresses, the approximation
errors stabilize, allowing the model to converge to a
consistent value function.

As follows from Theorem 3.2, repeated application of the
approximation error operator yields a Cauchy sequence, and
therefore leads to a fixed point:
Corollary 3.3 (Approximation error fixed point). We denote
repeated k applications of either approximation error opera-
tor to function f as Uk(f). Then, due to Banach fixed point
theorem:

U↑(f) = f→ ⇐ U(f→) = f→.

The corollary shows that the approximation error of val-
ues can be effectively modeled using a fixed-point approach,
analogous to treating values themselves. The potential rami-
fications and applications of this concept are further explored
in Appendix A. Principally, the convergence of a pessimistic

Agent 
Parameters

Validation 
Buffer

Training 
Buffer

Actor-Critic 
Update

Pessimism 
Update

P = p

P = 1-p

Dtrain

Dvalid

Parameters at time t

Parameters at time t +1

Figure 2: High-level overview of the proposed approach. After
each environment step, the transition is stored in either the train-
ing buffer (used for updating actor-critic modules) or the validation
buffer (used for updating the pessimism module). The pessimism is
updated via a ”reverse” TD loss, optimisation of which on the train-
ing buffer would be prone to overfitting.

value model signifies that the approximation errors converge
to zero, implying Uµ

ϑ = U lb
ϑ = 0. The convergence proof of

CDQL indicates that the value model should align with the
true on-policy values under the conventional Q-learning con-
vergence assumptions [Watkins and Dayan, 1992], [Fujimoto
et al., 2018]. Lemma 3.1 explicitly shows that for all s, a and
s↔, both approximation errors equate to zero iff the following
conditions are satisfied:

Qµ
ϑ(s, a) = r + ωV µ

ϑ (s↔) ⇐ ϖQϖ
ϑ(s, a) = 0. (9)

The convergence of a pessimistic model necessitates either
the absence of critic ensemble disagreement (i.e.,Qϖ

ϑ(s, a) =
0 for all state-action pairs) or an algorithmic ability to dimin-
ish the level of pessimism over time, culminating in ϖ = 0
asymptotically. We emphasize that this pertains specifically
to convergence toward the zero-error fixed point defined in
Lemma 3.1; an algorithm may still converge to a biased solu-
tion even if these conditions are not met, but exact fixed-point
convergence with zero approximation error is unattainable
otherwise. Figure 10 shows that the critic disagreement does
not completely diminish on popular DeepMind Control and
MetaWorld benchmarks. Given the improbability of achiev-
ing zero critic disagreement in overparameterized deep RL
contexts, the adjustment of ϖ emerges as a compelling strat-
egy. Additionally, it can be demonstrated that under the sce-
nario of critic underestimation, the lower-bound error exceeds
the mean approximation error:

Uµ
ϑ (s, a) > 0 =⇒ |Uµ

ϑ (s, a)| ≃ |U lb
ϑ (s, a)|. (10)

The inequality follows from the third formula from
Lemma 3.1, where ϖ ⇑ 0 and Qϖ(s, a) ⇑ 0 as the stan-
dard deviation of the critic ensemble. We refer the reader to
Appendix B for detailed proof.
As follows, pessimistic learning is advantageous only in

overestimation, whereas it becomes detrimental in cases of
underestimation. To this end, the pessimism levels should
be adjusted in tandem with changes in the approximation er-
rors. In practical terms, achieving a zero approximation er-
ror for either mean or lower bound is unrealistic. Given that
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Uϑ(s, a) → R, one might be interested in optimization of
norm of Uµ

ϑ (s, a) or U
lb
ϑ (s, a). This leads to the possibility

of defining an ”optimal” level of pessimism, where optimal-
ity is considered in relation to minimizing the respective ap-
proximation error norm. We note that our analysis yields a
different approach to updating pessimism as compared to the
method derived from dual optimization [Cetin and Celiktutan,
2023], which we discuss in Section 2.2.

Key Insight

Equation 10 highlights that pessimistic updates are
beneficial in situations of overestimation, but they
may harm learning when underestimation occurs.
Therefore, adjusting the level of pessimism dynam-
ically is critical to balance the benefits of avoiding
overestimation with the risks of underestimation.

4 Validation Pessimism Learning Algorithm
Building on the analysis conducted in the previous Sec-
tion, we propose the Validation Pessimism Learning mod-
ule (VPL). The goal of the VPL module is to adjust the pes-
simism parameter such that the critic targets (lower bound Q-
value approximation) has the least approximation error. As
such, VPL can be used as an alternative to CDQL or GPL
in conjuction with any off-policy actor-critic algorithm. For
our analysis, we utilize the Soft Actor-Critic (SAC) [Haarnoja
et al., 2018] as the backbone algorithm. VPL is based on a
simple premise of adjusting pessimism via a TD loss. Given
that the critic concurrently optimizes this loss function, such
setup is especially prone to overfitting. To mitigate this, the
optimization of the pessimism parameter is conducted on a

distinct set of validation data, which remains unseen by the
actor-critic modules. From a theoretical standpoint, VPL can
be interpreted as a strategy for pessimism model selection,
with the selection process aimed at minimizing the lower
bound approximation error delineated in the previous sec-
tion. A critical aspect of VPL involves conducting the pes-
simism model selection on validation data. The model selec-
tion is achieved through gradient-based optimization of the
proposed pessimism loss. The utilization of validation data
in this process reduces the probability of overfitting to boot-
strapped supervision signals used by TD learning. We sum-
marize VPL approach in Figure 2 and share pseudo-code in
Section B.1, where we colour changes wrt. regular SAC.

4.1 Validation Buffer
The employment of validation data is a well-established
practice in supervised learning frameworks [Bishop and
Nasrabadi, 2006]. It serves a dual purpose: providing an un-
biased assessment of model performance trained on the train-
ing dataset, and facilitating regularization techniques such
as early stopping [Prechelt, 2002] or hyperparameter tuning
[Bergstra and Bengio, 2012]. However, the integration of val-
idation data entails a trade-off, notably the reduction of the
training set size. In supervised learning, the regret associated
with decreasing the training set can be quantitatively evalu-
ated through the lens of neural scaling laws [Rosenfeld et al.,
2019]. Such regret is, to the best of our knowledge, a rela-
tively understudied area in the context of online RL. In online
RL, the notion of a validation buffer is not popular, primar-
ily due to the requisite sacrifice of actor-critic learning on the
validation transitions. Given inherent sample inefficiency of
RL, this cost is often deemed as overly burdening. Contrary
to supervised learning setup, RL is characterized by a high
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Figure 3: We integrate the Soft Actor-Critic (SAC) and the Scaled-By-Resetting SAC (SR-SAC) with various pessimism adjustment algo-
rithms. Performance is evaluated in both low replay (top row) and high replay (bottom row) regimes. All tested algorithms use the same
network architectures and hyperparameter settings, so performance differences arise solely from the pessimism adjustment strategies. De-
spite similar motivations, each algorithm exhibits different levels of pessimism. Our proposed Validation Pessimism Learning (VPL) module
demonstrates the lowest approximation error and mitigates value overfitting more effectively than alternative approaches, leading to improve-
ments in performance and sample efficiency. The experimental setting is detailed in Sections 5 and E. Results are based on 20 tasks with 10
seeds per task, presented as interquartile mean (IQM) and 95% confidence intervals (CI).
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Figure 4: Task-specific performance of high-replay configurations in 14 out of 20 considered tasks. VPL achieves performance improvements,
especially in the manipulation tasks. In the case of DMC tasks the y-axis denotes evaluation returns, whereas for MetaWorld tasks it denotes
the evaluation success ratio. The x-axis shows environment steps (in thousands). We detail the setting in Section 5.1. 10 seeds per task.

correlation between successive samples, thereby diminishing
the marginal utility of processing additional samples from the
same trajectory. Consequently, we posit that in online RL, the
cost associated with the use of validation data can be coun-
terbalanced, provided the validation data is leveraged to en-
hance the learning process. In the case of the VPL, we allo-
cate the validation transitions exclusively for the adjustment
of the pessimism parameter. This approach presents a novel
utilization of validation data in online RL in a manner that is
RL-specific, diverging from supervised methodologies.

4.2 Pessimism Update Rule
The persistence of critic disagreement throughout training
implies that the standard convergence guarantees of the pes-
simistic temporal difference update towards on-policy values
are not upheld when ϖ ⇓= 0. Moreover, in cases where min-
imizing the mean approximation error is not achievable, par-
ticularly in scenarios characterized by strong overestimation,
the presence of non-zero critic disagreement can be lever-
aged to decrease the lower bound approximation error by
increasing ϖ. This observation forms the basis for our pro-
posed method of adjusting ϖ. The aim is to minimize the
expected lower bound approximation error U lb

ϑ (s, a), formu-
lated as follows:

ϖ→ = argmin
ϱ

E
p0,ω

↑∑

t=0

ωtU lb
ϑ (s, a). (11)

Unfortunately, obtaining U lb
ϑ (s, a) is challenging as it ne-

cessitates an estimate of the true on-policy Q-value. Typi-
cally, such estimates are derived through methods like Monte-
Carlo (MC) rollouts, TD(n), or TD(ϱ), with MC being the
only unbiased method. However, in the context of off-policy
learning or non-terminating environments, employing MC
rollouts is impractical. Consequently, we leverage the sim-
ple approach proposed by [Cetin and Celiktutan, 2023] in
which it is assumed that the critic output for prerecorded
off-policy actions is unbiased. Therefore, we assume that
Qω(s, a) = Qµ

ϑ(s, a) for actions that do not maximize the
output of the policy. Additionally, akin to the approach in off-
policy actor-critic algorithms, the policy-induced distribution
is approximated using an off-policy replay buffer. This ap-
proach leads to the formulation of the following:

ϖ→ ↓ argmin
ϱ

E
Dv

(
Qµ

ϑ(s, a)↑ rs,a ↑ ωV lb
ϑ (s↔)

)2
. (12)

In this formulation, DV represents the validation replay
buffer, with s, a, s↔ denoting transitions sampled from this
buffer. In line with other stochastic policy algorithms, we
further approximate V lb

ϑ (s↔) with the critic output for a single
action a↔ ↔ εε(a↔|s↔). As follows, VPL adjusts the pessimism
under the assumption that Qµ

ϑ(s, a) is a good representation
of Qω(s, a). Since the actions at which Qµ

ϑ(s, a) is evalu-
ated are sampled from the validation buffer and are off-policy,
these actions are likely to produce less overestimation than
the adversarial actions sampled from a value-maximizing pol-
icy.
The inclusion of a square in the loss function ensures that

the optimization remains non-negative and convex with re-
spect to ϖ, focusing the updates on reducing significant er-
rors, which are particularly impactful in reinforcement learn-
ing scenarios. Additionally, removing the stop-gradient oper-
ator allows ϖ to be updated dynamically based on both the ap-
proximation error and the disagreement among critics (Qϖ),
tightly coupling the level of pessimism to the degree of un-
certainty in the critic estimates. This ensures that the level
of pessimism is adjusted adaptively during training, aligning
with the intuition that higher disagreement indicates greater
uncertainty, necessitating increased pessimism.
While we acknowledge that providing a strict mathemat-

ical justification for all aspects of the proposed rule is chal-
lenging, our empirical results (Figure 3) demonstrate its prac-
tical effectiveness in reducing overfitting and improving per-
formance across diverse environments. VPL mitigates the
risk of overfitting by computing the pessimism loss exclu-
sively on validation samples that are not used by the actor-
critic modules. Unlike GPL, VPL fully incorporates critics’
disagreement into the optimization process and dynamically
adjusts ϖ, enabling more precise control of the level of pes-
simism based on the observed uncertainty.

5 Experiments
Our experiments are based on the JaxRL codebase
[Kostrikov, 2021]. Since all considered algorithms use
SR-SAC [D’Oro et al., 2022] as their backbone, we align
the common hyperparameters with those recommended for
Scaled-By-Resetting SAC (SR-SAC) as per [D’Oro et al.,
2022]. This includes using the same network architectures
and a two-critic ensemble in accordance with established
practices [Fujimoto et al., 2018], [Haarnoja et al., 2018],
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(a) Replay Ratio = 2 (b) Replay Ratio = 16

Figure 5: RLiable final performance metrics for the main experiment detailed in Section 5.1. VPL outperforms baseline algorithms in both
replay regimes. The performance metrics are calculated on 20 tasks listed in Table 3 with 10 random seeds per task.

[Ciosek et al., 2019], [Moskovitz et al., 2021], [Cetin and
Celiktutan, 2023]. We conduct our experiments in two envi-
ronments: the DeepMind Control (DMC) suite [Tassa et al.,
2018] and the single-task MetaWorld [Yu et al., 2020]. Our
study encompasses two replay regimes: a compute-efficient
setup with 2 gradient steps per environment step without re-
sets, and a sample-efficient setup with 16 gradient steps per
environment step, including full-parameter resets every 160k
steps, as suggested by [D’Oro et al., 2022]. We provide
robust analysis using the RLiable package [Agarwal et al.,
2021] and detail the experimental setting in Appendix E.

5.1 Performance and Sample Efficiency
Firstly, we test the performance and sample efficiency of
the proposed approach. To this end, we compare SR-SAC
[D’Oro et al., 2022] (DMC state of the art) to four algorithms
that extend SR-SAC with online pessimism adjustment: GPL
[Cetin and Celiktutan, 2023]; OPL [Kuznetsov et al., 2021];
TOP [Moskovitz et al., 2021]; and VPL (the proposed ap-
proach). We run the tested algorithms in both replay regimes
for 1mln environment steps on 20 medium to hard tasks (10
from DMC and 10 from MetaWorld). We discuss the chosen
baselines in Sections 2.2 & C. We discuss hyperparameter se-
lection in Appendix G and the tested tasks in F. We report the
results of this experiment in Figures 3, 4 & 5. We find that
the proposed approach surpasses baseline algorithms, demon-
strating 48% and 27% higher performance than the baseline
SR-SAC in low and high replay regimes, respectively. As de-
picted in Figure 4, VPL exhibits particular effectiveness in
MetaWorld manipulation tasks, developing robust policies in
environments where other approaches fail, such as the assem-
bly task. To provide further practical context, we evaluate the
computational overhead introduced by each of the tested pes-
simism adjustment methods. Table 1 shows that VPL main-
tains a low wall-clock overhead compared to SR-SAC, with
only a 3.5% increase in the low-replay regime and 3.8% in
the high-replay regime. This minimal computational over-
head highlights VPL’s suitability for large-scale and real-time
reinforcement learning applications.

METHOD GPL OPL TOP VPL
RR= 2 0.3% 6.3% 0.3% 3.5%
RR= 16 0.5% 1.1% 0.1% 3.8%

Table 1: We measure runtimes for 2000 runs of each algorithm and
find that the pessimism adjustment methods have trivial wall-clock
overhead as compared to SAC/SR-SAC.

5.2 Validation Buffer Regret
To understand the impact of a validation buffer on online RL
training, we analyze three distinct agent setups: baseline SR-
SAC, which operates without a validation buffer, thus updat-
ing actor-critic modules with all experienced transitions; re-
gret SR-SAC, which maintains a validation buffer but does
not employ validation transitions for pessimism adjustment;
and SR-SAC-VPL, which not only maintains a validation
buffer but also utilizes validation transitions for pessimism
adjustment (we present these results in Figure 6).
This comparative analysis aims to isolate the performance

loss attributable to the presence of a validation buffer and the
efficiency gains derived from employing VPL for updating
pessimism. We evaluate these agents in high-replay regime
on 4 tasks (listed in Table 4) over 1mln environment steps,
using varying ratios of validation to training samples, specif-
ically at proportions of 1

128 ,
1
32 ,

1
8 , and

1
2 . The results for this

experiment are presented in Figure 6. We observe that the re-
gret associated with maintaining a validation buffer, and thus
not utilizing it for actor-critic updates, diminishes over the
course of training. Specifically, the regret SR-SAC reaches
parity with the SR-SAC in performance for all validation pro-
portions except at 1

2 . We note that the rate of regret reduc-
tion correlates with the size of the validation proportion, with
smaller proportions converging to baseline performance more
rapidly. When examining the effectiveness of pessimism ad-
justment, we observe its most pronounced impact during the
early stages of training. This trend aligns with the expec-
tation of reducing critic disagreement over time. Addition-
ally, the extent of performance gain appears to be influenced
by the size of the validation buffer, where larger proportions
yield greater improvements. This effect is likely due to the in-
creased diversity of environment transitions available for pes-
simism adjustment in larger buffers. When considering the
combined effects on performance, our findings indicate that,
except for the 1

2 proportion, all validation proportions suc-
cessfully compensate for the performance loss due to valida-
tion buffer maintenance. This result is in line with the broader
experimental results presented in Figures 3 & 5.

5.3 Other Experiments
We investigate the sensitivity of VPL to varying pessimism
learning rates as compared other pessimism adjustment algo-
rithms. Given the dependency of such learning rate on reward
scales and environmental dynamics, determining an optimal
rate a priori is challenging, which is a significant restriction
for practical applications. To address this, we test the per-
formance of VPL, GPL, and OPL across four environments
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Figure 6: We examine the impact of maintaining a validation buffer
on performance distinct from pessimism adjustment across vary-
ing proportions of validation samples. Upper-left figure demon-
strates whether validation agents can match the performance of their
validation-free counterparts without utilizing validation samples for
pessimism updates, enabling quantification of the regret associated
with allocating samples to a validation buffer. Upper-right figure
quantifies the performance gains attributable to pessimism by con-
trasting agents that do not update pessimism against those that do.
Figures in the bottom illustrate the cumulative effect of validation
pessimism adjustment for different validation ratios, benchmarking
against the baseline performance of SR-SAC and VPL with ”free”
validation (denoted as VPL*). X-axis denotes environments steps
(in thousands) and y-axis denotes performance.

detailed in Table 4 in the high-replay regime. We evaluate
agents after 500k environments steps for learning rates of
[5e↑ 5, 5e↑ 4, 5e↑ 3, 5e↑ 2]. The results, presented in Fig-
ure 7, indicate that VPL exhibits less sensitivity to changes
in the pessimism learning rate than the other considered al-
gorithms. Furthermore, we investigate the importance of the
two proposed design elements: the use of a validation buffer
and the VPL pessimism loss as formulated in Equation 12. To
this end, we compare the performance of six agents, each em-
ploying different combinations of pessimism loss – either the
dual optimization pessimism loss or the VPL pessimism loss
– along with varying sources for pessimism updates. These
sources include samples from the replay buffer, the valida-
tion buffer, and the most recent transitions. The results of this
analysis are presented in Figure 9. In our final analysis, we
focus on validating the premise of VPL: its effectiveness in
reducing approximation error and mitigating overfitting com-
pared to baseline algorithms. Our methodology for quan-
tifying approximation error and overfitting are described in
Appendix E. We conducted these measurements across both
low and high replay regimes, using a selection of 20 tasks
from the DMC and MetaWorld as listed in Table 3. The find-
ings, depicted in Figure 3 and Appendix H, confirm that VPL
achieves the lowest levels of critic overfitting and approxima-
tion error in both replay scenarios.

6 Limitations
The primary challenge of VPL lies in estimating the lower-
bound approximation error necessary for the pessimism ad-

Figure 7: VPL exhibits substantially less sensitivity to the learning
rate of the pessimism module. 4 tasks, 10 seeds per task.

justment mechanism. This estimation currently relies on a
simplified assumption, inherited from GPL and discussed in
Section 4.2, that Qµ provides a reasonable approximation of
Qω . While this assumption works well in many standard
benchmarks, it may limit the applicability of VPL in envi-
ronments with high policy dynamics or entropy, where off-
policy actions are less representative of on-policy behavior.
Future research could explore alternative estimation meth-
ods for the lower-bound approximation error that do not rely
on this assumption, potentially leading to more robust algo-
rithms. Surprisingly, our experiments (see Figure 6) reveal
that using a validation buffer does not detrimentally impact
agent performance in high-replay scenarios, except in ex-
tremely sample-scarce environments (e.g., fewer than 250k
environment steps). Addressing the limitations of the current
error estimation framework may also mitigate this sample-
scarcity sensitivity.

7 Conclusions
This paper examined the approximation error in critic net-
works optimized via temporal difference variants. We in-
troduced a fixed-point model for estimating mean and lower
bound errors and used this model to analyze the convergence
of pessimistic actor-critic algorithms. We proposed the VPL
algorithm, which dynamically adjusts pessimism levels to
minimize approximation errors of critic supervision in vali-
dation samples. We tested VPL against baseline algorithms
in various locomotion and manipulation tasks, showing per-
formance and sample efficiency improvements. We explored
the impact of VPL components and their sensitivity to hyper-
parameter selection. Our results confirm VPLs effectiveness
in complex continuous action tasks.
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Szepesvári. Finite-time bounds for fitted value iteration.
Journal of Machine Learning Research, 9(5), 2008.
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